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ABSTRACT. In this paper, we are concerned with the existence and uniqueness of a
generalized solution to a double obstacle problem for Musielak-Orlicz Dirichlet energy
integral on metric measure spaces supporting a @-Poincaré inequality, as an extension
of Farnana (Nonlinear Anal. 73 (2010), pp. 2819-2830).

1. Introduction

Shanmugalingam [34] studied the p-Dirichlet energy integral in metric
measure spaces X = (X,d,u), and showed the existence of a minimizer in
Newtonian space N'”(X) which is defined in terms of p-weak upper gradients
of functions in X. For basic properties of N!?(X), see [33]. We refer to e.g.
[10, 11, 16, 17, 24, 25, 31, 35] for Sobolev spaces on metric measure spaces.
See Kinnunen-Martio [20] and Mocanu [27] for the single obstacle problem on
Newtonian spaces.

Farnana [6] studied the double obstacle problem for p-Dirichlet energy
integrals in N'»(X). The double obstacle problem in R" was studied in [4]
for the case p =2 and in [19, 22] for the case p > 1. For convergence prop-
erties of the obstacle problem in RY, see e.g. [21, 32]. Farnana [7] studied
continuous dependence on obstacles for the double obstacle problem on metric
measure spaces as an extension of [32], and studied generalized solutions of the
double obstacle problem.

Variable exponent Lebesgue spaces, Musielak-Orlicz spaces and Sobolev
spaces have attracted lots of attention to discuss nonlinear partial differential
equations with non-standard growth conditions. For survey books, see [3, 5,
12].  Acerbi and Mingione [1] studied the existence and the regularity of min-
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imizers of the p(-)-Dirichlet energy integral on a bounded domain in R¥.
Variable exponent Sobolev spaces with zero boundary values on RY was
studied in [13]. In the past two decades, variable exponent Sobolev spaces
on metric measure spaces have been studied by many researchers, see e.g. [8,
14, 15, 26]. Let Q2 be a measurable set in X. Musielak-Orlicz Newtonian
spaces N'?(Q) on X defined by a function ®(x,?): X x [0,00) — [0, 00) were
introduced in [29]. In [30], Musielak-Orlicz-Sobolev spaces with zero bound-
ary values on X were studied, as an extension of [13, 18]. In [23], the single
obstacle problems for Musielak-Orlicz Dirichlet energy integral on X were
discussed.

In the previous paper [9], we proved the existence and uniqueness of a
solution to the double obstacle problem for a @-Dirichlet energy integral on a
bounded open set in X, as an extension of [6, 13, 23]. In [9], we also showed
the solution u of the double obstacle problem with obstacles iy and ¢ can be
obtained as the limit of the solutions u; of the double obstacle problem with
obstacles y; and ¢; converging to  and ¢ respectively.

In the present paper, based on the idea by Farnana [6], we introduce gen-
eralized solutions of the {i, p}-problem in Q for boundary values f ¢ N?(Q)
or in the case where there is no Newtonian function between the obstacles
and ¢ with the given boundary values /. We prove the existence and unique-
ness of a generalized solution to the double obstacle problem for a @-Dirichlet
energy integral on a bounded open set in X (Theorem 3.4), as an extension of
[7, Theorem 4.4].

We also prove that generalized solutions u of the {y, ¢}-problem in Q is
locally a solution of the #y, , ,-obstacle problem in N and that u € NlL’CQS(Q)
provided the two obstacles  and ¢ are separated by a Newtonian function
(Theorem 3.7), as an extension of [7, Theorem 4.10].

Throughout this paper, let C denote various constants independent of the
variables in question and C(a,b,---) be a constant that depends on a,b,....

2. Notation and preliminaries

We denote by (X,d,u) a metric measure space, where X is a set, d is a
metric on X and y is a nonnegative complete Borel regular outer measure on X
which is finite and positive for every open ball in X. For simplicity, we often
write X instead of (X,d,u). For xe X and r > 0, we denote by B(x,r) the
open ball centered at x with radius ». We denote by yp the characteristic
function of £ C X.

We consider a function

D(x,1) : X x [0,00) — [0, 00)
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satisfying the following conditions (®@1)—(P4):

(1) @(-,¢) is measurable on X for each r > 0 and ®(x,-) is continuous
on [0,00) for each xe X;

(2) @(x,0) =0 and P(x,-) is a convex function on [0, c0) for every
xeX;

(23) O0<infyep @(x,1) <sup,.p P(x,1) < o for every open ball B
in X;

(P4) there exists a constant A; > 2 such that

D(x,2t) < AgP(x, 1) for all xe X and ¢ > 0.

Note from (@2) that &(x,-) is increasing on [0,00) for every xe X.
Further, note that (#2) and (®4) imply

A
ad(x,t) < O(x,at) < Tda"’gz Aigp(x, 1) for a > 1. (2.1)

For an example of &(x,r) satisfying (®1), (D2), (P3) and (P4), see
[23, Example 2.3].

Let Q be a measurable set in X. For @(x,1) satisfying (&1), (D2), (P3)
and (®4), the associated Musielak-Orlicz space

L*(Q) = { f: f is a measurable function on 2 such that

[, 207 0dut) < o}
Q

is a Banach space with respect to the norm

1 llLo@) = inf{i > 0; L Oy, [/ Adu(y) < 1}

if we identify functions which are equal p-a.e. (cf. [28]).
For a function u:Q — [—o0, 0], a nonnegative measurable function A
on 2 is said to be a &@-weak upper gradient of u in € if

u0) — ulo)| < | has 22)
7

holds for Mgp-a.e. y e I'(Q2), where I'(2) is the family of all rectifiable curves
y:[0,4,] — Q parameterized by arc length ds. Here, by saying that (2.2) holds,
we understand that [ & ds is well-defined and [ & ds = oo in case [u(y(0))| = oo
or |u(y(4,))| = oo (cf. [2]). See [23] for the notion “Mgp-a.e.”.
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The Musielak-Orlicz Newtonian space N''?(Q) is defined to be the family
of all ue L?(Q) having a ®-weak upper gradient he L?(Q) in Q. For ue
N'?(Q) we define

[ulljrog) = lull o) +irhlth||L“’(Q)7

where the infimum is taken over all @-weak upper gradients /& of u in £.
We say that h, e L?(Q) is a minimal &-weak upper gradient of ue
N'?(Q) in Q if h, is a ®-weak upper gradient of u in  and h, < h p-a.e. in Q
for all @-weak upper gradients 7 e L?(Q) of u in Q. Note from [23, Lemma
3.6] that for ue N"®(Q), there exists a minimal ®-weak upper gradient 4, of
u in Q and A, is unique up to sets of measure zero.
For ue N“?(Q), we set

onal) = | @0 W) +inf | @03, h)duty)
where the infimum is taken over all @-weak upper gradients /& of u in 0.
For E C 2, we denote

so(E; Q) ={ueN"®@Q):u>1 on E}
and define the @-capacity with respect to 2 by

co(EB;Q) = Il Do)
In case s¢(E;Q) = &, we set co(E;R2) = 0. If X =Q, we denote sq(E; Q)
and c¢(E; Q) by s¢(E) and ce(E) respectively.

Note that c¢g(-;Q) is an outer measure; in particular, it is countably
subadditive (see [29, Proposition 4.5]). For E C Q, ¢¢(E;Q) < cep(E). See
[23, Remark 4.2].

For a set E C 2, we say that a property holds c¢g(-;Q)-q.e. in E, if it
holds on E except of a set F C E with ¢o(F;Q2) =0, where qg.e. stands for
quasi-everywhere.

If u,ve N"?(Q) and u=v p-ae. in Q, then u=v cg(-;Q)-qe. in Q.
Moreover, if  is an open set in X, then u = v ¢g-q.e. in Q2. See [23, Lemma
4.5].

We say that a function u is c¢g-quasicontinuous on E if, for any ¢ > 0,
there is an open set G such that ¢o(G) <& and ulg is continuous.

REMARK 2.1. If X is proper and continuous functions in X are dense in
N®(X), then every u e ng’;p(!)) is co-quasicontinuous in an open set Q and c¢
is an outer capacity. The proof can be carried out along the lines in the proof of
[2, Theorems 5.29 and 5.31].
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For E C X, we define
Ny ?(E)={fly: f € N**(X) and /=0 in X\E}.
By [23, Lemma 4.4], we have
Ny ®(E) ={flg: fe N""(X) and f =0 cp-qe. in X\E},

See also [23, Lemma 5.1].
We say that X supports a @-Poincaré inequality if, for every open ball B
in X, there exist constants Cp(B) >0 and 4> 1 such that

||u - UBHLdS(B) S CP(B)H/1||L¢(/13)

holds whenever % is a @-weak upper gradient of u on AB and u is integrable
on B, where up = fBu du is the mean-value of u on B. For an example, see
[9, Example 2.6].
From now on, we assume that Q is a bounded open set with ¢e(X\Q2) > 0.
For fe N'?(Q) and ¢,¢p: Q — [0, ], we define

Hy o r(Q)={ueN"®(Q):u—feNy®(Q) and  <u<¢ co-qe. in Q.

A function u € Ay, r(R) is called a solution of the %y , s(2)-obstacle problem
in NV2(Q) if

|, @lemnants) < | ot h)aue
for all ve Xy , (Q).
We shall need the following result from [9, Theorem 3.1], which is a
generalization of [6, 23].

THEOREM 2.2. Assume that L®(Q) is reflexive and X supports a
&-Poincaré  inequality. Let feNV?(Q) and ,p:Q — [-o0, 0] If
Hy.o.r(Q) # &, then there exists a solution of the Ay , r(2)-obstacle problem
in NL2(Q).

Further, if ®(x,-) is strictly convex for p-a.e. x € Q, then the solution of the
Ay, p.r(2)-0bstacle problem in N'®(Q) is unique (up to sets of co-capacity zero).

From now on we assume that L?(Q) is reflexive, X supports a @-Poincaré
inequality and &(x,-) is strictly convex for p-a.e. x € Q.
We need the following comparison principle from [9, Lemma 3.3].

LemMa 2.3. Let f,f e NY®(Q) and Y, ', 0,9' : Q — [—00,0].  Assume
that <" and ¢ < ¢' co-q.e. in Q and that (f — f'), eNol’(p(.Q). Let u be
a solution of the Ay, ;(Q)-obstacle problem in N'®(Q) and u' be a solution of
the Ay, r1(Q)-0bstacle problem in N“*(Q). Then u<u' co-q.e. in Q.
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The following lemma is from [9, Lemma 5.1].

LEMMA 2.4. Suppose {u;} is a bounded sequence in N'®(Q) and u; — u
co-q.e. in Q. Then ue N"®(Q) and

J— 0

J D(x, h,(x))du(x) < liminfj D(x, hy, (x))du(x). (2.3)
Q Q

3. Generalized solutions

In this section, we assume that X is proper and continuous functions in X
are dense in N'?(X). We say that wj — w cg-q.e. uniformly in Q if there
exists a set £ C Q such that ¢g(E) =0 and w; — w uniformly in Q\E.

We say that u is a generalized solution of the {y, p}-problem in Q if there
exist three sequences of functions {y;}, {¢;}/2; and {u;}~, such that i, ¢
and u are the cg-q.e. uniform limits in Q of ;, ¢; and u; respectively, and for
every j e N the function ; is a solution of the #y , . (£2)-obstacle problem in
NL2(Q).

It is clear that if u is a generalized solution of the {y, p}-problem in Q,
then u is cg-quasicontinuous in by Remark 2.1,  <u < ¢ cp-g.e. in 2 and
u is a generalized solution of the {y, p}-problem in Q' for every Q' CC Q by
[9, Lemma 4.6].

The following lemma is needed.

LemMA 3.1 (cf. [7, Lemma 4.2]). Let f;, f € N“®(Q) and \;, 0,00, 9 : Q —
[—o0,00], j=1,2,..., be such that f; — f, ¥; = and ¢; — ¢ ce-q.e. uni-
Sformly in Q. Let also u; be a solution of the J{/l/,f,%ﬁ(ﬂ)-obslacle problem in
NY2(Q), j=1,2,..., and u be a solution of the Ay, , y(Q)-obstacle problem in
NY®(Q).  Then uj — u co-q.e. uniformly in Q.

Proor. Let &> 0. Then there exist a set £ C Q and a number j,e N
such that cg(E) =0 and ¢y —e<y; <y +¢ p—e<g; <p+e f—e<fi<
[ +eon Q\E for every j = jo. Since u+ ¢ is a solution of the Ay, pie r+.(2)-
obstacle problem in N:?(Q) and u —¢ is a solution of the #y_, . r—.(Q)-
obstacle problem in N'?(Q), Lemma 2.3 shows that u — & < u; < u+ ¢ cp-q.e.
in Q. Thus u; — u ce-q.e. uniformly in €. O

LemMA 3.2 (cf. [2, Theorem 2.36]). The space Nol’(p(.Q) is a closed sub-
space of NV?(Q).

Proor. Let u; e Nol"‘p(.Q) for each jeN and ue N?(Q) such that
uj—u in N'®(Q). Then u; —v in N"?(X) for some ve N'?(X) with
U = u cg¢-q.e. in  as we can consider #; to be identically zero outside 2. Since
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there exists a subsequence of {uj}jﬁl Whiclh converges to v pointwise cg-q.e. in
X, v=0 cp-q.e. in X\Q, so that, ueNO’d)(Q). O

LemMmA 3.3 (cf. [7, Lemma 4.3]). Let ue N"®(Q). Assume that there
exists a cg-quasicontinuous function f : Q — [—oo, 0] such that u < f cg-q.e. in
Qand =0 cp-qe. on Q. Then uy =max{u,0} eNol"ds(Q).

Proor. By replacing u and f by u, and f, respectively if necessary
we may assume that ¥ >0 and f > 0. Assume that 0 <u < f <1 ¢p-q.€. in
Q. Since f is ce-quasicontinuous in Q, for every je N there exists an open
set G; such that f |§\G/ is continuous and ¢4(G;) < 1/2/. By the definition of
capacity we can find a decreasing sequence of nonnegative functions {nj}jil
such that pg y(7,) <1/2/" and 5; > 1 in G;. Since 7; — 0 in N"®(X), replac-
ing {nj}jv;l by a subsequence if necessary, we may assume that 7, — 0 co-q.c.
in X. Let

uj = max{u — 1/j —;,0}.

Then u; e N:?(Q) for each jeN. Note that, as f =0 cg-q.e. on 9Q, we
may assume that f(x) =0 for every x € 0Q2\G;. Then, for every jeN, the
set

F=1{xe@: /()= 1//\G

is compact and contained in Q.
Next we show that u; eNol"(p(.Q). To this end note first that

Q\F = {xeQ: f(x) < 1/j}U(G,NQ).
Then for cg-qe. xe {xeQ: f(x) < 1/j} we have u(x) < f(x) < 1/j. Thus
u(x) = 1/j = n;(x) < —n;(x) <0
and hence u;j(x) =0. If cg-q.e. xe GiNQ then we get that

u(x) < 1< (%) < () + 1/

which implies that u;(x) =0. Then we conclude that u; =0 cg-q.e. on Q\F;
and hence u; € Ny'®(2). We will show below that u; — u in N'?(Q) which
shows that ueNol’(p(.Q) by Lemma 3.2.

To show that u; — u in N"?(Q), let

A ={xeQ:0 <u(x) <nix)+1/j}
and

B = {xeQ:u(x) =n;(x)+ 1/j}.
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Then we have

—u in Aj,
u—u=1<0 in {xeQ:u(x)=0},
—1/j—mn; in B;.

Since there is a set £ C Q such that ¢g(E) =0 and 5, — 0 in Q\E we get
that (2, 4\E = & and u(4;) — 0 as j — oo. The dominated convergence
theorem and the fact that 7, — 0 in N L2(Q) imply that

j (x, y(x) — u(x))dp(x)
Q

= | @lnutnants) + | o) +1pduty

< L/ B (x, u(x))du(x) + Ay (L & (x, 1, (3))dp(x) + HQ (x, l)d,u(x))

— 0

as j— oo by (P4) and (P3) and
|, @ hy-uCondut
Q

= | @m0 + | @t (0)du(x) 0
as j — . Thus u; — u in N"?(Q) and hence ue Ny ().
Finally if f is unbounded, then for every k € N we have 0 < min{u, k} <
min{f,k} and the above argument shows that min{u, k} eNOI“'(D(Q) for all
keN. As min{u,k} — u in N"?(Q) we get that ue Ny (). ]

We shall show an existence and uniqueness result for generalized solutions
of the double obstacle problem, which is a generalization of [7, Theorem 4.4].

THEOREM 3.4. Let ,p: Q2 — [—o0, 0] be such that Wy < ¢ cep-q.e. in Q
and [ : Q — [—o0, ] be a cg-quasicontinuous function on Q such that y < f <
¢ co-q.e. in Q. Assume that there exist fie N'?(Q) such that f; is a co-
quasicontinuous function on Q and f; — f co-q.e. uniformly in Q. Then there
exists a unique up to sets of ce-capacity zero, ce-quasicontinuous function
u:Q — [—oo, 0] that is a generalized solution of the {\, p}-problem in Q and
is such that u= f cp-q.e. on 0L.

REMARK 3.5. Let f € NY?(Q) be a co-quasicontinuous function on Q and
let u be a solution of the #y , ;(Q)-obstacle problem in N“®(Q). Let u= f
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on 0Q. Then ue N"®(Q) and u is a ce-quasicontinuous function on Q by
Remark 2.1.

PrOOF OF THEOREM 3.4. Since f; — f co-q.e. uniformly in Q, there exists
an increasing sequence {k; } —; such that [f, — f| <2~ 37 cg-qe. in Q. Let
fi = fi, + 2717, Then we see that f;e N ‘D( ), f; decreases co-q.e. uniformly
to fin Q and 0 < f f <27 cg-qe. in Q. Hence we may assume without
loss of generality that f; decreases cg-q.e. uniformly to / in Q@ and 0 < f; — f <
27 ¢g-q.e. in Q. It follows that

y<f<f gf—i—2_-/ g(p+2_-/ cp-q.e. in Q.

Since fj € #y p12-,7 (L), there exists a solution u; of the Ay ;.2 1(Q2)-
obstacle problem in N'?(Q) by Theorem 2.2. Let u; = f; on 0Q. Then
u; is co-quasicontinuous on Q by Remark 3.5. Fix keN. Since p+27 <
9+27% and f; < fi co-qe. in Q for all j >k, Lemma 2.3 implies that for
all j >k

uj < uy cg-q.e. in Q. (3.1)

Further, we see that u; +27% is a solution of the 7y ,« pi2- 142k fyak(2)-
obstacle problem in NL?(Q) and fi < f+27%<f 42k cg-q.e. in Q.
Lemma 2.3 again implies that for all j >k

ue <u;+27%  cp-qe. in Q. (3.2)

Together with u; = f; < fi =ux < f+27" < fi+2* =u; + 27% ¢p-q.e. in 0Q
for all j =k, (3.1) and (3.2) imply that for all j >k

w <u <u;+27F cp-q.e. in Q. (3.3)

It follows from (3.3) that u; > up > -+ co-q.e. in Q. Let u(x) = lim;_o, u;(x)
for cg-q.e. xe Q and define u arbitrarily elsewhere. Then letting j — o
n (3.3), we get that u <u <u+27% cg-qe. in Q. This shows that wu; — u
ce-q.e. uniformly in Q and u is cg-quasicontinuous on Q.

We next prove the uniqueness. Assume that u; and u, are generalized
solutions of the {y, p}-problem in Q such that u;, u, are ce-quasicontinuous
on Q and u; =uy = f ce-q.e. on 9Q. By definition there exist six sequences
o Ao bt {whe (Va2 {92,321 and {ua ;12 such that uy; is
a solution of the 7y, ,, . (€2)-obstacle problem in N*(€), uy ; is a solution
of the Ay, ,, u,(2)-obstacle problem in N'*(Q), and ¥ ; — ¥, ¢, ; — ¢,
u ;= ut, Yo ;= W, ¢y — ¢ and up j — ux cep-q.e. uniformly in Q. We may
assume without loss of generality that [y ; — vy ;| <27, |py; — ¢y ;| <27,
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lur j — | <27 and |up; —us| <27 co-q.e. in Q. It follows that
wp g —ut;— 2" <o ; — o] + |up — wn |+ Jur —un j| — 2" < Jup — |

cp-q.e. in Q. As |uy — uy| is cg-quasicontinuous on Q and |uy — uj| = 0 ce-q.e.
on 0Q, Lemma 3.3 shows that (u; —uy; —2'7), € Ny ®(Q). Further, we see
that u; ; +2'/ is a solution of the ,%/L,,L/,+2lf,v’(pl_ﬁz]f,}ul‘ﬁz17,,-(.Q)-obstacle prob-
lem in NM*(Q), ¢ ; <y ;4+2"7 and ¢, ; < ¢, ;+2'7 cp-qee. in Q. Hence
we obtain by Lemma 2.3

_
u;<uyj+277

cg-q.e. in Q. Letting j — oo we get up < uj cp-q.e. in 2. Similarly we get
uy <uy cg-q.e. in Q, and hence u; = up cp-q.e. in Q. O

LemMA 3.6 (cf. [7, Remark 4.7]). Let u be a generalized solution of the
{Y, p}-problem in Q. For every open set Q' CC Q, there exists a sequence
{w}Z) such that uje N"*(Q") is a solution of the Ay ,ip.,/(RQ")-obstacle
problem in N“®(Q') and u; decreases to u ce-q.e. uniformly in Q'.

PrOOF. By definition there exist three sequences of functions {y; fi],

{932, and {&;}~, such that y, ¢ and u are the cg-q.e. uniform limits in
Q of y;, ¢; and u; respectively, and for every je N the function #; is a solu-
tion of the 7y ,, z(£2)-obstacle problem in NL2(Q). By [9, Lemma 4.6], #; €
N'?(Q') is a solution of the Hy,.g.5,(R")-obstacle problem in N'?(Q") for
every open set Q' CC Q. Then the proof of Theorem 3.4 with Q = Q’, f; =i
and f = u implies that there exist a solution u; of the %ﬁl,’wzfjﬂuj(!)’)-obstacle
problem in N'?(Q’), j=1,2,..., and a generalized solution v of the {y,¢}-
problem in €’ such that u; decreases to v cp-q.c. uniformly in Q' and v =u
cp-q.e. on 0Q'. Since u is a generalized solution of the {y, p}-problem in Q’,

we have v = u cg-q.e. in Q' by uniqueness of Theorem 3.4. O

We shall show that if the two obstacles are separated by a Newtonian
function then, locally, the generalized solution is the solution by Theorem 2.2.

THEOREM 3.7. Let Y, : Q — [—00, 0] be two functions such that there
exists v eNIL’C(D(.Q) with  <v < ¢ cg-q.e. in Q. Let u be a generalized solu-

tion of the {y,p}-problem in Q. Then ue Nllo‘cds(.Q) and u is a solution of the
Ay p.u(Q)-0bstacle problem in N“®(Q') for all Q' CC Q.

Proor. For Q' cC 2, Lemma 3.6 implies that there exists a sequence
{w;}/Z) such that u; e N'?(Q') is a solution of the %7 ;. , (Q")-obstacle
problem in N'?(Q’) and u; decreases to u cg-q.e. uniformly in Q. As Q' is
bounded we have u; — u in L?(Q') and hence {u;},2, is bounded in L?(Q’).
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If we can show that {h,}”, is bounded in L?(B) for all balls B CC Q then
Lemma 2.4 implies that ueNli)f(Q)

To this end, let B= B(xo,R) CC B’ = B(xy,R") C Q' such that R’ < 1.
Let next 0 <ry <ry <R’, B = B(xo,1;), j=1,2, and

. —d
n(x) —mm{” (xo’x),l} e Ny *(By).
I —r +
Note that yp <# <1 and
1
hy < ry o KBAB

Set vy =nv+ (1 —n)u; =u; +n(v—u) e N"?(B’). By [2, Lemma 2.18], we
have that

hy, < (1 = n)hy, + nhy + v — ujlhy,
w-a.e. in B'. Further, since y <v<gpand Y <u; <p+27, we have y <v; <
¢ +277. This together with the fact that v; =u; on 0B, implies that v; e

Ay, pr29,,(B2). Using the fact that u; is a solution of the 4y 15, (B2)-
obstacle problem in N“%(B,) and (®4), we have that

j (x, () dp(x)
J (x, B, (x))dp(x)
J (6, (3)) ()

<4

U

(], @0y oo + [ 0 003) ~ 21

B, B

] aﬁ(xw(x)hv(x))du(x))

< 43 (j D5y (M) + | @ o) = (0172 = )
B,)\B B,

+] o hv<x>>du<x>>.
B,

Hence, by (2.1) and the fact that {u;}~, is bounded in L?(Q)
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| @t onduco
B

< A3 (J D(x, hy,(x))du(x)
B\B

Aq

S
2(7’2 — rl)lng Aa

|, @tle00 = 00 dut)
4] ot hv<x>>du<x>>

< A3 (JB y D(x, hy, (x))du(x) + G + C2> .

(ry — rl)logz Aq

Adding A3 times the left-hand side to both sides we obtain

(143 | DLy (5)dut)

C
< Atzi (JBZ ¢(X, huj (x))d,u(x) + —llogZAd =+ Cz) .

(r2=r)
After dividing by 1+ A3 we get, with 0 = 43/(1+ 43) < 1, that

Ci0
_ rl)IOgZ Aa

JB D(x, hy (x))du(x) < HJ D(x, hy (x))du(x) +

+ 0.
B, (r

Applying [2, Lemma 7.18] we obtain that

J D(x, hy,(x))du(x) < C<%+ C20>

By (ry — 1) %827

for 0 <ry <ry <R'. By choosing rj = R and r, = R’ we see that {,}~, is

bounded in L?(B). By Lemma 2.4, ue N"?(B), and hence ue N (Q).
Since u € Ay, »4(R'), there exists a solution @ of the 7y , ,(R2")-obstacle

problem in N'®(Q’) by Theorem 2.2. Further, by Lemma 3.1, we have

uj — i cop-q.e. uniformly in Q', and hence #=u cop-q.e. in Q' and u is a

solution of the %y ,,(Q')-obstacle problem in N'#(Q"). ]
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