Generalized solution of the double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces

Toshihide FUTAMURA and Tetsu SHIMOMURA
(Received April 11, 2022)
(Revised February 14, 2023)

ABSTRACT. In this paper, we are concerned with the existence and uniqueness of a generalized solution to a double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces supporting a Φ -Poincaré inequality, as an extension of Farnana (Nonlinear Anal. 73 (2010), pp. 2819–2830).

1. Introduction

Shanmugalingam [34] studied the *p*-Dirichlet energy integral in metric measure spaces $X = (X, d, \mu)$, and showed the existence of a minimizer in Newtonian space $N^{1,p}(X)$ which is defined in terms of *p*-weak upper gradients of functions in X. For basic properties of $N^{1,p}(X)$, see [33]. We refer to e.g. [10, 11, 16, 17, 24, 25, 31, 35] for Sobolev spaces on metric measure spaces. See Kinnunen-Martio [20] and Mocanu [27] for the single obstacle problem on Newtonian spaces.

Farnana [6] studied the double obstacle problem for p-Dirichlet energy integrals in $N^{1,p}(X)$. The double obstacle problem in \mathbf{R}^N was studied in [4] for the case p=2 and in [19, 22] for the case p>1. For convergence properties of the obstacle problem in \mathbf{R}^N , see e.g. [21, 32]. Farnana [7] studied continuous dependence on obstacles for the double obstacle problem on metric measure spaces as an extension of [32], and studied generalized solutions of the double obstacle problem.

Variable exponent Lebesgue spaces, Musielak-Orlicz spaces and Sobolev spaces have attracted lots of attention to discuss nonlinear partial differential equations with non-standard growth conditions. For survey books, see [3, 5, 12]. Acerbi and Mingione [1] studied the existence and the regularity of min-

The second author is supported by Grant-in-Aid for Science Research (C), No. 21K03295, Japan Society for the Promotion of Science.

²⁰²⁰ Mathematics Subject Classification. Primary 46E35; Secondary 31B15.

Key words and phrases. metric measure space, Newtonian space, Musielak-Orlicz space, Poincaré inequality, Dirichlet energy integral, double obstacle problem.

imizers of the $p(\cdot)$ -Dirichlet energy integral on a bounded domain in \mathbf{R}^N . Variable exponent Sobolev spaces with zero boundary values on \mathbf{R}^N was studied in [13]. In the past two decades, variable exponent Sobolev spaces on metric measure spaces have been studied by many researchers, see e.g. [8, 14, 15, 26]. Let Ω be a measurable set in X. Musielak-Orlicz Newtonian spaces $N^{1,\Phi}(\Omega)$ on X defined by a function $\Phi(x,t):X\times[0,\infty)\to[0,\infty)$ were introduced in [29]. In [30], Musielak-Orlicz-Sobolev spaces with zero boundary values on X were studied, as an extension of [13, 18]. In [23], the single obstacle problems for Musielak-Orlicz Dirichlet energy integral on X were discussed.

In the previous paper [9], we proved the existence and uniqueness of a solution to the double obstacle problem for a Φ -Dirichlet energy integral on a bounded open set in X, as an extension of [6, 13, 23]. In [9], we also showed the solution u of the double obstacle problem with obstacles ψ and φ can be obtained as the limit of the solutions u_j of the double obstacle problem with obstacles ψ_j and φ_j converging to ψ and φ respectively.

In the present paper, based on the idea by Farnana [6], we introduce generalized solutions of the $\{\psi, \varphi\}$ -problem in Ω for boundary values $f \notin N^{1, \Phi}(\Omega)$ or in the case where there is no Newtonian function between the obstacles ψ and φ with the given boundary values f. We prove the existence and uniqueness of a generalized solution to the double obstacle problem for a Φ -Dirichlet energy integral on a bounded open set in X (Theorem 3.4), as an extension of [7, Theorem 4.4].

We also prove that generalized solutions u of the $\{\psi, \varphi\}$ -problem in Ω is locally a solution of the $\mathcal{K}_{\psi, \varphi, u}$ -obstacle problem in $N^{1, \Phi}$ and that $u \in N^{1, \Phi}_{loc}(\Omega)$ provided the two obstacles ψ and φ are separated by a Newtonian function (Theorem 3.7), as an extension of [7, Theorem 4.10].

Throughout this paper, let C denote various constants independent of the variables in question and $C(a, b, \cdots)$ be a constant that depends on a, b, \cdots

2. Notation and preliminaries

We denote by (X,d,μ) a metric measure space, where X is a set, d is a metric on X and μ is a nonnegative complete Borel regular outer measure on X which is finite and positive for every open ball in X. For simplicity, we often write X instead of (X,d,μ) . For $x \in X$ and r > 0, we denote by B(x,r) the open ball centered at x with radius r. We denote by χ_E the characteristic function of $E \subset X$.

We consider a function

$$\Phi(x,t): X \times [0,\infty) \to [0,\infty)$$

satisfying the following conditions $(\Phi 1)$ – $(\Phi 4)$:

- $(\Phi 1)$ $\Phi(\cdot,t)$ is measurable on X for each $t \ge 0$ and $\Phi(x,\cdot)$ is continuous on $[0,\infty)$ for each $x \in X$;
- $(\Phi 2)$ $\Phi(x,0) = 0$ and $\Phi(x,\cdot)$ is a convex function on $[0,\infty)$ for every $x \in X$:
- (Φ 3) $0 < \inf_{x \in B} \Phi(x, 1) \le \sup_{x \in B} \Phi(x, 1) < \infty$ for every open ball B in X;
- $(\Phi 4)$ there exists a constant $A_d \ge 2$ such that

$$\Phi(x, 2t) \le A_d \Phi(x, t)$$
 for all $x \in X$ and $t > 0$.

Note from $(\Phi 2)$ that $\Phi(x,\cdot)$ is increasing on $[0,\infty)$ for every $x \in X$. Further, note that $(\Phi 2)$ and $(\Phi 4)$ imply

$$a\Phi(x,t) \le \Phi(x,at) \le \frac{A_d}{2} a^{\log_2 A_d} \Phi(x,t)$$
 for $a \ge 1$. (2.1)

For an example of $\Phi(x,t)$ satisfying $(\Phi 1)$, $(\Phi 2)$, $(\Phi 3)$ and $(\Phi 4)$, see [23, Example 2.3].

Let Ω be a measurable set in X. For $\Phi(x,t)$ satisfying $(\Phi 1)$, $(\Phi 2)$, $(\Phi 3)$ and $(\Phi 4)$, the associated Musielak-Orlicz space

$$L^{\varPhi}(\varOmega)=\left\{f:f\text{ is a measurable function on }\varOmega\text{ such that}\right.$$

$$\int_{\varOmega}\varPhi(y,|f(y)|)d\mu(y)<\infty\right\}$$

is a Banach space with respect to the norm

$$||f||_{L^{\Phi}(\Omega)} = \inf \left\{ \lambda > 0; \int_{\Omega} \Phi(y, |f(y)|/\lambda) d\mu(y) \le 1 \right\}$$

if we identify functions which are equal μ -a.e. (cf. [28]).

For a function $u: \Omega \to [-\infty, \infty]$, a nonnegative measurable function h on Ω is said to be a Φ -weak upper gradient of u in Ω if

$$|u(\gamma(0)) - u(\gamma(\ell_{\gamma}))| \le \int_{\gamma} h \, ds \tag{2.2}$$

holds for M_{Φ} -a.e. $\gamma \in \Gamma(\Omega)$, where $\Gamma(\Omega)$ is the family of all rectifiable curves $\gamma:[0,\ell_{\gamma}] \to \Omega$ parameterized by arc length ds. Here, by saying that (2.2) holds, we understand that $\int_{\gamma} h \, ds$ is well-defined and $\int_{\gamma} h \, ds = \infty$ in case $|u(\gamma(0))| = \infty$ or $|u(\gamma(\ell_{\gamma}))| = \infty$ (cf. [2]). See [23] for the notion " M_{Φ} -a.e.".

The Musielak-Orlicz Newtonian space $N^{1,\Phi}(\Omega)$ is defined to be the family of all $u \in L^{\Phi}(\Omega)$ having a Φ -weak upper gradient $h \in L^{\Phi}(\Omega)$ in Ω . For $u \in N^{1,\Phi}(\Omega)$ we define

$$||u||_{N^{1,\Phi}(\Omega)} = ||u||_{L^{\Phi}(\Omega)} + \inf_{h} ||h||_{L^{\Phi}(\Omega)},$$

where the infimum is taken over all Φ -weak upper gradients h of u in Ω .

We say that $h_u \in L^{\Phi}(\Omega)$ is a minimal Φ -weak upper gradient of $u \in N^{1,\Phi}(\Omega)$ in Ω if h_u is a Φ -weak upper gradient of u in Ω and $h_u \leq h$ μ -a.e. in Ω for all Φ -weak upper gradients $h \in L^{\Phi}(\Omega)$ of u in Ω . Note from [23, Lemma 3.6] that for $u \in N^{1,\Phi}(\Omega)$, there exists a minimal Φ -weak upper gradient h_u of u in u and u is unique up to sets of measure zero.

For $u \in N^{1,\Phi}(\Omega)$, we set

$$\hat{\rho}_{\Phi,\Omega}(u) = \int_{\Omega} \Phi(y, |u(y)|) d\mu(y) + \inf_{h} \int_{\Omega} \Phi(y, h(y)) d\mu(y)$$

where the infimum is taken over all Φ -weak upper gradients h of u in Ω . For $E \subset \Omega$, we denote

$$s_{\Phi}(E;\Omega) = \{ u \in N^{1,\Phi}(\Omega) : u \ge 1 \text{ on } E \}$$

and define the Φ -capacity with respect to Ω by

$$c_{\Phi}(E;\Omega) = \inf_{u \in s_{\Phi}(E;\Omega)} \hat{\rho}_{\Phi,\Omega}(u).$$

In case $s_{\Phi}(E;\Omega) = \emptyset$, we set $c_{\Phi}(E;\Omega) = \infty$. If $X = \Omega$, we denote $s_{\Phi}(E;\Omega)$ and $c_{\Phi}(E;\Omega)$ by $s_{\Phi}(E)$ and $c_{\Phi}(E)$ respectively.

Note that $c_{\Phi}(\cdot; \Omega)$ is an outer measure; in particular, it is countably subadditive (see [29, Proposition 4.5]). For $E \subset \Omega$, $c_{\Phi}(E; \Omega) \leq c_{\Phi}(E)$. See [23, Remark 4.2].

For a set $E \subset \Omega$, we say that a property holds $c_{\Phi}(\cdot;\Omega)$ -q.e. in E, if it holds on E except of a set $F \subset E$ with $c_{\Phi}(F;\Omega) = 0$, where q.e. stands for quasi-everywhere.

If $u, v \in N^{1,\Phi}(\Omega)$ and u = v μ -a.e. in Ω , then u = v $c_{\Phi}(\cdot; \Omega)$ -q.e. in Ω . Moreover, if Ω is an open set in X, then u = v c_{Φ} -q.e. in Ω . See [23, Lemma 4.5].

We say that a function u is c_{Φ} -quasicontinuous on E if, for any $\varepsilon > 0$, there is an open set G such that $c_{\Phi}(G) < \varepsilon$ and $u|_{E \setminus G}$ is continuous.

REMARK 2.1. If X is proper and continuous functions in X are dense in $N^{1,\Phi}(X)$, then every $u \in N^{1,\Phi}_{loc}(\Omega)$ is c_{Φ} -quasicontinuous in an open set Ω and c_{Φ} is an outer capacity. The proof can be carried out along the lines in the proof of [2, Theorems 5.29 and 5.31].

For $E \subset X$, we define

$$N_0^{1,\varPhi}(E) = \{f|_E : f \in N^{1,\varPhi}(X) \text{ and } f = 0 \text{ in } X \backslash E\}.$$

By [23, Lemma 4.4], we have

$$N_0^{1,\Phi}(E) = \{ f|_E : f \in N^{1,\Phi}(X) \text{ and } f = 0 \ c_{\Phi}\text{-q.e. in } X \setminus E \}.$$

See also [23, Lemma 5.1].

We say that X supports a Φ -Poincaré inequality if, for every open ball B in X, there exist constants $C_P(B) > 0$ and $\lambda \ge 1$ such that

$$||u - u_B||_{L^{\Phi}(B)} \le C_P(B) ||h||_{L^{\Phi}(\lambda B)}$$

holds whenever h is a Φ -weak upper gradient of u on λB and u is integrable on B, where $u_B = \int_B u \, d\mu$ is the mean-value of u on B. For an example, see [9, Example 2.6].

From now on, we assume that Ω is a bounded open set with $c_{\Phi}(X \setminus \Omega) > 0$. For $f \in N^{1,\Phi}(\Omega)$ and $\psi, \varphi : \Omega \to [-\infty, \infty]$, we define

$$\mathscr{K}_{\psi, \varphi, f}(\Omega) = \{u \in N^{1, \Phi}(\Omega) : u - f \in N_0^{1, \Phi}(\Omega) \text{ and } \psi \leq u \leq \varphi \text{ } c_{\Phi}\text{-q.e. in } \Omega\}.$$

A function $u \in \mathcal{K}_{\psi, \varphi, f}(\Omega)$ is called a solution of the $\mathcal{K}_{\psi, \varphi, f}(\Omega)$ -obstacle problem in $N^{1, \Phi}(\Omega)$ if

$$\int_{\Omega} \Phi(x, h_u(x)) d\mu(x) \le \int_{\Omega} \Phi(x, h_v(x)) d\mu(x)$$

for all $v \in \mathcal{K}_{\psi, \varphi, f}(\Omega)$.

We shall need the following result from [9, Theorem 3.1], which is a generalization of [6, 23].

THEOREM 2.2. Assume that $L^{\Phi}(\Omega)$ is reflexive and X supports a Φ -Poincaré inequality. Let $f \in N^{1,\Phi}(\Omega)$ and $\psi, \varphi : \Omega \to [-\infty, \infty]$. If $\mathcal{K}_{\psi,\varphi,f}(\Omega) \neq \emptyset$, then there exists a solution of the $\mathcal{K}_{\psi,\varphi,f}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$.

Further, if $\Phi(x,\cdot)$ is strictly convex for μ -a.e. $x \in \Omega$, then the solution of the $\mathcal{K}_{\psi,\phi,f}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$ is unique (up to sets of c_{Φ} -capacity zero).

From now on we assume that $L^{\Phi}(\Omega)$ is reflexive, X supports a Φ -Poincaré inequality and $\Phi(x,\cdot)$ is strictly convex for μ -a.e. $x \in \Omega$.

We need the following comparison principle from [9, Lemma 3.3].

LEMMA 2.3. Let $f, f' \in N^{1,\Phi}(\Omega)$ and $\psi, \psi', \varphi, \varphi' : \Omega \to [-\infty, \infty]$. Assume that $\psi \leq \psi'$ and $\varphi \leq \varphi'$ c_{Φ} -q.e. in Ω and that $(f - f')_+ \in N_0^{1,\Phi}(\Omega)$. Let u be a solution of the $\mathcal{K}_{\psi,\varphi,f}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$ and u' be a solution of the $\mathcal{K}_{\psi',\varphi',f'}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$. Then $u \leq u'$ c_{Φ} -q.e. in Ω .

The following lemma is from [9, Lemma 5.1].

Lemma 2.4. Suppose $\{u_j\}$ is a bounded sequence in $N^{1,\Phi}(\Omega)$ and $u_j \to u$ c_{Φ} -q.e. in Ω . Then $u \in N^{1,\Phi}(\Omega)$ and

$$\int_{\Omega} \Phi(x, h_u(x)) d\mu(x) \le \liminf_{j \to \infty} \int_{\Omega} \Phi(x, h_{u_j}(x)) d\mu(x). \tag{2.3}$$

3. Generalized solutions

In this section, we assume that X is proper and continuous functions in X are dense in $N^{1,\Phi}(X)$. We say that $w_j \to w$ c_{Φ} -q.e. uniformly in Ω if there exists a set $E \subset \Omega$ such that $c_{\Phi}(E) = 0$ and $w_j \to w$ uniformly in $\Omega \setminus E$.

We say that u is a generalized solution of the $\{\psi, \varphi\}$ -problem in Ω if there exist three sequences of functions $\{\psi_j\}_{j=1}^{\infty}$, $\{\varphi_j\}_{j=1}^{\infty}$ and $\{u_j\}_{j=1}^{\infty}$ such that ψ , φ and u are the c_{φ} -q.e. uniform limits in Ω of ψ_j , φ_j and u_j respectively, and for every $j \in \mathbb{N}$ the function u_j is a solution of the $\mathcal{K}_{\psi_j,\varphi_j,u_j}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$.

It is clear that if u is a generalized solution of the $\{\psi, \varphi\}$ -problem in Ω , then u is c_{φ} -quasicontinuous in Ω by Remark 2.1, $\psi \leq u \leq \varphi$ c_{φ} -q.e. in Ω and u is a generalized solution of the $\{\psi, \varphi\}$ -problem in Ω' for every $\Omega' \subset\subset \Omega$ by [9, Lemma 4.6].

The following lemma is needed.

LEMMA 3.1 (cf. [7, Lemma 4.2]). Let $f_j, f \in N^{1,\Phi}(\Omega)$ and $\psi_j, \varphi_j, \psi, \varphi : \Omega \to [-\infty, \infty]$, $j = 1, 2, \ldots$, be such that $f_j \to f$, $\psi_j \to \psi$ and $\varphi_j \to \varphi$ c_{Φ} -q.e. uniformly in Ω . Let also u_j be a solution of the $\mathcal{K}_{\psi_j, \varphi_j, f_j}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$, $j = 1, 2, \ldots$, and u be a solution of the $\mathcal{K}_{\psi, \varphi, f}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$. Then $u_j \to u$ c_{Φ} -q.e. uniformly in Ω .

PROOF. Let $\varepsilon > 0$. Then there exist a set $E \subset \Omega$ and a number $j_0 \in \mathbb{N}$ such that $c_{\Phi}(E) = 0$ and $\psi - \varepsilon \leq \psi_j \leq \psi + \varepsilon$, $\varphi - \varepsilon \leq \varphi_j \leq \varphi + \varepsilon$, $f - \varepsilon \leq f_j \leq f + \varepsilon$ on $\Omega \backslash E$ for every $j \geq j_0$. Since $u + \varepsilon$ is a solution of the $\mathscr{K}_{\psi + \varepsilon, \varphi + \varepsilon, f + \varepsilon}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$ and $u - \varepsilon$ is a solution of the $\mathscr{K}_{\psi - \varepsilon, \varphi - \varepsilon, f - \varepsilon}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$, Lemma 2.3 shows that $u - \varepsilon \leq u_j \leq u + \varepsilon$ c_{Φ} -q.e. in Ω . Thus $u_j \to u$ c_{Φ} -q.e. uniformly in Ω .

Lemma 3.2 (cf. [2, Theorem 2.36]). The space $N_0^{1,\Phi}(\Omega)$ is a closed subspace of $N^{1,\Phi}(\Omega)$.

PROOF. Let $u_j \in N_0^{1,\Phi}(\Omega)$ for each $j \in \mathbb{N}$ and $u \in N^{1,\Phi}(\Omega)$ such that $u_j \to u$ in $N^{1,\Phi}(\Omega)$. Then $u_j \to v$ in $N^{1,\Phi}(X)$ for some $v \in N^{1,\Phi}(X)$ with $v = u \ c_{\Phi}$ -q.e. in Ω as we can consider u_j to be identically zero outside Ω . Since

there exists a subsequence of $\{u_i\}_{j=1}^{\infty}$ which converges to v pointwise c_{Φ} -q.e. in X, v=0 c_{Φ} -q.e. in $X \setminus \Omega$, so that, $u \in N_0^{1,\Phi}(\Omega)$.

Lemma 3.3 (cf. [7, Lemma 4.3]). Let $u \in N^{1,\Phi}(\Omega)$. Assume that there exists a c_{Φ} -quasicontinuous function $f: \overline{\Omega} \to [-\infty, \infty]$ such that $u \leq f$ c_{Φ} -q.e. in Ω and f = 0 c_{Φ} -q.e. on $\partial \Omega$. Then $u_+ = \max\{u, 0\} \in N_0^{1, \Phi}(\Omega)$.

PROOF. By replacing u and f by u_+ and f_+ respectively if necessary we may assume that $u \ge 0$ and $f \ge 0$. Assume that $0 \le u \le f \le 1$ c_{ϕ} -q.e. in Ω . Since f is c_{Φ} -quasicontinuous in $\overline{\Omega}$, for every $j \in \mathbb{N}$ there exists an open set G_j such that $f|_{\bar{O}\setminus G_i}$ is continuous and $c_{\Phi}(G_j) < 1/2^j$. By the definition of capacity we can find a decreasing sequence of nonnegative functions $\{\eta_i\}_{i=1}^{\infty}$ such that $\hat{\rho}_{\Phi,X}(\eta_i) < 1/2^{j-2}$ and $\eta_i \ge 1$ in G_j . Since $\eta_i \to 0$ in $N^{1,\Phi}(X)$, replacing $\{\eta_i\}_{i=1}^{\infty}$ by a subsequence if necessary, we may assume that $\eta_i \to 0$ c_{Φ} -q.e. in X. Let

$$u_j = \max\{u - 1/j - \eta_i, 0\}.$$

Then $u_i \in N^{1,\Phi}(\Omega)$ for each $j \in \mathbb{N}$. Note that, as f = 0 c_{Φ} -q.e. on $\partial \Omega$, we may assume that f(x) = 0 for every $x \in \partial \Omega \setminus G_i$. Then, for every $i \in \mathbb{N}$, the set

$$F_j = \{x \in \overline{\Omega} : f(x) \ge 1/j\} \setminus G_j$$

is compact and contained in Ω .

Next we show that $u_i \in N_0^{1,\Phi}(\Omega)$. To this end note first that

$$\Omega \backslash F_j = \{x \in \Omega : f(x) < 1/j\} \cup (G_j \cap \Omega).$$

Then for c_{Φ} -q.e. $x \in \{x \in \Omega : f(x) < 1/j\}$ we have $u(x) \le f(x) < 1/j$.

$$u(x)-1/j-\eta_j(x)<-\eta_j(x)\leq 0$$

and hence $u_i(x) = 0$. If c_{Φ} -q.e. $x \in G_i \cap \Omega$ then we get that

$$u(x) \le 1 \le \eta_j(x) \le \eta_j(x) + 1/j$$

which implies that $u_j(x)=0$. Then we conclude that $u_j=0$ c_{\varPhi} -q.e. on $\Omega\backslash F_j$ and hence $u_j\in N_0^{1,\varPhi}(\Omega)$. We will show below that $u_j\to u$ in $N^{1,\varPhi}(\Omega)$ which shows that $u\in N_0^{1,\varPhi}(\Omega)$ by Lemma 3.2. To show that $u_j\to u$ in $N^{1,\varPhi}(\Omega)$, let

$$A_j = \{ x \in \Omega : 0 < u(x) < \eta_j(x) + 1/j \}$$

and

$$B_j = \{ x \in \Omega : u(x) \ge \eta_j(x) + 1/j \}.$$

Then we have

$$u_j - u = \begin{cases} -u & \text{in } A_j, \\ 0 & \text{in } \{x \in \Omega : u(x) = 0\}, \\ -1/j - \eta_j & \text{in } B_j. \end{cases}$$

Since there is a set $E \subset \Omega$ such that $c_{\Phi}(E) = 0$ and $\eta_j \to 0$ in $\Omega \backslash E$ we get that $\bigcap_{j=1}^{\infty} A_j \backslash E = \emptyset$ and $\mu(A_j) \to 0$ as $j \to \infty$. The dominated convergence theorem and the fact that $\eta_j \to 0$ in $N^{1,\Phi}(\Omega)$ imply that

$$\begin{split} \int_{\Omega} \Phi(x, u_{j}(x) - u(x)) d\mu(x) \\ &= \int_{A_{j}} \Phi(x, u(x)) d\mu(x) + \int_{B_{j}} \Phi(x, \eta_{j}(x) + 1/j) d\mu(x) \\ &\leq \int_{A_{j}} \Phi(x, u(x)) d\mu(x) + A_{d} \left(\int_{\Omega} \Phi(x, \eta_{j}(x)) d\mu(x) + \frac{1}{j} \int_{\Omega} \Phi(x, 1) d\mu(x) \right) \\ &\to 0 \end{split}$$

as $j \to \infty$ by $(\Phi 4)$ and $(\Phi 3)$ and

$$\int_{\Omega} \Phi(x, h_{u_j - u}(x)) d\mu(x)$$

$$= \int_{A_i} \Phi(x, h_u(x)) d\mu(x) + \int_{B_i} \Phi(x, h_{\eta_j}(x)) d\mu(x) \to 0$$

as $j \to \infty$. Thus $u_j \to u$ in $N^{1,\Phi}(\Omega)$ and hence $u \in N_0^{1,\Phi}(\Omega)$.

Finally if f is unbounded, then for every $k \in \mathbf{N}$ we have $0 \le \min\{u, k\} \le \min\{f, k\}$ and the above argument shows that $\min\{u, k\} \in N_0^{1, \Phi}(\Omega)$ for all $k \in \mathbf{N}$. As $\min\{u, k\} \to u$ in $N^{1, \Phi}(\Omega)$ we get that $u \in N_0^{1, \Phi}(\Omega)$.

We shall show an existence and uniqueness result for generalized solutions of the double obstacle problem, which is a generalization of [7, Theorem 4.4].

Theorem 3.4. Let $\psi, \varphi: \Omega \to [-\infty, \infty]$ be such that $\psi \leq \varphi$ c_{φ} -q.e. in Ω and $f: \overline{\Omega} \to [-\infty, \infty]$ be a c_{φ} -quasicontinuous function on $\overline{\Omega}$ such that $\psi \leq f \leq \varphi$ c_{φ} -q.e. in Ω . Assume that there exist $f_j \in N^{1,\Phi}(\overline{\Omega})$ such that f_j is a c_{φ} -quasicontinuous function on $\overline{\Omega}$ and $f_j \to f$ c_{φ} -q.e. uniformly in $\overline{\Omega}$. Then there exists a unique up to sets of c_{φ} -capacity zero, c_{φ} -quasicontinuous function $u: \overline{\Omega} \to [-\infty, \infty]$ that is a generalized solution of the $\{\psi, \varphi\}$ -problem in Ω and is such that u = f c_{φ} -q.e. on $\partial \Omega$.

Remark 3.5. Let $f \in N^{1,\Phi}(\overline{\Omega})$ be a c_{Φ} -quasicontinuous function on $\overline{\Omega}$ and let u be a solution of the $\mathscr{K}_{\psi,\varphi,f}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$. Let u=f

on $\partial \Omega$. Then $u \in N^{1,\Phi}(\overline{\Omega})$ and u is a c_{Φ} -quasicontinuous function on $\overline{\Omega}$ by Remark 2.1.

PROOF OF THEOREM 3.4. Since $f_j \to f$ c_{Φ} -q.e. uniformly in $\overline{\Omega}$, there exists an increasing sequence $\{k_j\}_{j=1}^{\infty}$ such that $|f_{k_j}-f|<2^{-3-j}$ c_{Φ} -q.e. in $\overline{\Omega}$. Let $\tilde{f}_j=f_{k_j}+2^{-1-j}$. Then we see that $\tilde{f}_j\in N^{1,\Phi}(\overline{\Omega}),\ \tilde{f}_j$ decreases c_{Φ} -q.e. uniformly to f in $\overline{\Omega}$ and $0\leq \tilde{f}_j-f\leq 2^{-j}$ c_{Φ} -q.e. in $\overline{\Omega}$. Hence we may assume without loss of generality that f_j decreases c_{Φ} -q.e. uniformly to f in $\overline{\Omega}$ and $0\leq f_j-f\leq 2^{-j}$ c_{Φ} -q.e. in $\overline{\Omega}$. It follows that

$$\psi \le f \le f_i \le f + 2^{-j} \le \varphi + 2^{-j}$$
 c_{Φ} -q.e. in Ω .

Since $f_j \in \mathcal{K}_{\psi, \varphi+2^{-j}, f_j}(\Omega)$, there exists a solution u_j of the $\mathcal{K}_{\psi, \varphi+2^{-j}, f_j}(\Omega)$ -obstacle problem in $N^{1, \Phi}(\Omega)$ by Theorem 2.2. Let $u_j = f_j$ on $\partial \Omega$. Then u_j is c_{Φ} -quasicontinuous on $\overline{\Omega}$ by Remark 3.5. Fix $k \in \mathbb{N}$. Since $\varphi + 2^{-j} \leq \varphi + 2^{-k}$ and $f_j \leq f_k$ c_{Φ} -q.e. in Ω for all $j \geq k$, Lemma 2.3 implies that for all $j \geq k$

$$u_i \le u_k \qquad c_{\Phi}\text{-q.e. in } \Omega.$$
 (3.1)

Further, we see that $u_j + 2^{-k}$ is a solution of the $\mathcal{K}_{\psi+2^{-k}, \phi+2^{-j}+2^{-k}, f_j+2^{-k}}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$ and $f_k \leq f+2^{-k} \leq f_j+2^{-k}$ c_{Φ} -q.e. in Ω . Lemma 2.3 again implies that for all $j \geq k$

$$u_k \le u_i + 2^{-k}$$
 c_{Φ} -q.e. in Ω . (3.2)

Together with $u_j = f_j \le f_k = u_k \le f + 2^{-k} \le f_j + 2^{-k} = u_j + 2^{-k}$ c_{Φ} -q.e. in $\partial \Omega$ for all $j \ge k$, (3.1) and (3.2) imply that for all $j \ge k$

$$u_i \le u_k \le u_i + 2^{-k}$$
 c_{Φ} -q.e. in $\overline{\Omega}$. (3.3)

It follows from (3.3) that $u_1 \geq u_2 \geq \cdots c_{\Phi}$ -q.e. in $\overline{\Omega}$. Let $u(x) = \lim_{j \to \infty} u_j(x)$ for c_{Φ} -q.e. $x \in \overline{\Omega}$ and define u arbitrarily elsewhere. Then letting $j \to \infty$ in (3.3), we get that $u \leq u_k \leq u + 2^{-k} c_{\Phi}$ -q.e. in $\overline{\Omega}$. This shows that $u_k \to u$ c_{Φ} -q.e. uniformly in $\overline{\Omega}$ and u is c_{Φ} -quasicontinuous on $\overline{\Omega}$.

We next prove the uniqueness. Assume that u_1 and u_2 are generalized solutions of the $\{\psi, \varphi\}$ -problem in Ω such that u_1 , u_2 are c_{φ} -quasicontinuous on $\overline{\Omega}$ and $u_1 = u_2 = f$ c_{φ} -q.e. on $\partial \Omega$. By definition there exist six sequences $\{\psi_{1,j}\}_{j=1}^{\infty}$, $\{\varphi_{1,j}\}_{j=1}^{\infty}$, $\{u_{1,j}\}_{j=1}^{\infty}$, $\{\psi_{2,j}\}_{j=1}^{\infty}$, and $\{u_{2,j}\}_{j=1}^{\infty}$ such that $u_{1,j}$ is a solution of the $\mathcal{K}_{\psi_{1,j},\varphi_{1,j},u_{1,j}}(\Omega)$ -obstacle problem in $N^{1,\varphi}(\Omega)$, $u_{2,j}$ is a solution of the $\mathcal{K}_{\psi_{2,j},\varphi_{2,j},u_{2,j}}(\Omega)$ -obstacle problem in $N^{1,\varphi}(\Omega)$, and $\psi_{1,j} \to \psi$, $\varphi_{1,j} \to \varphi$, $u_{1,j} \to u_1$, $\psi_{2,j} \to \psi$, $\varphi_{2,j} \to \varphi$ and $u_{2,j} \to u_2$ c_{φ} -q.e. uniformly in Ω . We may assume without loss of generality that $|\psi_{1,j} - \psi_{2,j}| \leq 2^{-j}$, $|\varphi_{1,j} - \varphi_{2,j}| \leq 2^{-j}$,

 $|u_{1,j} - u_1| \le 2^{-j}$ and $|u_{2,j} - u_2| \le 2^{-j}$ c_{Φ} -q.e. in Ω . It follows that

$$|u_{2,j} - u_{1,j} - 2^{1-j} \le |u_{2,j} - u_2| + |u_2 - u_1| + |u_1 - u_{1,j}| - 2^{1-j} \le |u_2 - u_1|$$

 c_{Φ} -q.e. in Ω . As $|u_2-u_1|$ is c_{Φ} -quasicontinuous on $\overline{\Omega}$ and $|u_2-u_1|=0$ c_{Φ} -q.e. on $\partial\Omega$, Lemma 3.3 shows that $(u_{2,j}-u_{1,j}-2^{1-j})_+\in N_0^{1,\Phi}(\Omega)$. Further, we see that $u_{1,j}+2^{1-j}$ is a solution of the $\mathscr{K}_{\psi_{1,j}+2^{1-j},\phi_{1,j}+2^{1-j},u_{1,j}+2^{1-j}}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$, $\psi_{2,j}\leq \psi_{1,j}+2^{1-j}$ and $\varphi_{2,j}\leq \varphi_{1,j}+2^{1-j}$ c_{Φ} -q.e. in Ω . Hence we obtain by Lemma 2.3

$$u_{2,i} \le u_{1,i} + 2^{1-j}$$

 c_{Φ} -q.e. in Ω . Letting $j \to \infty$ we get $u_2 \le u_1$ c_{Φ} -q.e. in Ω . Similarly we get $u_1 \le u_2$ c_{Φ} -q.e. in Ω , and hence $u_1 = u_2$ c_{Φ} -q.e. in Ω .

Lemma 3.6 (cf. [7, Remark 4.7]). Let u be a generalized solution of the $\{\psi, \varphi\}$ -problem in Ω . For every open set $\Omega' \subset\subset \Omega$, there exists a sequence $\{u_j\}_{j=1}^{\infty}$ such that $u_j \in N^{1,\Phi}(\Omega')$ is a solution of the $\mathscr{K}_{\psi, \varphi+2^{-j}, u_j}(\Omega')$ -obstacle problem in $N^{1,\Phi}(\Omega')$ and u_j decreases to u c_{Φ} -q.e. uniformly in Ω' .

PROOF. By definition there exist three sequences of functions $\{\psi_j\}_{j=1}^{\infty}$, $\{\varphi_j\}_{j=1}^{\infty}$ and $\{\tilde{u}_j\}_{j=1}^{\infty}$ such that ψ , φ and u are the c_{φ} -q.e. uniform limits in Ω of ψ_j , φ_j and \tilde{u}_j respectively, and for every $j \in \mathbb{N}$ the function \tilde{u}_j is a solution of the $\mathcal{K}_{\psi_j,\varphi_j,\tilde{u}_j}(\Omega)$ -obstacle problem in $N^{1,\Phi}(\Omega)$. By [9, Lemma 4.6], $\tilde{u}_j \in N^{1,\Phi}(\overline{\Omega'})$ is a solution of the $\mathcal{K}_{\psi_j,\varphi_j,\tilde{u}_j}(\Omega')$ -obstacle problem in $N^{1,\Phi}(\Omega')$ for every open set $\Omega' \subset\subset \Omega$. Then the proof of Theorem 3.4 with $\Omega = \Omega'$, $f_j = \tilde{u}_j$ and f = u implies that there exist a solution u_j of the $\mathcal{K}_{\psi,\varphi+2^{-j},u_j}(\Omega')$ -obstacle problem in $N^{1,\Phi}(\Omega')$, $j=1,2,\ldots$, and a generalized solution v of the $\{\psi,\varphi\}$ -problem in Ω' such that u_j decreases to v c_{φ} -q.e. uniformly in Ω' and v=u c_{φ} -q.e. on $\partial \Omega'$. Since u is a generalized solution of the $\{\psi,\varphi\}$ -problem in Ω' , we have v=u c_{φ} -q.e. in Ω' by uniqueness of Theorem 3.4.

We shall show that if the two obstacles are separated by a Newtonian function then, locally, the generalized solution is the solution by Theorem 2.2.

Theorem 3.7. Let $\psi, \varphi: \Omega \to [-\infty, \infty]$ be two functions such that there exists $v \in N^{1,\Phi}_{loc}(\Omega)$ with $\psi \leq v \leq \varphi$ c_{Φ} -q.e. in Ω . Let u be a generalized solution of the $\{\psi, \varphi\}$ -problem in Ω . Then $u \in N^{1,\Phi}_{loc}(\Omega)$ and u is a solution of the $\mathscr{K}_{\psi,\varphi,u}(\Omega')$ -obstacle problem in $N^{1,\Phi}(\Omega')$ for all $\Omega' \subset \Omega$.

PROOF. For $\Omega' \subset\subset \Omega$, Lemma 3.6 implies that there exists a sequence $\{u_j\}_{j=1}^{\infty}$ such that $u_j \in N^{1,\Phi}(\Omega')$ is a solution of the $\mathcal{K}_{\psi,\, \varphi+2^{-j},u_j}(\Omega')$ -obstacle problem in $N^{1,\Phi}(\Omega')$ and u_j decreases to u c_{Φ} -q.e. uniformly in Ω' . As Ω' is bounded we have $u_j \to u$ in $L^{\Phi}(\Omega')$ and hence $\{u_j\}_{j=1}^{\infty}$ is bounded in $L^{\Phi}(\Omega')$.

If we can show that $\{h_{u_i}\}_{j=1}^{\infty}$ is bounded in $L^{\Phi}(B)$ for all balls $B\subset\subset\Omega$ then Lemma 2.4 implies that $u\in N_{\mathrm{loc}}^{1,\Phi}(\Omega)$.

To this end, let $B = B(x_0, R) \subset\subset B' = B(x_0, R') \subset \Omega'$ such that $R' \leq 1$. Let next $0 < r_1 < r_2 \leq R'$, $B_j = B(x_0, r_j)$, j = 1, 2, and

$$\eta(x) = \min \left\{ \frac{r_2 - d(x_0, x)}{r_2 - r_1}, 1 \right\}_{+} \in N_0^{1, \Phi}(B_2).$$

Note that $\chi_{B_1} \leq \eta \leq 1$ and

$$h_{\eta} \leq \frac{1}{r_2 - r_1} \chi_{B_2 \setminus B_1}.$$

Set $v_j = \eta v + (1 - \eta)u_j = u_j + \eta(v - u_j) \in N^{1,\Phi}(B')$. By [2, Lemma 2.18], we have that

$$h_{v_i} \leq (1 - \eta)h_{u_i} + \eta h_v + |v - u_j|h_{\eta}$$

 μ -a.e. in B'. Further, since $\psi \leq v \leq \varphi$ and $\psi \leq u_j \leq \varphi + 2^{-j}$, we have $\psi \leq v_j \leq \varphi + 2^{-j}$. This together with the fact that $v_j = u_j$ on ∂B_2 implies that $v_j \in \mathcal{K}_{\psi, \varphi + 2^{-j}, u_j}(B_2)$. Using the fact that u_j is a solution of the $\mathcal{K}_{\psi, \varphi + 2^{-j}, u_j}(B_2)$ -obstacle problem in $N^{1, \Phi}(B_2)$ and $(\Phi 4)$, we have that

$$\int_{B_{1}} \Phi(x, h_{u_{j}}(x)) d\mu(x)
\leq \int_{B_{2}} \Phi(x, h_{u_{j}}(x)) d\mu(x)
\leq \int_{B_{2}} \Phi(x, h_{v_{j}}(x)) d\mu(x)
\leq A_{d}^{2} \left(\int_{B_{2}} \Phi(x, (1 - \eta(x)) h_{u_{j}}(x)) d\mu(x) + \int_{B_{2}} \Phi(x, |v(x) - u_{j}(x)| h_{\eta}(x)) d\mu(x) \right)
+ \int_{B_{2}} \Phi(x, \eta(x) h_{v}(x)) d\mu(x)
\leq A_{d}^{2} \left(\int_{B_{2} \setminus B_{1}} \Phi(x, h_{u_{j}}(x)) d\mu(x) + \int_{B_{2}} \Phi(x, |v(x) - u_{j}(x)| / (r_{2} - r_{1})) d\mu(x) \right)
+ \int_{B_{2}} \Phi(x, h_{v}(x)) d\mu(x) \right).$$

Hence, by (2.1) and the fact that $\{u_j\}_{j=1}^{\infty}$ is bounded in $L^{\Phi}(\Omega')$

$$\int_{B_{1}} \Phi(x, h_{u_{j}}(x)) d\mu(x)
\leq A_{d}^{2} \Biggl(\int_{B_{2} \setminus B_{1}} \Phi(x, h_{u_{j}}(x)) d\mu(x)
+ \frac{A_{d}}{2(r_{2} - r_{1})^{\log_{2} A_{d}}} \int_{\Omega'} \Phi(x, |v(x) - u_{j}(x)|) d\mu(x)
+ \int_{\Omega'} \Phi(x, h_{v}(x)) d\mu(x) \Biggr)
\leq A_{d}^{2} \Biggl(\int_{B_{2} \setminus B_{1}} \Phi(x, h_{u_{j}}(x)) d\mu(x) + \frac{C_{1}}{(r_{2} - r_{1})^{\log_{2} A_{d}}} + C_{2} \Biggr).$$

Adding A_d^2 times the left-hand side to both sides we obtain

$$(1+A_d^2) \int_{B_1} \Phi(x, h_{u_j}(x)) d\mu(x)$$

$$\leq A_d^2 \left(\int_{B_2} \Phi(x, h_{u_j}(x)) d\mu(x) + \frac{C_1}{(r_2-r_1)^{\log_2 A_d}} + C_2 \right).$$

After dividing by $1 + A_d^2$ we get, with $\theta = A_d^2/(1 + A_d^2) < 1$, that

$$\int_{B_1} \Phi(x, h_{u_j}(x)) d\mu(x) \le \theta \int_{B_2} \Phi(x, h_{u_j}(x)) d\mu(x) + \frac{C_1 \theta}{(r_2 - r_1)^{\log_2 A_d}} + C_2 \theta.$$

Applying [2, Lemma 7.18] we obtain that

$$\int_{B_1} \Phi(x, h_{u_j}(x)) d\mu(x) \le C \left(\frac{C_1 \theta}{(r_2 - r_1)^{\log_2 A_d}} + C_2 \theta \right)$$

for $0 < r_1 < r_2 \le R'$. By choosing $r_1 = R$ and $r_2 = R'$ we see that $\{h_{u_j}\}_{j=1}^{\infty}$ is bounded in $L^{\Phi}(B)$. By Lemma 2.4, $u \in N^{1,\Phi}(B)$, and hence $u \in N^{1,\Phi}_{loc}(\Omega)$.

Since $u \in \mathcal{K}_{\psi,\varphi,u}(\Omega')$, there exists a solution \tilde{u} of the $\mathcal{K}_{\psi,\varphi,u}(\Omega')$ -obstacle problem in $N^{1,\Phi}(\Omega')$ by Theorem 2.2. Further, by Lemma 3.1, we have $u_j \to \tilde{u}$ c_{Φ} -q.e. uniformly in Ω' , and hence $\tilde{u} = u$ c_{Φ} -q.e. in Ω' and u is a solution of the $\mathcal{K}_{\psi,\varphi,u}(\Omega')$ -obstacle problem in $N^{1,\Phi}(\Omega')$.

Acknowledgement

We would like to express our thanks to the referee for his/her kind comments.

References

- E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001), 121–140.
- [2] A. Björn and J. Björn, Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics 17, European Mathematical Society (EMS), Zürich, 2011.
- [3] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg, 2013.
- [4] G. Dal Maso, U. Mosoco and M. A. Vivaldi, A pointwise regularity theory for the twoobstacle problem, Acta Math. 163 (1989), 57–107.
- [5] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
- [6] Z. Farnana, The double obstacle problem on metric measure spaces, Ann. Acad. Sci. Fenn. Math. 34 (2009), 261–277.
- [7] Z. Farnana, Continuous dependence on obstacles for the double obstacle problem on metric measure spaces, Nonlinear Anal. 73 (2010), 2819–2830.
- [8] T. Futamura, P. Harjulehto, P. Hästö, Y. Mizuta and T. Shimomura, Variable exponent spaces on metric measure spaces, More progresses in analysis (ISAAC-5, Catania, 2005, Begehr and Nicolosi (ed.)), World Scientific, 2009, 107–121.
- [9] T. Futamura and T. Shimomura, The double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces, Tohoku Math. J. 73 (2021), no. 1, 119–136.
- [10] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403–415.
- [11] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101 pp.
- [12] P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, 2236, Springer, Cham, 2019.
- [13] P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), no. 3, 205–222.
- [14] P. Harjulehto, P. Hästö and M. Pere, Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exchange, 30 (2004/2005), no. 1, 87–103.
- [15] P. Harjulehto, P. Hästö and M. Pere, Variable exponent Sobolev spaces on metric measure spaces, Funct. Approx. Comment. Math. 36 (2006), 79–94.
- [16] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001.
- [17] R. Jiang, N. Shanmugalingam, D. Yang and W. Yuan, Hajłasz gradients are upper gradients, J. Math. Anal. Appl. 422 (2015), 397–407.
- [18] T. Kilpeläinen, J. Kinnunen and O. Martio, Sobolev spaces with zero boundary values on metric spaces, Potential Anal. 12 (2000), no. 3, 233–247.
- [19] T. Kilpeläinen and W. P. Ziemer, Pointwise regularity of solutions to nonlinear double obstacle problems, Ark. Math. 29 (1991), 83–106.
- [20] J. Kinnunen and O. Martio, Nonlinear potential theory on metric spaces, Illinois J. Math. 46 (2002), 857–883.
- [21] G. Li and O. Martio, Stability in obstacle problems, Math. Scand. 75 (1994), no. 1, 8-100.
- [22] G. Li and O. Martio, Stability and higher integrability of derivatives of solutions in double obstacle problems, J. Math. Anal. Appl. 272 (2002), no. 1, 19–29.

- [23] F.-Y. Maeda, T. Ohno and T. Shimomura, Obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces, Tohoku Math. J. 71 (2019), no. 2, 53–68.
- [24] L. Malý, Minimal weak upper gradients in Newtonian spaces based on quasi-Banach function lattices, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 2, 727–745.
- [25] L. Malý, Newtonian spaces based on quasi-Banach function lattices, Math. Scand. 119 (2016), no. 2, 133–160.
- [26] Y. Mizuta and T. Shimomura, Continuity of Sobolev functions of variable exponent on metric spaces, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 6, 96–99.
- [27] M. Mocanu, A Poincaré inequality for Orlicz-Sobolev functions with zero boundary values on metric sapees, Complex Anal. Oper. Theory 5 (2011), 799–810.
- [28] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes Math. 1034, Springer, 1983.
- [29] T. Ohno and T. Shimomura, Musielak-Orlicz Sobolev spaces on metric measure spaces, Czech. Math. J. 65 (2015), 435–474.
- [30] T. Ohno and T. Shimomura, Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces, Czech. Math. J. 66 (2016), 371–394.
- [31] T. Ohno and T. Shimomura, Maximal and Riesz potential operators on Musielak-Orlicz spaces over metric measure spaces, Integr. Equ. Oper. Theory, September (2018), 90:62.
- [32] A. Olek and K. Szczepaniak, Continuous dependence on obstacles in double global obstacle problems, Ann. Acad. Sci. Fenn. Math. 28 (2003), 89–97.
- [33] N. Shanmugalingam, Newtonian space: An extension of Sobolev spaces to metric measure space, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279.
- [34] N. Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), no. 3, 1021–1050.
- [35] H. Tuominen, Orlicz-Sobolev spaces on metric spaces, Dissertation, University Jyväskylä, 2004, Ann. Acad. Sci. Fenn. Math. Diss. No. 135 (2004).

Toshihide Futamura
Department of Mathematics
Daido University
Nagoya 457-8530, Japan
E-mail: futamura@daido-it.ac.jp

Tetsu Shimomura
Department of Mathematics
Graduate School of Humanities and Social Sciences
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail: tshimo@hiroshima-u.ac.jp