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Unified Description of Elastoplastic Deformation of Solids'

—from Subloading Surface Concept to Tangential Plasticity—
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Abstract

The subloading surface model is based on the natural postulate that the plastic strain rate develops as the stress
approaches the yield surface. Then, it is capable of describing rigorously the rate-independent/dependent
elastoplastic deformation in monotonic/cyclic and proportional/non-proportional loadings. In addition, it is
capable of describing rigorously the friction phenomenon between solids. Further, it provides a high efficiency in
numerical calculation since the stress is attracted automatically to the yield surface. Then, the subloading surface
model possesses the high capability of describing uniformly and rigorously the elastoplastic deformation and
interaction of solids. This fact, mainly focused from the introduction of the subloading surface concept to the
tangential plasticity, is analyzed and deliberated in this article.
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1. Introduction

The deformation analysis of solids and structures
with high accuracy and numerical efficiency is required
increasingly to enhance their mechanical performance,
strength and durability responding to the rapid
development of engineering technologies. Various
elastoplastic constitutive models have been proposed to
this end. Here, it would be of the crucial importance to
perceive the rigorous one among them and adopt it in the
deformation analyses, which will be circulated widely with
the passage of time and remain universally in the history
of elastoplasticity for the sound development of
clastoplasticity.

The mechanical requirements for the constitutive
equation in rate form describing inelastic deformation, i.e.
the continuity and the smoothness conditions (Hashiguchi,
1993a,b, 2000, 2013) are defined. In addition, the general
loading criterion is deduced on the physical basis, which
holds not only in the hardening state but also in the
perfectly-plastic and the softening states. Then, the
subloading surface model (Hashiguchi, 1980, 1989, 2013)
in the framework of the hypoelastic-based plastic
constitutive equation is shown, which is based on the
natural postulate that the plastic strain rate develops as the
stress approaches the yield surface, describing pertinently
the plastic strain rate induced by the rate of stress inside
the yield surface. Then, it is capable of describing
appropriately the monotonic, the non-proportional and the

cyclic loadings, the rate-dependent deformation behavior
in a general rate up to the impact load for wide classes of
materials, e.g. metals and soils and the friction phenomena
between solids. Here, it satisfies the fundamental
requirements for elastoplastic constitutive equations, i.e.
the continuity and the smoothness conditions and
possesses the stress controlling function to attract the stress
to the yield surface. Eventually, the pertinence and the
generality for descriptions of elastoplastic deformation
behavior of solids and the adaptability to the numerical
calculation are materialized in the subloading surface
model. Therefore, the subloading surface model would be
regarded to provide the basic structure of the elastoplastic
deformation and interaction which has been studied over
the last one century as will be described briefly in this
article.

2. Basic structure of elastoplastic constitutive equation
The strain rate d, i.e. the symmetric part of a velocity

gradient is decomposed additively into the elastic strain
rate d® and the plastic strain rate dP, i.e.

d=d®+dP (1)
Firstly, the elastic strain rate is linearly related to the stress
rate in the hypoelasticity as follows:

d*=E"'6 )
Where o is the Cauchy stress, ( o ) designating the
corotational rate, and E is the elastic tangent modulus
tensor and is given explicitly as
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where K, G, E and v are the bulk, the shear, the Young’s
modulus and Poisson’s ratio, respectively, which are
functions of stress in general, and the fourth-order tensors
defined in the following is exploited.
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where Oy is the Kronecker’s delta, i.e. &j =1 for i=] and
S8ij=0for i#j. The symbolsZ ,Z ,7 ,Z' and S stand

for the fourth-order identity, transposing, tracing-identity,
deviatoric  projection and symmeytrizing tensor,
respectively, which play the roles of the transformations
T:it=t,Z:t=t",Z"t=t',T:t=(trt)l where Z:t=t,
is the second-order identity tensor.

Then, the plastic strain rate is required to be
formulated adequately.

The yield surface is given by

f(6)=F(H) ©)
where
6=6—-0 (10)

o.is the kinematic hardening variable, i.e. the back stress.

3. Continuity and smoothness conditions

Before formulation of elastoplastic constitutive
equations, the continuity and the smoothness conditions
(Hashiguchi, 1993a,b, 2000, 2013) are described in this
section. These conditions are required to formulate
elastoplastic  constitutive equations pertinently. In
particular, they are of crucial importance for the
description of cyclic loading behavior in which the delicate
description of fine plastic strain rate induced by the rate of
stress inside the yield surface is required.

3.1 Continuity condition

It is observed in experiments that “stress rate changes
continuously for a continuous change of strain rate”. This
property is called the continuity condition and is expressed
mathematically as follows.

1lim@ (o, H,;d+5d) =& (o, H,;d) (an

where H;(i=1, 2, 3,e0e) denotes collectively scalar-

valued or tensor-valued internal state variables

and & )stands for an infinitesimal variation. The response
of the stress rate to the input of strain rate in the current
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state of stress and internal variables is designated by
6(0,H,:d) . Uniqueness of solution is not guaranteed in

constitutive equations violating the continuity condition,
predicting different stresses or deformations for an
identical input loading.

3.2 Smoothness condition
It is observed in experiments that “the stress rate
induced by the identical strain rate changes continuously
for a continuous change of stress state”. This property is
called the smoothness condition and is expressed
mathematically as follows:
. o [
algnoc(c"'é‘c’Hi) =o(o,H,)

(12)
A smooth response of stress-strain relation is not described
in constitutive equations violating the smoothness
condition, causing discontinuous change of tangent
modulus for the elastoplastic constitutive equations
assuming the yield surface enclosing a purely-elastic
domain where the tangent modulus changes abruptly from
the elastic to the elastoplastic state.

The rate-linear constitutive equation is described as

6 =K*(o,H,;):d (13)

where the fourth-order tensor K% is the elastoplastic
modulus, which is a function of the stress and internal
variables, can be described generally as

Ly
K®=— 14
d (14)
Consequently, Eq. (12) can be rewritten as
,limG (6+56,H,) = K®(a,H,) (15)

4. Subloading surface model

The natural postulate “the plastic strain rate develops
gradually as the stress approaches the yield surface” is
introduced in the subloading surface model. It is necessary
to adopt an appropriate measure describing the degree of
approach to the yield state. Then, let the subloading surface,
be introduced, which always passes through the current
stress point and has similar shape and orientation to the
yield surface, while the yield surface is renamed the
normal-yield surface (Hashiguchi, 1980, 1989, 2013;
Hashiguchi et al.,, 2012). The subloading surface is
described by

f(6)=RF(H) (16)

R is the ratio of the size of the subloading surface to that
of the normal-yield surface and it is called the normal-yield
ratio.

The time-derivative of Eq. (16) leads to

0f(6).0 Of(6).0 . = _
56 - ° " "¢ ‘o-RF -RF =0 (17)
We adopt the associated flow rule
dr =AN (A= 0) (18)

where A is the plastic multiplier, i.e. the positive



proportionality factor designating the magnitude of plastic
strain rate and

G of <s>/ Haf @) (1)

The evolution rule of the normal-yield ratio is given by

(IN[[=1)

R=U(R)||d"| for d’#0O (20)
where the function U of R is given as
U(R) = U cot (5%) Q1)

u is the material constant.
Substituting Eq. (20) into Eq. (17), the magnitude of
plastic strain rate and the plastic strain rate are given by

Qo

- _N:g o N:
A= ’d_M

N (22)
where
F’ U -
MP=(—h+=)N:o 23
(F R) (23)

Substituting Eq. (2) and (22) into Eq. (1), the strain rate
is given by

! N \
d=E M SN (24)
from which we have
N:E:d
= 25
M"+N:E:N )
The stress rate is described from Egs. (24) and (25) as
° N:E
GZEZd—<Mp—d>E (26)

The plastic strain rate is induced even in the subyield
surface, depending on the normal-yield ratio and the
direction of strain rate, while the stress lies always on the
subloading surface playing the role of loading surface.
Therefore, a judgment of whether or not the yield
condition is satisfied is not required. Then, the loading
criterion is given by

d? #0: N:E:d>0}

dr=0 @7

. otherwise

5. Incorporation of tangential inelastic strain rate

As seen in Eq. (22), the inelastic strain rate in the
traditional constitutive equation has the limitations: The
inelastic strain rate depends solely on the stress rate
component normal to the yield surface, called the normal
stress rate, but it is independent of the component
tangential to the yield surface, called the tangential stress
rate. On the other hand, it has been verified by experiments
that an inelastic strain rate induced by the deviatoric part
of the tangential stress rate, called the deviatoric tangential
stress rate, influences considerably on a deformation in the
non-proportional loading process deviating from the
proportional loading path normal to the yield surface. It is
called the tangential inelastic strain rate. The subloading
surface model has been extended to describe the deviatoric
tangential stress rate (Hashiguchi and Tsutsumi, 2001,
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2003; Tsutsumi and Hashiguchi, 2005).
First, assume that the strain rate is decomposed
additively into elastic and plastic strain rates and further

the tangential-inelastic strain rate dt as follows:

d=d®+dP +dt (28)
where dUis induced by the deviatoric tangential stress rate
6’ which is decomposed into the deviatoric normal stress
rate 64 and the deviatoric tangential stress rate 6+ :

&' = & + &t (29)
where
8 =T"6=6——(tr6)l (30)
& z(ﬁ ®n'): & :(ﬁ':&)ﬁ' é
R . (31
t=F ,t:O)
yo ol af(& H
(32)
(i N) (A7 =1, [IN'[|3 1)
HN I
T =T'-A'®N, Ty = Ziy —Nihy (33)

Hereinafter, the deviatoric-tangential tensor is denoted as
i, ie tp = <" t for arbitrary second-order tensor t,
exploiting the fourth-order deviatoric tangential
projection tensor < .

Now, assume that the tangential inelastic strain rate
dt is related linearly to the tangential deviatoric stress rate
Gt.

t _ T o
d = PTey ot (34)
where T is a monotonically-increasing function of R in
addition to the stress and the internal variable, i.e.

T =¢R? (35)
7(>1) is the material constant and & is the function of the
stress ¢ and the internal variables H as

¢=¢(o,H) (36)
in general. Then, the tangential inelastic strain rate
develops as the stress approaches the yield surface by
virtue of the advantage of the subloading surface model.
Substituting Egs. (24) and (34) into Eq. (28), the strain rate
is given by

d=E"':6 '\l\'/;;’ml“’z
(37)
. N@N
=(E'+ +—‘I o
( M° 26 )

In what follows, let the inverse expression of Eq. (37)
be derived, provided that the elastic tangent modulus
tensor E is given by Eq. (3) in the Hooke’s type. Therefore,
note that A

N: E:&t

is given by Eq. (25) itself because of

=2GN:8% =0 ,noting Eq. 31),.
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Then, it follows from Eq. (37) with Eq. (3) that

1 Y] N:&) |7 T o
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from which one has the following relation, considering
Ni=F:N=N-@":N)A'=0,

d = (38)

dt :%(HT)&’{ (39)
where
di=T:d=d -@": N)A' . (40)

Substituting further Eq. (39) into Eq. (34), the tangential
inelastic strain rate is given by

T
dt=—dt. 41
1+T t @1

The stress rate is derived from Egs. (2), (21), (25) and (41)
as follows:

o (N:E:d) . 2GT
—E:d-——— _E:N - 42
c M RCEN N T (42)

i.e.

R ‘N®N:E .

= E:N®N: 2GTT):OI )
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Eq. (37) or (43) has been applied to the predictions

of the non-proportional loading and the plastic instability
phenomena.

6. Concluding remarks

The physical and mathematical background of the
hypoelastic-based plasticity is deliberated first in this
article. Then, the constitutive equations based on the
subloading surface concept are formulated within the
framework of the hypoeclastic-based plasticity and the
applications to the descriptions of the wide classes of
elastoplastic deformation are shown. The salient features
of the concept and the constitutive equations based on this
concept are summarized as follows:

(1) It is based on the quite natural concept that the plastic
deformation develops as the stress approaches the yield
surface and thus it possesses the high generality and the
capability of describing accurately elastoplastic
deformations of wide classes of materials.

(2) It fulfills the smoothness condition, describing always
the smooth elastic-plastic transition, and possesses the
automatic controlling operations to attract the stress to
the yield surface and the plastic strain to the isotropic
hardening stagnation surface simultaneously.

(3) It is capable of describing the finite deformation and
rotation under an infinitesimal elastic deformation.

(4) It is capable of describing the monotonic and the cyclic
loading behavior pertinently. In addition, the non-
proportional loading behavior and the plastic
instability phenomena can be described appropriately
since it incorporates the tangential-inelastic strain rate
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induced by the rate of stress inside the yield surface,
fulfilling always the continuity condition
(5) It possesses the distinctive advantage that the stress is
automatically attracted to the yield surface. Therefore,
it enables us to adopt rather large incremental steps in
the forward Euler numerical calculation without the
incorporation of a particular algorithm to pull back the
stress to the yield surface. Further, the plastic strain is
automatically attracted to the isotropic hardening
stagnation surface for metals, for which it is difficult
for the return-mapping projection to be exploited.
These advantages would be activated in large scale
finite element analyses solving a big global stiffness
matrix. Needless to say, infinitesimal increments must be
input for the deformation analyses in the curved loading
process and under a material rotation in numerical
calculations not only by the forward-Euler method but also
by the return-mapping scheme. Consequently, the physical
and the mathematical pertinences and the numerical
convenience are materialized in the subloading surface
model.
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