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Unified Description of Elastoplastic Deformation of Solids† 
–from Subloading Surface Concept to Tangential Plasticity– 

HASHIGUCHI Koichi*, TSUTSUMI Seiichiro** 

Abstract 

The subloading surface model is based on the natural postulate that the plastic strain rate develops as the stress 
approaches the yield surface. Then, it is capable of describing rigorously the rate-independent/dependent 
elastoplastic deformation in monotonic/cyclic and proportional/non-proportional loadings. In addition, it is 
capable of describing rigorously the friction phenomenon between solids. Further, it provides a high efficiency in 
numerical calculation since the stress is attracted automatically to the yield surface. Then, the subloading surface 
model possesses the high capability of describing uniformly and rigorously the elastoplastic deformation and 
interaction of solids. This fact, mainly focused from the introduction of the subloading surface concept to the 
tangential plasticity, is analyzed and deliberated in this article. 
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1. Introduction
    The deformation analysis of solids and structures 
with high accuracy and numerical efficiency is required 
increasingly to enhance their mechanical performance, 
strength and durability responding to the rapid 
development of engineering technologies. Various 
elastoplastic constitutive models have been proposed to 
this end. Here, it would be of the crucial importance to 
perceive the rigorous one among them and adopt it in the 
deformation analyses, which will be circulated widely with 
the passage of time and remain universally in the history 
of elastoplasticity for the sound development of 
elastoplasticity. 

The mechanical requirements for the constitutive 
equation in rate form describing inelastic deformation, i.e. 
the continuity and the smoothness conditions (Hashiguchi, 
1993a,b, 2000, 2013) are defined. In addition, the general 
loading criterion is deduced on the physical basis, which 
holds not only in the hardening state but also in the 
perfectly-plastic and the softening states. Then, the 
subloading surface model (Hashiguchi, 1980, 1989, 2013) 
in the framework of the hypoelastic-based plastic 
constitutive equation is shown, which is based on the 
natural postulate that the plastic strain rate develops as the 
stress approaches the yield surface, describing pertinently 
the plastic strain rate induced by the rate of stress inside 
the yield surface. Then, it is capable of describing 
appropriately the monotonic, the non-proportional and the 

cyclic loadings, the rate-dependent deformation behavior 
in a general rate up to the impact load for wide classes of 
materials, e.g. metals and soils and the friction phenomena 
between solids. Here, it satisfies the fundamental 
requirements for elastoplastic constitutive equations, i.e. 
the continuity and the smoothness conditions and 
possesses the stress controlling function to attract the stress 
to the yield surface. Eventually, the pertinence and the 
generality for descriptions of elastoplastic deformation 
behavior of solids and the adaptability to the numerical 
calculation are materialized in the subloading surface 
model. Therefore, the subloading surface model would be 
regarded to provide the basic structure of the elastoplastic 
deformation and interaction which has been studied over 
the last one century as will be described briefly in this 
article.

2. Basic structure of elastoplastic constitutive equation 
The strain rate d, i.e. the symmetric part of a velocity 

gradient is decomposed additively into the elastic strain 
rate de and the plastic strain rate dp, i.e. 

= ped d d    (1) 
Firstly, the elastic strain rate is linearly related to the stress 
rate in the hypoelasticity as follows: 

1=ed E    (2) 
Where  is the Cauchy stress, ( ) designating the 
corotational rate, and E is the elastic tangent modulus 
tensor and is given explicitly as 
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where K, G, E and  are the bulk, the shear, the Young’s 
modulus and Poisson’s ratio, respectively, which are 
functions of stress in general, and the fourth-order tensors 
defined in the following is exploited. 
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where ij  is the Kronecker’s delta, i.e. 1ij for i=j and
0ij for i j. The symbols , , , and stand

for the fourth-order identity, transposing, tracing-identity,
deviatoric projection and symmeytrizing tensor,
respectively, which play the roles of the transformations

t t , Tt t , t t , (tr )t t I where t t ,
is the second-order identity tensor. 

Then, the plastic strain rate is required to be 
formulated adequately. 
    The yield surface is given by  

( ) = ( )ˆf F H  (9) 
where 

ˆ   (10) 
is the kinematic hardening variable, i.e. the back stress. 

3. Continuity and smoothness conditions 
Before formulation of elastoplastic constitutive 

equations, the continuity and the smoothness conditions 
(Hashiguchi, 1993a,b, 2000, 2013) are described in this 
section. These conditions are required to formulate 
elastoplastic constitutive equations pertinently. In 
particular, they are of crucial importance for the 
description of cyclic loading behavior in which the delicate 
description of fine plastic strain rate induced by the rate of 
stress inside the yield surface is required. 

3.1 Continuity condition 
It is observed in experiments that “stress rate changes 

continuously for a continuous change of strain rate”. This 
property is called the continuity condition and is expressed 
mathematically as follows. 

lim (( ; ) = ; )i iH H
d O

d + d d   (11) 

where ( =1, 2, 3, )iH i  denotes collectively scalar-
valued or tensor-valued internal state variables 
and ( )stands for an infinitesimal variation. The response 
of the stress rate to the input of strain rate in the current 

state of stress and internal variables is designated by 
( ; )iH d . Uniqueness of solution is not guaranteed in 

constitutive equations violating the continuity condition, 
predicting different stresses or deformations for an 
identical input loading.  

3.2 Smoothness condition 
It is observed in experiments that “the stress rate 

induced by the identical strain rate changes continuously 
for a continuous change of stress state”. This property is 
called the smoothness condition and is expressed 
mathematically as follows: 

lim (( ) = )i iH H
 O

+   (12) 
A smooth response of stress-strain relation is not described 
in constitutive equations violating the smoothness 
condition, causing discontinuous change of tangent 
modulus for the elastoplastic constitutive equations 
assuming the yield surface enclosing a purely-elastic 
domain where the tangent modulus changes abruptly from 
the elastic to the elastoplastic state.  
The rate-linear constitutive equation is described as 

(= )pe
iHK :d   (13) 

where the fourth-order tensor peK is the elastoplastic 
modulus, which is a function of the stress and internal 
variables, can be described generally as 

peK
d

  (14) 

Consequently, Eq. (12) can be rewritten as  

lim ( ) = ( )pe
i iH H

 O
+ K   (15) 

4. Subloading surface model 
The natural postulate “the plastic strain rate develops 

gradually as the stress approaches the yield surface” is 
introduced in the subloading surface model. It is necessary 
to adopt an appropriate measure describing the degree of 
approach to the yield state. Then, let the subloading surface, 
be introduced, which always passes through the current 
stress point and has similar shape and orientation to the 
yield surface, while the yield surface is renamed the 
normal-yield surface (Hashiguchi, 1980, 1989, 2013; 
Hashiguchi et al., 2012). The subloading surface is 
described by 

ˆ( ) = ( )f RF H   (16) 
R is the ratio of the size of the subloading surface to that 
of the normal-yield surface and it is called the normal-yield 
ratio.
    The time-derivative of Eq. (16) leads to  

( ) ( )ˆ ˆ = 0f f RF RF: :   (17) 

We adopt the associated flow rule 
ˆ  ( 0)=pd N   (18) 

where is the plastic multiplier, i.e. the positive 
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proportionality factor designating the magnitude of plastic 
strain rate and 

ˆ(ˆ( ) ˆˆ (|| || 1)   =ff NN   (19) 

The evolution rule of the normal-yield ratio is given by  
( ) || || for p pR U R d d O   (20) 

where the function U of R is given as 

( ) = cot ( )
2 1

e

e

R RU R u
R

  (21) 

u is the material constant. 
Substituting Eq. (20) into Eq. (17), the magnitude of 
plastic strain rate and the plastic strain rate are given by 

ˆˆ ˆ, p
pp= = MM

:N:N Nd   (22) 

where 

ˆ( )p F UM h
F R

:N  (23) 

 Substituting Eq. (2) and (22) into Eq. (1), the strain rate 
is given by 

1
ˆ ˆ= pM

:N Nd :E  (24) 

from which we have 
ˆ

= ˆ ˆpM
N : E: d

: :N E N
 (25) 

The stress rate is described from Eqs. (24) and (25) as 
ˆ

ˆ= ˆ ˆpM
N : E: d: dE :E N: :N E N

 (26) 

The plastic strain rate is induced even in the subyield 
surface, depending on the normal-yield ratio and the 
direction of strain rate, while the stress lies always on the 
subloading surface playing the role of loading surface. 
Therefore, a judgment of whether or not the yield 
condition is satisfied is not required. Then, the loading 
criterion is given by 

ˆ: 0
=  : otherwise

p

p

:d O N : E d
d O  (27) 

5. Incorporation of tangential inelastic strain rate 
As seen in Eq. (22), the inelastic strain rate in the 

traditional constitutive equation has the limitations: The 
inelastic strain rate depends solely on the stress rate 
component normal to the yield surface, called the normal 
stress rate, but it is independent of the component 
tangential to the yield surface, called the tangential stress 
rate. On the other hand, it has been verified by experiments 
that an inelastic strain rate induced by the deviatoric part 
of the tangential stress rate, called the deviatoric tangential 
stress rate, influences considerably on a deformation in the 
non-proportional loading process deviating from the 
proportional loading path normal to the yield surface. It is 
called the tangential inelastic strain rate. The subloading 
surface model has been extended to describe the deviatoric 
tangential stress rate (Hashiguchi and Tsutsumi, 2001, 

2003; Tsutsumi and Hashiguchi, 2005). 
First, assume that the strain rate is decomposed 

additively into elastic and plastic strain rates and further 
the tangential-inelastic strain rate td as follows: 

= pe td d d d   (28) 
where td is induced by the deviatoric tangential stress rate   

which is decomposed into the deviatoric normal stress 
rate n and the deviatoric tangential stress rate t :

= tn   (29) 
where 

 1= = (tr )
3

: I   (30) 
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Hereinafter, the deviatoric-tangential tensor is denoted as
( ) t , i.e. ˆ

t :t tT for arbitrary second-order tensor t,
exploiting the fourth-order deviatoric tangential 
projection tensor T̂ .

Now, assume that the tangential inelastic strain rate
td is related linearly to the tangential deviatoric stress rate
t .

=
2

t
Tt
G

d   (34) 

where T is a monotonically-increasing function of R in 
addition to the stress and the internal variable, i.e. 

=T R   (35) 
( 1) is the material constant and is the function of the 

stress and the internal variables H as 
( , )H   (36) 

in general. Then, the tangential inelastic strain rate 
develops as the stress approaches the yield surface by 
virtue of the advantage of the subloading surface model. 
Substituting Eqs. (24) and (34) into Eq. (28), the strain rate 
is given by 

1

1

ˆ ˆ= +
2

ˆ ˆ ˆ= ( + )
2

tp

p

T
M G

T
M G

:N: Nd E
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In what follows, let the inverse expression of Eq. (37) 
be derived, provided that the elastic tangent modulus 
tensor E is given by Eq. (3) in the Hooke’s type. Therefore, 
note that  is given by Eq. (25) itself because of
ˆ ˆ= 2 = 0t tG: : :N E N  , noting Eq. (31)2.
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Then, it follows from Eq. (37) with Eq. (3) that 

ˆ1 ˆ= +
2 2
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from which one has the following relation, considering
ˆˆ ˆ ˆˆ ˆ= ( ) =t : :N N N n N n OT ,

1= (1 )
2

t tT
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d   (39) 

where 
ˆ ˆˆ ˆ= ( )t : :d d d n N nT .  (40) 

Substituting further Eq. (39) into Eq. (34), the tangential 
inelastic strain rate is given by  

1
t

Tt
T

d d .  (41) 

The stress rate is derived from Eqs. (2), (21), (25) and (41) 
as follows: 
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     Eq. (37) or (43) has been applied to the predictions 
of the non-proportional loading and the plastic instability 
phenomena. 

6. Concluding remarks 
The physical and mathematical background of the 

hypoelastic-based plasticity is deliberated first in this 
article. Then, the constitutive equations based on the 
subloading surface concept are formulated within the 
framework of the hypoelastic-based plasticity and the 
applications to the descriptions of the wide classes of 
elastoplastic deformation are shown. The salient features 
of the concept and the constitutive equations based on this 
concept are summarized as follows: 
(1) It is based on the quite natural concept that the plastic 

deformation develops as the stress approaches the yield 
surface and thus it possesses the high generality and the 
capability of describing accurately elastoplastic 
deformations of wide classes of materials. 

(2) It fulfills the smoothness condition, describing always 
the smooth elastic-plastic transition, and possesses the 
automatic controlling operations to attract the stress to 
the yield surface and the plastic strain to the isotropic 
hardening stagnation surface simultaneously. 

(3) It is capable of describing the finite deformation and 
rotation under an infinitesimal elastic deformation. 

(4) It is capable of describing the monotonic and the cyclic 
loading behavior pertinently. In addition, the non-
proportional loading behavior and the plastic 
instability phenomena can be described appropriately 
since it incorporates the tangential-inelastic strain rate 

induced by the rate of stress inside the yield surface, 
fulfilling always the continuity condition 

(5) It possesses the distinctive advantage that the stress is 
automatically attracted to the yield surface. Therefore, 
it enables us to adopt rather large incremental steps in 
the forward Euler numerical calculation without the 
incorporation of a particular algorithm to pull back the 
stress to the yield surface. Further, the plastic strain is 
automatically attracted to the isotropic hardening 
stagnation surface for metals, for which it is difficult 
for the return-mapping projection to be exploited.  

These advantages would be activated in large scale 
finite element analyses solving a big global stiffness 
matrix. Needless to say, infinitesimal increments must be 
input for the deformation analyses in the curved loading 
process and under a material rotation in numerical 
calculations not only by the forward-Euler method but also 
by the return-mapping scheme. Consequently, the physical 
and the mathematical pertinences and the numerical 
convenience are materialized in the subloading surface 
model.  
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