Possible keV-TeV correlation in the reverse shock in Cassiopeia A

1Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, 229-8510, Japan
2Kavli Institute for Cosmology and Particle Astrophysics, Stanford Linear Accelerator Center, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025, USA
3Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
4Department of Physics, Saitama University, Saitama 338-8570, Japan
5Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
6Astronomical Institute Utrecht, Universiteit van Utrecht, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands
7Cosmic Radiation Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
8Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA
9Department of Physics, Graduate School of Science, Kyoto University, Kita-shirakawa Oiwake-cho, Sakyo, Kyoto 606-8502, Japan
10Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
11Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
12F. W. Olin College of Engineering Needham, MA 02492, USA
13NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD 20771, USA

E-mail(YM): ymaeda@astro.isas.jaxa.jp

Abstract

Suzaku X-ray observations of a young supernova remnant Cassiopeia A were carried out. The continuum emission is likely dominated by the non-thermal emission with a cut-off energy at ~3 keV. The peak of the non-thermal X-rays appears at the western part. The peak position of the TeV γ-rays measured with HEGRA and MAGIC are also shifted at the western part with the 1-sigma confidence. Since the location of the X-ray continuum emission was known to be presumably identified with the reverse shock region, the possible keV-TeV correlations give a hint that the accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements in the reverse shock region.

Key words: ISM: individual (Cassiopeia A) – ISM: supernova remnants

1. Cassiopeia A

The young (~ 330 yr old) supernova remnant Cassiopeia A is one of several SNRs from which non-thermal X-rays and TeV γ-rays have both been detected (X-rays:Allen et al. 1997, Uchiyama et al. 2008, TeV: Aharonian et al. 2001, Albert et al. 2007). In X-rays Cassiopeia A seems to consist of a number of thermal and non-thermal X-ray emitting knots/filaments (Hughes et al. 2000, Hwang et al. 2004, Bamba et al. 2005). Although some non-thermal emission is associated with the forward shock, the dominant source of non-thermal emission may be identified with the reverse shock regions (Helder et al. 2008 and references there in). It therefore is a unique object in which we can study the particle acceleration by the reverse shock, because for the other SNRs the acceleration seems to originate from the forward shock region only (e.g., Parizot et al. 2006). In this paper, we present a Suzaku study of the X-ray emission from Cassiopeia A. More comprehensive results of the Suzaku observations are presented in Maeda et al.
2. KeV-TeV images

Figure 1 shows the 8–11 keV band image (likely the synchrotron TeV electron image) overlaid with the MAGIC TeV γ-ray contour published by Albert et al. (2007). The image peak of the 8–11 keV continuum emission is located near the TeV peak and within its error box. This gives us a hint that the peak of TeV γ-rays measured by HEGRA and MAGIC coincides with the location of the synchrotron-dominated western spot. This also suggests that the TeV γ-rays also can originate from reverse-shocked ejecta.

We thank Dr. Javier Rico and his MAGIC Collaborators who kindly provide the TeV data and technically guide us how to handle the data. This work is partly supported by a Grant-in-Aid for Scientific Research by the Ministry of Education, Culture, Sports, Science and Technology (21018009 & 16002004). EH and JV are supported by the Vidi grant of JV from the Netherlands Organization for Scientific Research (NWO).

References