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Accurate Theory for Thermal Elastic-Plastic Analysis 

to Significantly Shorten Computation Time† 
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Abstract 

   The thermal elastic-plastic analysis of the transient and residual stresses and the deformations that occur 
during welding requires a long computation time to obtain accurate results. The reason for this is the necessity 
for the temperature increment to be sufficiently small to ensure calculation accuracy. In this study, the thermal 
elastic and thermal elastic-plastic constitutive equations were modified to enable the use of very large 
temperature increments. Moreover, in the latter constitutive equation, the definition of the differential coefficient 
of the yield stress when the temperature changes is ingeniously modified to perfectly satisfy the yield condition. 
The new constitutive equations were introduced into the FEM (Finite Element Method) program. 
   A simple typical problem of thermal elastic-plastic mechanics was analyzed to verify the basic capability of 
the new theory. Further, to examine the reliability and accuracy of the theory, a complex welding problem was 
analyzed. The computed welding residual stress and deformation were compared with the accurate results 
obtained by the usual incremental method using very small temperature increments, and those obtained by 
ABAQUS. High accuracy was confirmed, and the computation was found to be significantly shortened (reduced 
by one order) compared to those of the usual incremental method and ABAQUS. 

 
KEY WORDS: (thermal elastic-plastic analysis), (shortening of computation time), 
(refined constitutive equation), (finite element method), (welding stress and deformation) 

 

1. Introduction 
   The thermal elastic-plastic analysis of the transient 
and residual stresses and the deformations that occur 
during welding is done using the incremental method 
[1–3] because of the non-linear behavior and the 
dependency on the temperature history. The temperature 
increment used for the analysis has to be sufficiently 
small to ensure calculation accuracy. The analysis [4–11] 
therefore requires long computation time. 
   In this study, the thermal elastic and thermal 
elastic-plastic constitutive equations are modified to 
enable the use of very large temperature increments. 
Moreover, in the latter constitutive equation, the 
definition of the differential coefficient of the yield stress 
when the temperature changes is ingeniously modified to 
perfectly satisfy the yield condition. The new constitutive 
equations are effective, simple, and can be easily 
introduced into the usual FEM (Finite Element Method) 
program for thermal elastic-plastic analysis. 
   A simple typical problem of thermal elastic-plastic 
mechanics was analyzed to verify the basic capability of 
the new theory. To examine the reliability and accuracy 
of the theory, a complex welding problem was also 

analyzed. The results (the welding residual stress and 
deformation) were compared with the accurate results 
obtained by the usual incremental method using a very 
small temperature increment, and those obtained by 
ABAQUS. 
 
2. New Accurate Incremental Theory of Thermal 
Elastic-Plastic Analysis for Large Temperature 
Increment 
   The new accurate thermal elastic and thermal 
elastic-plastic constitutive equations are developed here, 
and can be used for very large temperature increments. 
 
2.1 Difficulties of Using Large Temperature 
Increment 
   The two major reasons why it is difficult to increase 
the temperature increment during thermal elastic-plastic 
analyses, especially those of the mechanical phenomena 
of welding, are as follows: 
(a) The material properties change with respect to the 
temperature and its history. Especially in welding, the 
temperature range is very wide. The changes in the 
material properties are therefore significant. 
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(b) When the stress becomes large, the stress state may 
change from elastic to plastic. In the incremental method, 
the change occurs incrementally. If the calculation is 
performed for the elastic state, the equivalent stress after 
the increment may significantly exceed the yield stress; 
that is, the stress point may largely fly across the yield 
surface in the stress space. 
   To use large temperature increments and maintain 
high accuracy, these behaviors should be sufficiently 
considered and managed in the theory. 
   Regarding problem (a) above, it is necessary to take 
into account the temperature and its history and how they 
affect the material properties, regardless of the magnitude 
of the temperature increment. Moreover, for large 
temperature increments, the temperature, which 
determines the material property, becomes more 
important for accurate analysis. 
   Regarding problem (b) above, the error that results 
from going beyond the yield surface is an important issue, 
especially when large temperature increments are used. 
The error may increase as the increment increases. 
Accordingly, if a large temperature increment is used, the 
theory should include a function that prevents the stress 
point from exceeding the yield surface during the 
increment, or a modification function that returns the 
stress point to the yield surface during the next increment. 
In this paper, a new theory that includes the latter 
function will be proposed. 
   The denotations of the superscripts and subscripts 
used in equations in subsequent sections are as follows: 
       a  : initial value in the increment 
       c  : final value in the increment 
       a − c  : mean value during the increment 
       ac : coefficient intermingled of initial, final,  
  and mean values 
       c − a  : incremental value 
 
2.2 Accurate Elastic Constitutive Equation for Large 
Temperature Increment 
   A very accurate constitutive equation is derived for 
the case in which the elastic state is maintained during 
large temperature increments. 
 
(a) Thermal strain increment 
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where 
  
α{ }a−c

 is the instantaneous linear expansion 

coefficient, and   dTc−a  is the temperature increment. 
 
(b) Total strain increment 
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(c) Stress-elastic strain relationship 

 
   

    
σ{ } = De(T )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ ε e⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (3) 

where σ{ } is the stress, 
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 is the elastic strain, and 

    
De(T )⎡ 

⎣ ⎢ 
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⎦ ⎥ 
 is the elastic matrix (composed of the Young’s 

modulus and the Poisson’s ratio, which are 
temperature-dependent, and (T) is omitted below). 
   The most important relationship that must be satisfied 
at all times in the elastic state and the elastic-plastic state 
is that between the stress and the elastic strain; that is, Eq. 
(3). Like Eq. (4), Eq. (3) must be satisfied for all 
temperatures during the increment. 
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where 
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 is the stress increment, and 
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  (5) 
   The relationship between the stress increment and the 
elastic strain increment is obtained from Eq. (4). 
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(d) Incremental stress-total strain relationship (the elastic 
constitutive equation) 
   The incremental constitutive equation for the elastic 
state is derived from Eqs. (1), (2), and (6). Equation (7) is 
the accurate elastic constitutive equation, which 
sufficiently considers the temperatures required to 
determine the material properties. Using Eq. (7), Eq. (3) 
is satisfied after the increment, even if the temperature 
increment is very large. 
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2.3 Accurate Elastic-Plastic Constitutive Equation for 
Large Temperature Increment 
   A very accurate constitutive equation is derived for 
the case in which the elastic-plastic state is maintained 
during a large temperature increment. 
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(a) Total strain increment 
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where 
  

dε p⎧ 
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 is the plastic strain increment. 

 
(b) Yield function (strain-hardening rule) 

    f (σij −θ ij ,σo )  
   In this theory, the incremental strain theory (the flow 
theory) is assumed, and the combined strain-hardening 
rule is applied to the yield function, in which the yield 
surface can change both the size and the position. The 
size of the yield surface depends on the total plastic strain 
and the temperature. The yield surface (yield condition) 
and the change of in size are related by 
 
       f (σij −θ ij ,σo ) = 0  (9) 

where θ{ } is the center of the yield surface,   σo is the 

size of the yield surface,     σo =σo(ε
p
, T ) , and   ε

p  is the 

magnitude of the total plastic strain given by   ε
p

= d∑ ε
p  

(  d ε
p  is the magnitude of the plastic strain increment, 

and see Eq. (14)). 
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   Because the temperature dependence of   σo has been 
obtained by a previous material experiment, the 
differential coefficient in the first term on the right side of 
Eq. (10) is redefined as Eq. (11) to improve the accuracy 
for a large temperature increment. The differentiation is 
transformed into the difference that produces the true 
change. Equation (10) is then modified to Eq. (12). 
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   Assuming that the magnitude of the movement of the 
yield surface is proportional to the magnitude of the 
plastic strain increment, 
 
   

  
d θ{ }c−a

= k d ε
p

c−a nθ{ }a
 (13) 

where   k  is the coefficient of proportionality,   d ε
p

c−a  
is the magnitude of the plastic strain increment (see Eq. 
(14)), and 

 
nθ{ }a

 is the unit vector that indicates the 

direction of the yield surface movement and can be freely 
assumed (for example, by the Ziegler rule). 
 

 

 
 

Fig. 1  Definition of strain-hardening coefficient 
(Relation between stress increment and plastic strain increment) 
 
(c) Plastic strain increment 
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   Assuming the incremental strain theory (the flow 
theory), the plastic strain increment is defined as follows, 
and its direction is perpendicular to the plastic potential 
(the yield surface) as shown in Fig. 1: 
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where   d ε
p

c−a  is the magnitude of the plastic strain 
increment, and 

  
n{ }a

is the outward unit vector normal to 

the yield surface at the stress point. 
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(d) Strain-hardening coefficient  
   The strain-hardening coefficient is defined as the ratio 
of the normal component of the stress increment to the 
magnitude of the plastic strain increment as expressed by 
Eq. (16) and shown in Fig. 1, and it depends on the total 
plastic strain and the temperature. The temperature is not 
  Ta  but   Tc  because the yield condition should be 
satisfied after the increment (this will be explained in 
detail in Sec. 2.5 using Fig. 2). The relationship between 
  H  and   ε

p  can be obtained by material experiments 
conducted at various temperatures   T . 
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(e) Proportionality coefficient   k  in 
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   The consistency condition for Eq. (9) for each 
increment is expressed below. 
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   When the combined strain-hardening rule is applied 
and the consistency condition is satisfied, the relationship 
between the proportionality coefficient   k  in 
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and the strain-hardening coefficient   Hac is obtained as 
follows. 
   From Eq. (18), 
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   Equations (15) and (12) are substituted into the above 
equation. 
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   Equations (17) and (13) are substituted into the above 
equation. 
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where   nθf ⋅a  is the normal component of 
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   Equation (20) is substituted into Eq. (16). 
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   The coefficient   k  can be calculated using Eq. (21) 
because the strain-hardening coefficient   Hac has been 
determined in advance by a material experiment. 
 
(f) Magnitude   d ε
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   From Eqs. (20) and (21), 
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⎜ 

⎞ 

⎠ 
⎟ 
ac

d Tc−a

 

 (23) 
 
   From Eqs. (22) and (23), 
 

    
n{ }a

T
De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

dεe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

+ n{ }a
T

d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c−a

εe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

= Hac d ε
p

c−a −
1

fσθ ⋅a
∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ac

d Tc−a

 

 (24) 
 
   From Eq. (8), 
 
   

  
dεe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

= dε{ }c−a
− dε p⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

− dεT⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

 (25) 

 
   Equation (25) is substituted into Eq. (24). 
 

    

n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

dε{ }c−a
− dε p⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

− dεT⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + n{ }a

T
d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c−a

εe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

= Hac d ε
p

c−a −
1

fσθ ⋅a
∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ac

d Tc−a

 

 (26) 
 
   Equations (1) and (14) are substituted into Eq. (26). 
 

    

n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

dε{ }c−a
− d ε

p
c−a n{ }a

− α{ }a−c
d Tc−a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + n{ }a

T
d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c−a

εe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

= Hac d ε
p

c−a −
1

fσθ ⋅a
∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ac

d Tc−a

 

 

    

n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

dε{ }c−a

− n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

α{ }a−c
− n{ }a

T
d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c−a

εe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

d Tc−a −
1

fσθ ⋅a
∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ac

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
dTc−a

= n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

n{ }a
+ Hac

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ d ε

p
c−a

 

 (27) 
 
   From Eqs. (27) and (5), 
 

    

n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

dε{ }c−a

− n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

α{ }a−c
− n{ }a

T d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

d T

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
ac

εe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

−
1

fσθ ⋅a
∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ac

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

dTc−a

= n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

n{ }a
+ Hac

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ d ε

p
c−a
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n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

dε{ }c−a

− n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

α{ }a−c
− De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

−1
d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

d T

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

ac

εe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 
−

1
fσθ ⋅a

∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ac

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

dTc−a

= n{ }a
T

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

n{ }a
+ Hac

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ d ε

p
c−a

 

 

    

d ε
p

c−a = n{ }a
T De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

d ε{ }c−a
1

Sac

− n{ }a
T De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

α{ }a−c
− De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

−1 d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

dT

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
ac

εe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 
−

1
fσθ ⋅a

∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ac

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

d Tc−a
Sac

 

 (28) 
where 

  
Sac = n{ }a

T
De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

n{ }a
+ Hac

 

 
   Equation (28) expresses the relationship between the 
total strain increment 

  
dε{ }c−a

 and the magnitude of the 

plastic strain increment   d ε
p

c−a . 
 
(g) Incremental stress-total strain relationship (the 
elastic-plastic constitutive equation) 
   Equation (25) is substituted into Eq. (6). 
 

  
dσ{ }c−a

= De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

dε{ }c−a
− dε p⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

− dεT⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + d De⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ c−a

ε e⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

 

 (29) 
 
   Equations (1), (14), and (28) are substituted into Eq. 
(29). 
 
   

  
dεT⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

= α{ }a−c
dTc−a

 (1) bis 

 
   

  
dε p⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ c−a

= d ε
p

c−a n{ }a
  (14) bis 

 

    

d ε
p

c−a = n{ }a
T De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

d ε{ }c−a
1

Sac

− n{ }a
T De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

α{ }a−c
− De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

−1 d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

dT

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
ac

εe⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 
−

1
fσθ ⋅a

∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ac

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

d Tc−a
Sac

 

 (28) bis 
 
   When the equation is simplified after the substitution, 
the elastic-plastic constitutive equation (incremental 
stress-total strain relationship) is obtained as follows: 
 
   

  
dσ{ }c−a

= Dep⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ac

dε{ }c−a
− Cep⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ ac

dTc−a
 (30) 

where 
  

Dep⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ac

 is the elastic-plastic matrix (composed of 

the temperature-dependent material properties of the 
elastic and plastic), 
 
  

    
Dep⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ac

= De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c
− De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

n{ }a
n{ }a

T
De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

1
Sac

 

  

    

Cep⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ ac

= Dep⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ac

α{ }a−c
− De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

−1 d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

dT

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

ac

ε e⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ a

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

+ De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

n{ }a
1

fσθ ⋅a
∂ f
∂σo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
a

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ac

1
Sac

 

 
   When Eq. (30) is used, Eq. (3) is satisfied after the 
increment, even if the temperature increment is very 
large. 
 
2.4 Summary of Treatments of 
Temperature-Dependencies of Mechanical Properties 
for Large Temperature Increment 
 
   The important treatments of the 
temperature-dependencies of the mechanical properties 
are summarized here. They are very important, especially 
when a large temperature increment is used. 
(a) For the elastic matrix 

  
De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
 (Young’s modulus and 

Poisson’s ratio), the values for the final temperature of 
the increment (that is, 

  
De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

) should be used. 

(b) The differential coefficient 
  
d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ dT  of 

  
De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
 for 

the temperature change should be calculated using 
  

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ a

 

and 
  

De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ c

 at the initial and final temperatures of the 

increment, as expressed by Eq. (5). 
(c) For the instantaneous linear expansion coefficient 
α{ }, the mean value during the increment should be 

used. 
(d) The strain-hardening coefficient   Hac  has to be 

determined for the total plastic strain   ε
p

a (in the initial 
state of the increment) and the temperature   Tc  (the final 
temperature of the increment), as expressed by Eq. (16). 
The yield condition will then be definitely satisfied after 
the increment (this will be explained in detail in Sec. 2.5 
using Fig. 2). 
 
2.5 Modifier to Satisfy Yield Condition 
 
   When the stress point is on the yield surface and the 
yield condition is satisfied, the above elastic-plastic 
constitutive equation (Eq. (30)) can be used for the next 
temperature increment and can produce accurate results, 
even for a large temperature increment. However, when 
the stress point is considerably beyond the yield surface 
because of using a large temperature increment for the 
elastic calculation, Eq. (30) will not be necessarily 
appropriate and may increase the error in the next 
increment. Hence, a clever method was developed for 
returning the stress point to the yield surface to satisfy the 
yield condition during the next increment. 
   The above elastic-plastic constitutive equation (Eq. 
(30)) includes the coefficients for considering the effects 
of the temperature change. One of the coefficients is the 
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temperature change differential coefficient of   σo, which 
is given by Eq. (11). This coefficient is useful and 
powerful for modifying the stress state. 
   The differential coefficient 

  
∂σo ∂T( )ac

 is defined by 

Eq. (11) and is very accurate for a large temperature 
increment. This coefficient is aptly redefined as follows 
to return the stress point to the yield surface. On the right 
side of the equation, the size of the yield surface in the 
initial state of the increment, 

    
σo ε a

p
, Ta

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , is changed to 

the actual equivalent stress in the initial state of the 
increment,   σa . 
 

   
    

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ac

=
σo ε a

p
, Tc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −σo ε a

p
, Ta

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

d Tc−a

 

            
    

∂σo
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ac
=
σo ε a

p
, Tc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −σ a

d Tc−a

 (31) 

 
   The constitutive equation (Eq. (30)) is basically used. 
However, only the coefficient 

  
∂σo ∂T( )ac

 in the 

equation is changed from Eq. (11) to Eq. (31). 
  The effect of the new definition—that is, the 
mechanism of the modification—will be explained using 
Fig. 2. To facilitate understanding, it is assumed that the 
strain-hardening obeys the isotropic hardening rule. The 
size of the yield surface (the magnitude of the yield 
stress) is therefore dependent on the total plastic strain 
and the temperature as shown in Fig. 2. 
 

 
 
Fig. 2 Mechanism of modification of stress state for yield 
 condition 
 
 

   When the stress point is inside the yield surface, the 
calculation for the next increment is performed assuming 
an elastic state. Consequently, the stress point may move 
outside the yield surface after the increment, especially 
when a large temperature increment is used. The 
equivalent stress   σa  in Fig. 2 shows the stress point in 
such a situation at temperature   Ta.   σa  is significantly 
beyond the true yield stress 

    
σo ε a

p
, Ta

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . The calculation 

for the next increment is performed assuming an 
elastic-plastic. If the plastic state is maintained and Eq. 
(11) is used, the change of the stress point is given by Eq. 
(11) +   Hac, as shown in Fig. 2, owing to the temperature 
change and strain-hardening. After the increment, the 
adverse condition remains. If Eq. (31) is used, the change 
of the stress point is given by Eq. (31), as shown in Fig. 2, 
owing to the temperature change. The changed stress 
point corresponds to 

    
σo ε a

p
, Tc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , which is the yield stress 

for the total plastic strain   ε
p

a (in the initial state of the 
increment) at temperature   Tc  (the final temperature of 
the increment). If the plastic strain is additionally 
produced in the increment, the stress point changes, 
obeying   Hac . In any case, the stress point after the 
increment is on the yield surface and satisfies the yield 
condition. However, the final temperature increment must 
be sufficiently small. If the stress point moves outside the 
yield surface, the modifier would not work because there 
would be no subsequent increment. 
 
3. Accuracy and Computation Time of Analysis Using 
New Theory 
 
3.1 Typical Simple Thermal Elastic-Plastic Problem 
   To verify the basic capability of the new theory, a 
typical simple thermal elastic-plastic problem was 
analyzed. A bar was restrained at both ends as shown in 
Fig. 3. The thermal stress generated in the bar was 
analyzed. The material properties are shown in Fig. 4. 
Both ends of the bar were fixed only at the bottom and 
the top could slide up and down. This restraint condition 
produced only axial stress (x-direction stress) and 
perpendicular deformation (y-direction deformation). 
   The initial temperature of the bar was uniformly 15°C. 
The bar was heated to 415°C and subsequently cooled to 
15°C while maintaining the temperature uniformity. For 
the calculation, the heating stage was divided into two 
increments and the cooling stage into three increments. 
The temperature increments were therefore 200°C or 
100°C. These are very large increments that cannot be 
used for the usual thermal elastic-plastic analysis if 
accurate results are required. The analytical results are 
shown in Fig. 5. 
   In the heating stage, the first increment was calculated 
with the assumption of an elastic state using the elastic 
constitutive equation (Eq. (7)). Consequently, the 
compressive stress generated in the bar was significantly 
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Fig. 3  Restrained bar for analysis 
 

 
 

Fig. 4  Temperature dependencies of material properties 
 

 
 

Fig. 5  History of axial stress in bar 
 
beyond the yield stress. The second increment was 
calculated with the assumption of an elastic-plastic state 
using the constitutive equation (Eq. (30)) modified by Eq. 
(31). Consequently, the stress in the bar was adjusted and 
perfectly corresponded to the yield stress at 415°C. 
   In the cooling stage, the bar was unloaded in the first 
increment. The stress became tensile within the yield 
stress. The second increment was therefore calculated 

with the assumption of an elastic state. Consequently, the 
tensile stress after the increment was significantly beyond 
the yield stress. The third increment was calculated with 
the assumption of an elastic-plastic state using Eq. (30) 
modified by Eq. (31). Consequently, the residual stress 
perfectly corresponded to the yield stress at 15°C. 
   As in the stress history, the deformation of the 
bar—that is, the displacement of the upper side of the 
bar—corresponded to the exact deformation after 
application of the modifier. 
   These results show that the new constitutive 
equations can be basically used for accurate analysis of 
the thermal elastic-plastic problem, even when the 
temperature increments are large. 
 
3.2 Analysis of Welding Residual Stress and 
Deformation 
   A typical welding problem was analyzed to verify the 
capability of the new theory for the analysis of welding 
stress and deformation. The analysis was done using two 
theories, namely 
(i) The usual accurate incremental theory (hereafter called 
“usual theory”), which considers the 
temperature-dependencies of the mechanical properties 
described in Sec. 2.4, but using Eq. (11) instead of the 
modifier of Eq. (31). 
(ii) The new accurate incremental theory (hereafter called 
“new theory”) using the modifier of Eq. (31). 
   By changing the magnitude of the temperature 
increment, the results of the two theories were examined 
with regard to their accuracies and computation times 
(the numbers of increments). Additionally, ABAQUS, 
which is one of the reliable and globally used commercial 
solvers, was used to verify the accuracy and effectiveness 
of the new theory. The CPU computation time was 
dependent on the performance of the computer. The 
comparison of the computation times is therefore based 
on their ratios. 
 
3.2.1 Specimen and welding condition 
   The specimen used for the analysis is shown in Fig. 
6; it has the same dimensions as a “slit cracking test 
specimen,” which is one of the standard Japanese test 
 

 
 
Fig. 6  Specimen used for analysis (slit cracking test specimen) 
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Fig. 7  Mesh division of specimen for FEM 
 
specimens. The welding was done in the slit zone from x 
= -40 mm to x = +40 mm. The welding was done under 
standard Japanese welding conditions, namely 170 A, 25 
V, and 15 cm/min (17000 J/cm). In the actual analysis, 
the specimen did not have a slit; that is, the plate did not 
have a groove. The heat source with the above conditions 
moved along the weld zone of the specimen and melted 
the material as in bead-on-plate welding. 
   The analysis model represented half of the specimen 
because of its symmetrical shape and the weld zone. The 
mesh was divided as shown in Fig. 7; a simple regular 
division was used because the purpose of the analysis 
was to examine the performance of the new theory. The 
numbers of elements, nodes, and unknowns were 9600, 
4911, and 9711, respectively. 
   The material properties were assumed to be the same 
as in Fig. 4. The mechanical melting point was set at 
700°C. At this temperature, the material almost loses its 
rigidity. At high temperatures above 700°C, the 
mechanical behavior is unstable and the theoretical 
analysis may lose stability, especially when large 
temperature increments are used. Welding involves such 
high temperatures. The new theory was tested under such 
adverse conditions. 
 
3.2.2 Analytical results (verification of capability of new 
theory) 
   First, the history of the temperature distribution 
produced by the welding (heat input) was analyzed using 
the physical properties shown in Fig. 4. The transient 
temperature distribution obtained from the analysis was 
divided into 4800 increments, which produced 
sufficiently small temperature changes (the largest was 
less than 2.5°C) for accurate thermal stress analysis. The 
data of the transient temperature distribution with 4800 
increments was used for the first thermal stress analysis. 
The results were accurate and used as benchmark for the 
problem. Skipping the transient temperature distributions, 
the number of increments for the thermal stress analysis 
was decreased from 4800 to 20, which produced very 
large temperature increments. The analytical results were 
compared and the residual stress and deformation 
distributions were noted. 
 
(1) Residual stress 

   The residual stress distributions along the x-axis are 
shown in Figs. 8-11. Figures 8 and 9 show the results 
obtained by the usual theory. Figures 10 and 11 show the 
results obtained by the new theory. The stresses in the x- 
and y-direction are represented by  and , 
respectively. The symbol U indicates the usual theory, 
and M the new theory using the modifier. The number 
beside the symbol indicates the number of increments. 
Where the black curve for 4800 increments (the 
benchmark) is not visible, it is under the violet curve (the 
result for fewer increments). 
   In the case of 4800 increments, the results obtained 
by both theories were almost identical. When the number 
of increments was decreased (that is, larger temperature 
increments were used), the differences between both 
results increased. 
 

 
 

Fig. 8  Residual stress   σx (by usual accurate theory) 
 

 
 
Fig. 9  Residual stress   σy  (by usual accurate theory) 



47

Transactions of JWRI, Vol.43 (2014), No. 1

 

 
 

Fig. 10  Residual stress   σx (by new accurate method) 
 

 
 

Fig. 11  Residual stress   σy  (by new accurate method) 

 
   The accuracy of the usual theory obviously reduces 
below 1200 increments (the largest temperature 
increment was about 10°C). Using the new theory, the 
high accuracy was maintained even when the number of 
increments was reduced to only 75 (the largest 
temperature increment was about 150°C). The 
computation time for an increment was the same for two 
theories. The computation time using the new theory was 
therefore shortened to about 6.25% that of the usual 
theory. 
   The same welding problem was analyzed using 
ABAQUS. The temperature data for 4800 increments was 
also used. ABAQUS automatically decreased the number 
of increments by increasing the temperature increment 
while maintaining accuracy. The number of increments 

was then reduced to 415. The analytical results were 
almost identical with those obtained by the above two 
theories using 4800 increments. The computation time of 
ABAQUS was about 7.2 times that of the new theory. 
 
(2) Residual deformation 
   The distributions of the residual deformation along 
the side of the specimen (from x = -100 mm to x =100 
mm at y = 75 mm) are shown in Figs. 12-15. Figures 12 
and 13 show the results obtained by the usual theory. 
Figures 14 and 15 show the results obtained by the new 
theory. The displacements in the x- and y-direction are 
represented by  and , respectively. 
   The accuracy of the usual theory was maintained 
down to 1200 increments, and the corresponding number 
 

 
 
Fig. 12  Residual deformation   δx  (by usual accurate theory) 
 

 
 
Fig. 13  Residual deformation   δ y  (by usual accurate theory) 
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Fig. 14  Residual deformation   δx  (by new accurate method) 
 

 
 
Fig. 15  Residual deformation   δ y  (by new accurate method) 

 
for the new theory was 75. The numbers of increments 
required to obtain accurate residual stress results were the 
same for both theories. The reduction ratio of the 
computation time was still 6.25%. For this deformation, 
the analytical results obtained by ABAQUS were almost 
identical with those obtained by the above two theories 
using 4800 increments 
 
3.2.3 Limit of enlargement of temperature increment for 
accurate analysis 
   In the analysis by the new method, the accuracies of 
the transient stress and deformation results were the same 
as those of the residual results. They have not been 
included here owing to space limitations. In each element, 
if the stress point moved outside the yield surface after 

some increments, it would be returned to the yield surface 
and satisfy the yield condition after the next increment. 
However, the accuracy clearly decreased when the 
temperature increment became very large (for example, 
when 20 increments were used), although the modifier of 
the new theory was very effective. The decrease was due 
to the difference in the temperature distribution history. 
When the temperature increment further increased, the 
difference between the histories for the very small 
increment and large increment also increased further. On 
the basis of the results of this study, the limit of the 
temperature increment is considered to be about 150°C. 
The history of the temperature distribution is the left 
important factor in shortening the computation time for 
accurate analysis. 
 
4.  Conclusion 
   The thermal elastic-plastic analysis of the transient 
and residual stresses and deformations that occur during 
welding require a long computation time because of the 
non-linearity of the mechanical behavior and the 
dependency on the temperature history. In this study, the 
thermal elastic and thermal elastic-plastic constitutive 
equations were modified to allow for the use of large 
temperature increments. Moreover, for the latter 
constitutive equation, the definition of the differential 
coefficient of the yield stress when the temperature 
changes was ingeniously modified to perfectly satisfy the 
yield condition. 
   A simple typical problem of thermal elastic-plastic 
mechanics was analyzed to verify the basic capability of 
the new theory. To examine the reliability and accuracy 
of the theory, a complex welding problem was also 
analyzed. The welding residual stress and deformation 
were analyzed by the new theory using large temperature 
increments. It was confirmed that the computation time 
was significantly shortened (reduced by one order) 
compared to those of the usual theory and ABAQUS, 
while maintaining high accuracy. 
   A new program or investment in much labor and time 
is not required for the new theory. The new constitutive 
equations can be easily introduced into the usual FEM 
program for thermal elastic-plastic analysis. This is 
another superior value of the new theory. Even if only Eq. 
(31) is applied, the accuracy will be largely improved. 
Only a few lines of the program need to be modified. 
 
Nomenclature 
Symbols 

  
De⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 
: elastic matrix 

  
d De⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
: increment of elastic matrix 

  f : yield function 

    f = 0: yield surface 

    d f = 0: consistency condition 
  H : strain-hardening coefficient 
  k : proportionality coefficient 

  n{ }: outward unit vector normal to the yield surface at 
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the stress point 

  nθ{ } : unit vector indicating the movement direction of 
the yield surface 
  T : temperature 
  dT : temperature increment 
 
Greek Symbols 
α{ }: instantaneous linear expansion coefficient 

  
εe⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
: total elastic strain 

  dε{ }: total strain increment 

  
dεT⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
: thermal strain increment 

  
dεe⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

: elastic strain increment 

  
dε p⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

: plastic strain increment 

  ε
p

: total magnitude of the plastic strain increment 

  d ε
p: magnitude of the plastic strain increment 

σ{ }: stress 

  dσ{ }: stress increment 

  dσ f : normal component of 
  dσ{ } 

  σo: size of the yield surface 

  dσo: change in the size of the yield surface 
θ{ }: center of the yield surface 

  d θ{ }: change in the center of the yield surface 
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