衛星合成開口レーダーを用いた平成 19 年 (2007 年) 新潟県中越沖地震に伴う 地殻変動の検出

Crustal Deformation Associated with the Niigataken Chuetsu-oki Earthquake in 2007 Detected by PALSAR/InSAR

測地部 鈴木 啓・雨貝知美・藤原みどり・和田弘人 Geodetic Department Akira SUZUKI, Tomomi AMAGAI, Midori FUJIWARA and Kozin WADA 地理地殻活動研究センター 飛田幹男・矢来博司 Geography and Crustal Dynamics Research Center Mikio TOBITA and Hiroshi YARAI

要 旨

国土地理院は,陸域観測技術衛星「だいち」(ALOS) に搭載されているLバンド合成開口レーダー (PALSAR)の観測データを用いて,SAR 干渉解析を 定常的に実施するとともに,地震等の災害発生時に は,緊急解析も実施している.

2007 年7月16日に発生した平成19年(2007年) 新潟県中越沖地震では,北行軌道と南行軌道の異な る軌道での観測がそれぞれ(北行軌道:7月30日, 南行軌道:7月19日)実施され,これらの観測デー タを用いた緊急解析を行った.

南行軌道の解析結果は,地震による広範囲の変動 を面的に捉えることに成功した.しかし,北行軌道 の解析結果では,観測データに電離層の擾乱と思わ れるノイズが含まれていたため,地震による変動を 明確に捉えることができなかった.そこで,北行軌 道については,再度観測が実施された9月14日のデ ータを利用し再解析を行った.その結果,明瞭な変 動が捉えられ,本震の震央から約15km離れた西山丘 陵の西側斜面に帯状の隆起帯(最大約15cm)を発見 した.そこで,この隆起帯が地震に伴った変動なの か,もしくはSAR 干渉解析による誤差かどうかの検 討を行った.その結果,誤差による変動でないこと が確認され,さらに,地震前後に実施された西山丘 陵を横切る水準測量結果とも調和的であった.

この西山丘陵西側斜面の隆起帯は,活褶曲である 小木ノ城背斜の位置と一致しており,地震に伴い褶 曲構造が成長したと推定された.地震に伴う地殻変 動において,このような活褶曲の成長が空間的な広 がりとともに観測されたことは,極めて珍しい事例 であり,干渉 SAR の面的な情報が非常に有効である ことが示された.

1.はじめに

宇宙測地技術のひとつである SAR は,分解能の高 いマイクロ波レーダーであり,地表の対象物からの レーダー反射波の強度に加えて,反射波の位相情報 を得ることができる.干渉 SAR とは,このレーダー 観測を地表の同一地点で2回以上実施し,それらの 位相差をとることによって,数十km範囲の地表変動 を約100mの空間分解能,数cmの精度で捉えること のできる技術である.

国土地理院は,1994年以降,干渉SARを用いた定 量的な地殻・地盤変動計測の実利用に向けて,解析 手法ならびにそれらに必要なソフトウェアの研究開 発を行ってきた(飛田,2003;飛田ほか,2005).そ の結果,地震・火山による地殻変動や地盤沈下など, 地表の変動現象を様々なスケールで捉えることに成 功してきた(小澤ほか,2003;藤原ほか,2005).

これらの研究開発の成果を基に,第6次基本測量 長期計画では,宇宙航空研究開発機構(JAXA)によ り,2006年10月から定常運用が開始された,陸域 観測技術衛星「だいち」(ALOS: <u>A</u>dvanced <u>L</u>and <u>Observing Satellite</u>)のLバンド合成開口レーダー (PALSAR)を用いた高精度地盤変動測量の実施を提 示している.この高精度地盤変動測量では,長期的 な変動監視として地盤沈下・火山地域を定常的に解 析している(和田ほか,2007).また,地震等の災害 発生時には,災害状況把握のための緊急解析を実施 している.

2007 年 7 月 16 日に発生した平成 19 年 (2007 年) 新潟県中越沖地震 (以下,「中越沖地震」という.) についても,平成 19 年 (2007 年) 能登半島地震と 同様に緊急解析 (雨貝ほか,2007)を実施した.こ の成果は,広範囲の変動を捉えると共に局所的な地 表面の変化を捉えることに成功した.

本稿では,中越沖地震に際して実施した緊急解析 結果について述べる(2章).次に,その解析結果に 現れた西山丘陵西側斜面の帯状隆起帯について検討 を行った(3章).そして,地震後の変動を監視する ために実施した解析結果を考察し(4章),最後に, まとめと今後の課題について述べる(5章).

- 2.中越沖地震における緊急観測と再解析
- 2.1 緊急解析の概要

干渉 SAR を実施するためには,最低2回の観測が 必要である.人工衛星を利用する場合は,ほぼ同一 の軌道を飛行した異なる時期の観測が必要とされる. このペアとなる観測の位相差をとることによって, 地殻変動量の検出に利用する.この組となる2つの 観測データを「干渉ペア」といい,先に観測された ものを「マスター」,後に観測されたものを「スレー ブ」という.地震等の災害が発生した場合は,災害 前後に観測された干渉ペアが必要となる.そのため, 災害発生前に観測されたマスターの諸元情報を確認 し,干渉ペアとなるスレーブの緊急観測が実施され るよう宇宙航空研究開発機構(JAXA)へ要求を行う.

「だいち」に搭載された PALSAR には,複数の観測 モードがある(宇宙航空研究開発機構,2006).国土 地理院の干渉 SAR では,それらの観測モードの中で, 最も高精度な高分解能モード(1偏波,2偏波)(以 下,「FBS」,「FBD」という.)のオフナディア角34.3° の観測モードを基本モードとして定常解析を行って いる.これに対して,緊急解析の際には,観測モー ドに限らず解析を実施する.

2007 年 7 月 16 日に発生した中越沖地震では、JAXA に対して国土地理院やその他の関係機関からの緊急 観測要求を行い,7月 19 日(地震発生3日後)に FBS・南行(Descending)軌道・オフナディア角34.3° の観測モード,7月 30 日(地震発生14日後)にFBS・ 北行(Ascending)軌道・オフナディア角34.3°の 観測モードによる緊急観測が実施された.これらの 観測を受け,国土地理院では,表-1に示す2つの 干渉ペアの解析を実施した.

観測日(マスター)	I_L*	海行盐港	基線長	田問	供支
観測日(スレーブ)	t-r	浬1」則迫	垂直成分	舟川町	11875
2007/01/16	FBS	主仁盐、 关	200-	404 🗖	জ্য 1
2007/07/19	FBS	用仃則坦	-300m	184 日	赵-1
2007/06/14	FBD				

北行軌道

FBS

+514m

46日

図-2

表 - 1 中越沖地震における緊急解析ペア

以上の干渉ペアのうち,地震後初の干渉ペアとなった南行軌道の解析結果については,緊急観測が行われた翌日の7月20日に記者発表(国土地理院, 2007)にて公表した.

2.2 緊急解析結果

2007/07/30

表 - 1 に示した南行・北行軌道の SAR 干渉画像を それぞれ図 - 1 及び図 - 2 に示す.図 - 1 より,最 も変化の大きい場所は,柏崎市椎谷(観音岬)付近 でおよそ 25cm 衛星に近づいたことがわかる.一方, 北行軌道の結果は,画像中心(柏崎市~新潟市)付 近に地震に伴った変動とは想定できない縞が残り, 明瞭な地殻変動を捉えられない結果となった.

図 - 1. SAR 干渉画像(Descending:34.3°) (2007/01/16-2007/07/19)

2.3 北行軌道の誤差要因の追求と再解析

北行軌道の緊急解析結果(図-2)からでは,明 瞭な変動を捉えられない結果となった.この原因を 追及するため,マスターを2006年9月11日(FBS・ 北行(Ascending)軌道・オフナディア角34.3°) に変更し,解析を行った(表-2).そのSAR干渉画 像(図-3)からも図-2同様の縞が現れたため, 緊急観測時(7月30日)の観測データに何らかの誤 差があると判断された.その後,この誤差要因は, 電離層の擾乱による影響と推定された(衛星データ 解析検討小委員会,2007).

再解析には,地震発生より若干間隔が開いた9月 14日(地震発生後60日後)のデータを用いた.観測 モードは,FBD・オフナディア角34.3°である.再 解析を行った干渉ペアの詳細を表-2に示す.

観測日(マスター) 観測日(スレーブ)	€-ŀ	運行軌道	基線長 垂直成分	期間	備考
2006/09/11	FBS	北行軌道	-744m	322日	図-3
2007/07/30	FBS				
2007/06/14	FBD	北行軌道	+653m	92 日	図-4
2007/09/14	FBD				

表 - 2 中越沖地震における再解析ペア

2007/06/14-2007/09/14 の SAR 干渉画像を図 - 4 に示す.この SAR 干渉画像では,図 - 2,3の解析 結果とは異なり,明瞭な変動を捉えることに成功した.

2.4 2.5 次元解析

2.4.1 2.5 次元解析

干渉 SAR では,衛星から地表への視線方向の変位 量を計測するため,単独では変動の方向を特定する ことができない.しかし,2方向以上からの SAR 干 渉画像を組み合わせることにより変動を2次元的, 3次元的に把握することが可能となる(Massonnet et al., 1995, 1996; Fialko et al., 2001).

中越沖地震では,緊急解析での南行軌道と再解析 での北行軌道の2方向の干渉画像が得られている (図-1,4).これらの解析結果を合成することに より,地表の各地点においてほぼ上下方向と,ほぼ 東西方向の2次元成分へ分離が可能となる(図-5). この手法により得られた準上下方向と準東西方向の 変動量分布をそれぞれ図-6及び図-7に示す.準 上下方向の変動図から変位量は,柏崎市椎谷(観音 岬)付近で大きく,25cmを超える隆起が確認できる. これは,地震後実施された水準測量において,最大 隆起量を観測した観音岬付近にある一等水準点 (4458)の隆起量と良い一致を示した.

図 - 5.2.5次元解析モデル図

 2.4.2 準上下方向と水準測量による変動量の 比較

2.5 次元解析から得られた準上下方向の変動量の 精度を検証するため,地震後実施された水準測量結 果との比較を行った.比較に使用した水準点(36点) は,一等水準点(4451)を基準にした震源域周辺の 点である(図-6).

水準測量の変動量を横軸に,準上下方向の変動量 を縦軸にとった散布図を図-8に示す.ここで異常 点(4461)や干渉していない部分にある水準点 (4460,3747)は,予め棄却した.その後,変動量の 較差が10cm程度生じていた1点(3744)を棄却した 結果,残りの水準点(32点)では非常によい相関を 示している.また,散布図に示された水準点32点で は,干渉 SAR,水準測量から得られるそれぞれの変 動量の差の標準偏差が約1.5cmであった.

3.西山丘陵西側斜面の帯状隆起

3.1 概要

北行軌道の再解析結果(図-4)では,本震の震 央から南側へ約 15km 離れた西山丘陵の西側斜面に 帯状の隆起帯(最大約 15cm)が確認できる.この隆 起帯が地震に伴った地殻変動であるか,SAR 干渉解 析上の誤差によるものかの検討を行った.

SAR 干渉画像中に現れる主要な誤差要因は, 対流圏や電離層などの伝播遅延に起因する空間的擾乱 による誤差(図-2,3), デジタル標高データ(以下,「DEM」)による誤差,が挙げられる.そこで,こ れら誤差要因を判断するため,以下の検討を行った.

図-8 準上下成分と水準測量との相関

まず, については,2.3項のように干渉ペア を変更した解析結果を比較することにより,大気等 の擾乱による影響かどうかの判断を行った. につ いては,通常国内では国土地理院作成の50mメッシ ュ標高を使用している.そこで,アメリカ地質調査 所(USGS: United States Geological Survey)が無 償提供している標高データ(SRTM: The Shuttle Radar Topography Mission,以下,「SRTM」という.)へ変 更し比較を行った.さらに,この周辺域では水準測 量も実施されたため,この隆起帯に位置する水準点 の変動量からも検討を行った.

3.2 大気等の伝播遅延による影響

大気等の伝播遅延による影響を確認するため,異 なる時期で解析を行った.使用したデータは,マス ターを 2006 年 9 月 11 日,スレーブを 2007 年 9 月 14 日とした(表 - 3).その SAR 干渉画像を図 - 9 に示す.

表 - 3 大気遅延の検討に行った解析ペア

観測日(マスター)	ŧ-۲,	運行軌道	基線長 垂直成分	期間	備考
観測日(スレーブ)					
2006/09/11	FBS	北行軌道	-874m	368 日	図-9
2007/09/14	FBD				

この SAR 干渉画像からも図 - 4 同様,西山丘陵に 帯状の隆起域が確認できる.従って,この隆起帯は, 大気等の伝播遅延による影響である可能性が低いと 考えられる.

3.3 DEM による誤差の影響

DEM による影響を確認するため,表-3の干渉ペ アを用い,国土地理院作成の50mメッシュ標高から SRTM へ変更して解析を行った.

SRTM 3 (90m メッシュ)は,データの欠測がある ため,欠測のない SRTM30(1km メッシュ)で補間し たものを使用した.精度的には,国土地理院作成の 50m メッシュ標高に劣るが,地形誤差の判別には問 題ない精度である.この SAR 干渉画像(図-10)か らも同一地域に帯状隆起帯を確認することができる. この結果より,DEM による誤差でもなく,地震に伴 った変動である可能性は高いと考えられる.

3.4 水準測量による検討

国土地理院では,地震発生後水準測量を実施して いる(池田ほか,2008).観測された水準路線の一部 は,帯状隆起が確認できる西山丘陵を横断している ため,隆起帯に位置する水準点の変動量によって検 討を行った.西山丘陵を横断する水準点の位置関係 を図-11に示す.帯状隆起帯にある水準点(3749) は地震発生後の8~9月に水準測量が実施された. 出雲崎町の水準点(4451)を基準とした場合,この 約一ヶ月間の変動量は,数mmの隆起を観測した.以 上の結果から,水準測量によってもこの地域の隆起 が確認された.

図 - 11 西山丘陵を横断する水準路線

以上,3.2~3.4節の検討結果から西山丘陵 の局所的な変動が明らかになった.この隆起帯は, 活褶曲である小木ノ城背斜(小林ほか,1996)とよく 一致していることから,褶曲構造が反映した結果と 考えられた.なお,この成果は,10月2日に記者発 表(国土地理院,2007)にて公表された.

4.地震後の解析結果について

中越沖地震震央付近での観測が,再解析実施後10 月19日に南行軌道で,10月30日に北行軌道でそれ ぞれ実施された.そこで,地震後の変動を確認する ため解析を行った.その干渉ペアの詳細を表-4に 示す.また,それぞれのSAR干渉画像を図-12及び 図-13に示す.

観測日(マスター) 観測日(スレーブ)	€-ŀ,	運行軌道	基線長 垂直成分	期間	備考
2007/07/19	FBS	南行軌道	+623m	92日	図-12
2007/10/19	FBS				
2007/09/14	FBD	北行軌道	+568m	46日	図-13
2007/10/30	FBS				

表-4 中越沖地震後の解析ペア

これらの SAR 干渉画像(図-12,13)からは,特 段の変動は確認できない結果となった.仮に西山丘 陵の帯状隆起帯がmm単位の変動を継続していたと しても,干渉 SAR で捉えられるレベルの変動ではな いといえる.

5.まとめと今後の課題

能登半島地震に続き,中越沖地震においても干渉 SAR によって,地殻変動を正確に捉えることができた.緊急観測を要求した北行軌道の観測データ(7 月 30 日)を使用した解析は,電離層による誤差を含んだ結果となり,明確な地殻変動を捉えるに至らなかった.しかし,その後の再解析では,中越沖地震に伴った西山丘陵西側斜面の帯状隆起帯を発見した. これは,従来の GPS・水準測量では検出が困難な地 殻変動を,干渉 SAR の利点である面的な情報によって発見できたものである.

今後の課題としては,本稿でも検討された電離層 の擾乱による定量的な補正方法の確立である.この 電離層を含む大気補正については,未だ非常に困難 な課題であるが,観測されたデータから面的な変動 を効率的かつ高精度に解析・提供するためには避け て通れない重要な課題である.

謝 辞

ここで使用した「だいち」の PALSAR データの所有 権は,経済産業省および宇宙航空研究開発機構にあ る.また,これらのデータは,宇宙航空研究開発機 構との共同研究協定に基づいて提供を受けた.ここ に記して謝意を表する.

参 考 文 献

- Fialko, Y., M. Simons, and D. Agnew(2001): The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7.1 Hector Mine earthquake, California, from space geodetic observations, Geophy. Res. Let., 28, 3063-3066.
- 藤原 智,仲井博之,板橋昭房,飛田幹男,矢来博司(2005): JERS-1 干渉 SAR による小空間スケール地表変位 の検出 - 有明海周辺干拓地における田の沈下・隆起-,測地学会誌,第51巻,第4号,199-213.
- 国土地理院(2007):記者発表資料,http://www.gsi.go.jp/WNEW/PRESS-RELEASE/2007/0412.htm(accessed 20 Jul. 2007).
- 国土地理院 2007):記者発表資料 http://www.gsi.go.jp/WNEW/PRESS-RELEASE/2007/1002.htm(accessed 2 Oct. 2007).
- Massonnet, D., P. Briole, and A. Arnaud (1995): Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375, 567-570.
- Massonnet, D., K. Feigl, H. Vadon, and M. Rossi(1996): Coseismic deformation field of the M = 6.7 Northridge, California earthquake of January 17, 1994 recorded by two radar satellites using interferometry, Geophy. Res. Let., 23, 969-972, 1996.
- 小澤 拓,宗包浩志,矢来博司,村上 亮(2003): JERS-1の干渉 SAR により検出された霧島火山群・硫黄島周 辺の局所的な地殻変動,火山,第48巻,第6号,507-512.
- 飛田幹男(2003): 合成開口レーダー干渉法の高度化と地殻変動解析への応用,測地学会誌,49,1-23.
- 飛田幹男,宗包浩志,松坂 茂,加藤 敏,矢来博司,村上 亮,藤原 智,中川弘之,小澤 拓(2005):干渉 合成開口レーダーの解析技術に関する研究,国土地理院時報,第106集,37-49.
- 宇宙航空研究開発機構 (2006): ALOS データ利用ガイドブック,付録 3 PALSAR データの関連情報.
- 和田弘人 松坂 茂 藤原 智 仲井博之 藤原みどり 雨貝知美 飛田幹男 福崎順洋 矢来博司(2007): ALOS/PALSAR データの干渉 SAR 測量への利用とデータ処理・解析システムの構築概要,国土地理院時報,第111 集,小特集 :国土地理院における陸域観測技術衛星「だいち」(ALOS)の利用,107-11.
- 雨貝知美,和田弘人,藤原みどり,鈴木 啓,飛田幹男,矢来博司(2007):衛星合成開口レーダーを用いた平成 19年(2007年)能登半島地震に伴う地殻・地盤変動の検出,国土地理院時報,第113集,小特集:平成19年(2007 年)能登半島地震,3-11.
- 小林巌雄,立石雅昭,吉村尚久,上田哲郎,加藤碩一(1996):5万分の1地質図幅「柏崎」,地質調査所,地質 ニュース,498 号,13-14.
- 衛星データ解析検討小委員会(2007):新潟県中越沖地震に関する衛星データ解析結果報告,地震調査委員会提出 資料.
- 池田尚應,横川正憲,田上節雄,佐々木利行,塩谷俊治,大森秀一,根本盛行(2008):平成19年(2007年)新 潟県中越沖地震に伴う緊急現地調査(水準測量),国土地理院時報,第114集,小特集:平成19年(2007年) 新潟県中越沖地震,39-45.