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Abstract

Most of the phenomenological elastoplastic models adopting a plastic flow rule with a single yield surface tend
to predict an unrealistic material response especially when they are subjected to the non-proportional loading
condition with a sudden change of the loading path. The work presented in this paper aims to propose an
efficient numerical technique to correct the excessive stiffness of the conventional elastoplastic models by
introducing the so-called tangential plasticity [1] and combining it with the return mapping technique for an

accurate and faster computation [2].
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1. Introduction

Phenomenological plasticity models are commonly
formulated with the assumptions on the plastic flow
(normality) rule that the inelastic stretching can only
evolve along the normal direction to the plastic potential
surface, and also its magnitude depends only on the stress
rate component normal to the yield surface. That is, in the
plastic loading case, the direction of inelastic stretching is
uniquely defined regardless of that of the stress rate.
Furthermore, the magnitude of the inelastic stretching is
not affected by the stress rate component tangential to the
yield surface. Although these assumptions might give
satisfactory numerical results under a certain condition,
such as monotonic loading within small deformation
range, the deficiency has been pointed out especially
when the non-proportional loading, accompanied with a
sudden change of the loading direction, is subjected to the
materials and structures. Therefore, the use of these
models can lead to an underestimation of the inelastic
deformation with a  stiffer response  against
non-proportional loading, and also the plastic instability
phenomena with strain localization tends to be
overestimated [1].

To overcome these drawbacks, a large number of
extensive works have been conducted to include the
so-called vertex effect of a yield surface on the
phenomenological plasticity models (i.e. [3]-[5]). Among
them the tangential plasticity model together with the
subloading surface concept has crucial advantage for the
description of general deformation behavior under cyclic

and non-proportional loading conditions, since it is
categorized in the unconventional plasticity model and
has a mathematical structure to describe a smooth
elastic-plastic transition. The model can describe the
dependence of not only the magnitude but also the
direction of the inelastic stretching on the stress rate
direction by considering the tangential plasticity (c.f.
Hashiguchi and Tsutsumi [1]). The applicability of the
model have been discussed for both analytical bifurcation
problems (i.e. [6]-[10]) and general non-proportional
loading behavior for soils (Tsutsumi and Hashiguchi [11],
Tsutsumi and Kaneko [12]).

On the other hand, many practical engineering
problems require high computational effort. This is a
consequence either of the complexity of some physical
phenomena and of the evolution of the computational
powers, which let us pushing forward the limit of
numerical calculations; especially in F.E. analyses with
elevate number of degrees of freedom or special loading
conditions. Therefore the recourse to numerical
techniques has become frequent in order to save time,
without giving up the accuracy of the solution.

The main purpose of this work is to combine the
tangential plasticity effect for the extended subloading
surface model with the efficiency of the return mapping
algorithm ([2],[13]) as a useful tool in numerical
computation. The key idea lays on the assumption that
the tangential inelastic stretch doesn’t affect the material
hardening, allowing to compute separately the
elastoplastic stress rate by means of the return mapping
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algorithm and subsequently the tangential inelastic term

using a set of parameters which depend on the stress state.

In the present paper the attention will be focused on
metals constitutive equations with mix-hardening.

2. Constitutive equations and numerical procedure

Before dealing with the updated -constitutive
equations of the unconventional plasticity model it is
useful to introduce the main aspects of the numerical
technique itself. Return mapping algorithm has been
firstly proposed by Wilkins [14], subsequently
generalized by Simo and Ortiz [15], and then used in
many forms by other authors (i.e. Krieg and Krieg [16],
Phillinger [17], etc.). However the two main common
formulations are: the closest projection method (CPPM)
and the cutting plane algorithm (CPA), as reviewed by
literatures (c.f. Hashiguchi [18]). The first is a complete
implicit method which allows to compute all the variables
of the system in order to satisfy the set of equations
composed by the yield condition and the evolution law of
the internal variables. This technique is based on the
concept of the consistent linearization, introduced for the
first time by Huges and Pister [19], which leads to an
asymptotic quadratic rate of convergence to the solution,
making the CPPM really attractive to use.

One problem that arises with this formulation is
due to the difficulty on calculating the second order
derivatives of the yield function respect to the stress state
for setting up the local matrix. Especially when dealing
with geomaterials, the plastic potential can have a
complicated mathematical expression which makes
particularly difficult to define the direction of the plastic
flows [20].

On the other hand the cutting plane algorithm is an
incomplete implicit method which results in the
impossibility to compute analytically the consistent
tangent modulus as in the previous formulation [13]. This
represents a serious limitation since a quadratic
convergent Newton-Raphson scheme cannot be used for
the finite element global equilibrium. However the
linearization of the consistency conditions allows to
simplify the convergence procedure, especially
considering that no second order derivatives has to be
computed; moreover a numerical consistent tangent
operator can be furnished adopting the strategy proposed
by Miehe [21], supplying the lack of its analytical
formulation.

It has to be underlined that the recourse to
unconventional theories is necessary when dealing with
cyclic plasticity due to the fact that they allow to take into
account irreversible contributes even for small
oscillations of the stress state in the neighborhood of the
yield surface. The mechanism for such behavior can be
different accordingly with the theory adopted
(Multi-surface model [22] and [23], Infinite surface
model [24], Two surface model [25], Single surface
model [26]) but basically all of them abolish the
distinction between elastic and plastic domains in order to
generate inelastic strains once the stress increases again
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after a previous unload of the sample.

The subloading surface [27] is the only model
among the previous ones which has the ability to catch a
smooth elastoplastic transition by means of its solid and
consistent mathematical implant. To achieve this result a
new surface, named subloading surface, has been created
inside the conventional plastic yield (here renamed
normal-yield) through a similarity transformation, whose
center is not fixed in the stress space but it moves
following the plastic strain rate evolution.

2.1 Extended Subloading Surface Model

The main variables of the model will be now
introduced without a complete explanation of the theory,
referring the reader to [1], [2] and [28] for a more
detailed  discussion. Observing Figure 1 the
normal-yield and subloading surface equations can be
formulated as follows:

f(6)=F(H), 6=6-u

1
J(6)=RF(H) W

where ¢ is the Cauchy stress, @ is the so called
back-stress, H the isotropic hardening variable.

6=06-0, 0=s—RS,
. . (2
6=06-5, S=s—0

The variables introduced in Eq. (2) are

respectively: the stress observed from the conjugate
back-stress; the conjugate-back stress itself (function of
the similarity ratio); the stress observed from the
similarity center and, in the end, the similarity center seen
from the back-stress.

According to Rudnick and Rice [29], and
subsequently remarked by Hashiguchi and Tsutsumi [1],
only the deviatoric part of the tangential stress rate
influences the inelastic deformation. This crucial
evidence, together with the assumption that the tangential
effect doesn’t affect the hardening behavior [28], allows
to split the computation of the inelastic normal and
tangential components of the inelastic stretch. The former
can be evaluated by means of the return mapping and the
latter by a simple formulation derived through some
mathematical passages. In the following paragraphs the
two terms will be presented separately, but the reader
should keep in mind that they both contribute additively
in the formation of the total deformation as stressed out
by Eq.(10). It has to be preliminary said that the strategy
presented in this paper has general validity but the set of
equations presented in Eq.(4), (5) and (18) hold just for
metals with a Von Mises yield surface.

The starting point for the return mapping
formulation is that to freeze all the plastic variables (i.e.
isotropic hardening variable, back-stress, yield surface)
between a generic n step to the subsequent n+/, imaging
that material behavior is perfectly linear elastic and
performing the so called #rial state. 1t should be



underlined that this hypothesis may not, and in general it
will not, be an admissible state for the material because in
most of the cases it will overestimate the stress level. A
first check is here necessary to verify if an irreversible
response has been activated or if the elastic assumption is
effectively the correct answer for the fulfilment of

equilibrium. This statement can be analytically
formulated by the following inequality:
f(cit:ilal)) < RnF(Hn), 85_” — O, G(trial) — G(ﬁnal)

n+l n+l
O (trial) ( final) (3)
#U,6,,, #06

n+l

f(6"“"y> R F(H,), &"

n+l n+l

If G(zrial)

. satisfy the second condition of Eq. (3) the
plastic unknowns must be updated through an internal
iterative procedure (Eq. (4)) inside the step, which starts
with the linearization of the consistency condition (Eq.
(1)) and leads to the computation of the k+1
proportionally factor (Eq. (5)) as a function of all the

internal variables expressed at the k sub-step.

Figure 1 - Extended subloading surface model.
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Using the additive decomposition of the strain it is
possible to correct the trial stress state to consider the
nonlinear behavior of the material:

(k+1) _ (k) plk+D) _ (K) . kN (R)
G, _6n+l+dcn+1 _611+1_E‘2’n+l Nn+1 (6)
At this point a new sub k-iteration can be

performed from Eq. (4) until the fulfilment of the
condition f("") = R*"F**" 'meaning that the stress has

n+l n+l n+l
finally reached the correct plastic surface (this can be
numerically translated by imposing a tolerance under
which the convergence can be considered satisfied, i.e.
residual function (f(c‘r(n’:")—R"‘*”F("“’ ) | FE™Y < Toll).

n+1 n+l

The set of equations presented so far are
responsible for the local convergence on a single
quadrature point but they cannot satisfied the global
equilibrium for all the body, which will be in general not
fulfilled.

The displacements (and consequently
deformations) must be corrected through a global
iterative procedure which solves once again the

system Kdu =dF , where dF

computed as the difference between external loads and
the assembly vector of the internal forces at each Gauss

is the residual vector

point. The de vector, derived from du, is used as an
input for a new local convergence using return mapping
algorithm and the whole procedure should end when local
and global equilibrium are satisfied.

Figure 2 represents the convergence of the stress on
the plastic surface for a general quadrature point, where
the linearization of the consistency condition can be seen
as the plane where each k-sub iteration converges.

(trial)
n+1

)

n+1

k)

Figure 2 - Schematic representation of the cutting plane
return mapping algorithm.
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2.2 Extended to include the tangential plasticity

Once estimated the normal component of the stress
rate, it is possible to compute the tangential one (Eq.
(7)-(8)) considering it as linearly related to the tangential
stretch (Eq.(9)):

. 1
6 =c——o0.1 7
3 (7
6 =06,+0,

6 =(NeN)& 8)

¢ =6
D = dd; ©)

where 4 (=>0) is a generic scalar function that will be
defined later.

The additive decomposition of the strain rate,
assumed valid in the Eq.(6), is enriched adding a third
component: elastic, plastic (toward the normal direction),
and tangential inelastic:

D=D‘+D’ +D' (10)
Eq. (10) can be rewritten as a function of the corotational
stress rate as follows:

tr(N )

D=E'c+ N+ Ao;

an

P

Through some mathematical passages [1] it is possible to
write the inverse relationship expressing the corotational
stress rate as a function of the strain rate. In the following,
focused on a metal plasticity modelling, some terms have
been neglected as a consequence of considering
plastically incompressibility of the material. Since metals
are invariant to any change of hydrostatic pressure, the
original formulation is further simplified to include just
one normal vector (i.e. Eq.(4)):

o= 1 __ENQ®EN N
(1+2GA) M, +trNEN
(12)
+@E®I+ZGAﬂM, D
3 M, +to'NEN '

At this point a specific form for the function A4 has
been chosen to separate the elastoplastic part from the
tangential one, in detail assuming:

(s
2G-2GT

it is possible to write:

(13)
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6= E_M_ (;: D (14)
M, +trNEN
of:T E_ EN®EN 1
M, +oNEN 3
(15)

__EN®N |
M, +tNEN 7

where T is a variable which depends on the stress state
(by means of the similarity ratio) and on two material

parameters (0< <& <1, »<0), in the same way as
presented in [1]:

T=¢ER (16)

Looking at the right side of Eq.(14) it is easy to see
that the first two addends represent the elastoplastic part
of the stress rate, thus all the terms in the square brackets
can be regarded as the deviatoric tangential stress rate
part. This contribute is then subtracted from the total
stress, obtained from Eq.(6), once local convergence in
return mapping is fulfilled

G =G(k) —E: /fi(kJrl)N(k)

n+l n+l n+1 n+l &: (17)

The problem to compute the stress in two separate
steps lays on the fact that, when the elastoplastic part
satisfies the consistency condition (Eq.(3)), a unique set
of values for the similarity center R and the size of the
yield surface F is possible. Therefore if the stress is
‘relaxed’, a deviation along a direction tangential to the
plastic potential at the current stress is performed,
bringing the point to lay outside the subloading surface
with loss of local equilibrium. Moreover this aspect is
enhanced whenever a large step simulation is carried out,
since the entity of the deviation is directly proportional to
the magnitude of the deviatoric tangential stress rate.

A simple solution adopted in this paper is the one
of performing a correction of the stress state by means of
a sort of ‘single step return mapping operation’. The
procedure can be better understood having a look at
Figure 3: once the trial stress has been brought back to

the correct plastic surface the tangential stress rate &, is

applied generating the point ¢

In order to satisfy the global equilibrium and the
consistency condition at the same time, it is necessary to

bring back the stress to the F,,, or R _,F , (in case R

is less than unity) surface by means of a vector directed
towards the center of the surface itself (i.e. the back stress
or the conjugate back stress) and which magnitude can be
easily computed using the first of Eq.(4). In formulas:
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Figure 3 — correction method for the tangential stress rate
contribute.

3. Concluding Remarks

The present work aimed to describe the inelastic
stretching of materials subjected to non-proportional
loading. Traditional elastoplastic models fail in predicting
the correct amount of irreversible deformation when
come to loading path with not-negligible stress rate
component tangential to the plastic surface because of a
purely associative formulation of the flow rule.

The system of equations formed by Egs.(4) —(6)
and (15) allows to compute the corotational stress rate in
a completely innovative way uncoupling the effect of
plastic strain directed along the normal to the yield
surface and the one along its tangent. This strategy is
based on the hypothesis that material hardening is not
influenced by a possible inelastic contribute generated by
tangential plasticity and thus the separation of the two
terms is possible.

Moreover the assumption of linear dependency
between the tangential stretch and the deviatoric
tangential corotational stress rate appears to be very
convenient for the implementations in F.E. simulations
compared to more complex theories.
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