1.3 Numerical Simulation of Marangoni Convection in Consideration of Free Surface Displacement (Part 6)

Hiroshi Kawamura

Science University of Tokyo
NUMERICAL SIMULATION OF MARANGONI
CONVECTION IN CONSIDERATION OF FREE SURFACE
DISPLACEMENT (PART 6)

Takanori Hashimoto*, Ichiro Ueno*, Hiroshi Kawamura* and Shinichi Yoda**
* Tokyo University of Science, 2641 Yamasaki, Noda-shi, Chiba 278-8510, Japan
** National Space Development Agency of Japan, 2-1-1 Sengen, Tsukuba City, 305-8505, Japan

Thermocapillary-driven convection in a half-zone liquid bridge has been extensively
examined. A large number of researches have been conducted concerning the transition of the
flow field. Physical mechanism of the transition, however, has not been fully understood. In
the present study, three-dimensional numerical simulations taking with and without dynamic
free surface deformation (DSD) into account are carried out to evaluate the effect of the
surface deformation upon the flow field. The surface shape is solved by considering the stress
balance on the free surface, and the calculation coordinate is reconstructed at every time step
with employing a boundary fitted coordinate. The test fluids are acetone (Pr=4.38) and 2cSt
silicone oil (Pr=28.11). The free surface deformation is determined primarily by the pressure
variation. For acetone, the effect of the DSD upon critical point and flow field is quite small in
the range of present numerical simulation. Mutual relation among the DSD, temperature,
pressure and axial velocity is obtained.

1 INTRODUCTION

One of the purposes of the space environment utilization is the processing of a new material,
because the buoyancy effect can be reduced in the space environment. Floating-zone method
is one of the well-known material processing methods under the micro-gravity. In this method,
however, the convective motion still occurs induced by the surface tension difference on the
free surface owing to the temperature gradient. This convection is called thermocapillary or
Marangoni convection, and has been widely investigated with a half-zone (HZ) model
corresponding to half part of floating-zone model. In the HZ model, a liquid bridge is
sustained between the coaxial cylindrical rods. Each rod is maintained at different
temperature, thus the liquid bridge is exposed by a temperature difference ΔT between the
both rods. When ΔT exceeds a critical value ΔTc, the induced flow in the HZ bridge of
medium and high Prandtl number fluid exhibits a transition from a two-dimensional steady
flow to a three-dimensional oscillatory one. The oscillatory flow has two patterns called as
'Standing wave' and 'Traveling wave'. These flows appear depending upon the temperature

67

This document is provided by JAXA.
difference. The structure in the liquid bridge is characterized further by the azimuthal wave number m. The flow field is divided azimuthally into $2 \times m$ sectors; the alternate sector, $m$ in total, consists of the same thermal-fluid structure.

The experiments for the thermocapillary convection have been widely conducted. Preisser et al. (1983)\textsuperscript{[1]} investigated the oscillatory flow to study the effect of several parameters such as the aspect ratio and Marangoni number. Velten et al. (1991)\textsuperscript{[2]} observed the periodic instability of thermocapillary convection in the cylindrical liquid bridge.

As for the numerical simulation, Kuhlmann (1993)\textsuperscript{[3]} and Wanschura et al. (1995)\textsuperscript{[4]} calculated the critical Reynolds number for the various non-dimensional numbers (Bi, Gr, Pr, A) using the linear stability analysis. Savino and Monti (1996)\textsuperscript{[5]} simulated the oscillatory flow numerically and compared it with their experiments. Shevtsova et al. (1998)\textsuperscript{[6]} studied the transition from two dimensional thermoconvective steady flow to a time-dependent flow considered for an axisymmetric liquid bridge of a high Prandtl number fluid (Pr = 105) with a static curved free surface.

It should be noted that most of the existing numerical simulations were conducted without considering the dynamic free surface deformation (DSD). After the onset of oscillation, however, the pressure field fluctuates violently because of the unsteady flow. Therefore the free surface is expected to dynamically deform due to these fluctuation. In fact, the free surface vibration in the liquid bridge has been observed in some terrestrial experiments. Kamotani et al. (2000)\textsuperscript{[7]} reported an experiment of the thermocapillary convection performed aboard the Spacelab in an open cylindrical container, and investigated the free surface movement. In addition, they analyzed the influence of surface deformation upon the critical condition in the half-zone configuration. Correlation between the criticality and the dynamic surface deformation, however, is not understood yet. An influence of surface vibration upon the flow field instability must be evaluated to understand the mechanism of the oscillatory flow. To the authors’ knowledge, no numerical works have been done on the thermocapillary convection in a liquid bridge with including the dynamic deformation of the surface.

Recently, Kuhlmann et al.\textsuperscript{[8]} have made a combined analytical and numerical study on the thermocapillary convection in a liquid bridge with including the DSD using the linear stability analysis. They analyzed the mutual relation between the flow field and the dynamic surface deformation in the most dangerous mode. The present study aims at understanding time-dependent thermal-fluid phenomena with dynamic free surface deformation in the half-zone liquid bridge by a direct nonlinear numerical simulation.
### NOMENCLATURES

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I'$</td>
<td>aspect ratio</td>
</tr>
<tr>
<td>$D$</td>
<td>diameter</td>
</tr>
<tr>
<td>$g$</td>
<td>gravity</td>
</tr>
<tr>
<td>$h$</td>
<td>heat transfer coefficient</td>
</tr>
<tr>
<td>$H$</td>
<td>height of the liquid bridge</td>
</tr>
<tr>
<td>$I$</td>
<td>unit matrix</td>
</tr>
<tr>
<td>$J$</td>
<td>Jacobian</td>
</tr>
<tr>
<td>$m$</td>
<td>azimuthal wave number</td>
</tr>
<tr>
<td>$n$</td>
<td>surface normal vector</td>
</tr>
<tr>
<td>$N$</td>
<td>normalizing dominator</td>
</tr>
<tr>
<td>$P$</td>
<td>pressure</td>
</tr>
<tr>
<td>$r$, $\theta$, $z$</td>
<td>coordinates</td>
</tr>
<tr>
<td>$\xi$, $\zeta$, $\eta$</td>
<td>coordinates in the computational domain</td>
</tr>
<tr>
<td>$R$, $R_b$</td>
<td>position of the free surface</td>
</tr>
<tr>
<td>$R_0$</td>
<td>radius of the disk</td>
</tr>
<tr>
<td>$R_l$, $z$</td>
<td>main radii of curvature</td>
</tr>
<tr>
<td>$S$</td>
<td>stress tensor</td>
</tr>
<tr>
<td>$t$</td>
<td>time</td>
</tr>
<tr>
<td>$T$</td>
<td>temperature</td>
</tr>
<tr>
<td>$T_0$</td>
<td>reference temperature</td>
</tr>
<tr>
<td>$U_0$</td>
<td>maximum velocity</td>
</tr>
<tr>
<td>$V_{x,y}$</td>
<td>velocities</td>
</tr>
<tr>
<td>$v_i$</td>
<td>compensated temporally velocity</td>
</tr>
<tr>
<td>$v_t$</td>
<td>temporally velocity</td>
</tr>
<tr>
<td>$V$</td>
<td>volume of the liquid bridge</td>
</tr>
<tr>
<td>$V_{\xi,\zeta}$</td>
<td>contravariant velocities</td>
</tr>
<tr>
<td>$V_{\xi,\zeta,t}$</td>
<td>temporally contravariant velocities</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>contact angle</td>
</tr>
<tr>
<td>$\beta$</td>
<td>thermal expansion coefficient</td>
</tr>
<tr>
<td>$\Delta T$</td>
<td>temperature difference between the disks</td>
</tr>
<tr>
<td>$\delta_s$</td>
<td>amount of free surface deformation</td>
</tr>
<tr>
<td>$\tau$</td>
<td>time in the computational domain</td>
</tr>
<tr>
<td>$\sigma$, $\sigma(T)$</td>
<td>surface tension</td>
</tr>
<tr>
<td>$\sigma_0$, $T_0$</td>
<td>reference surface tension</td>
</tr>
<tr>
<td>$\sigma_T$</td>
<td>thermal coefficient of surface tension</td>
</tr>
<tr>
<td>$\kappa$</td>
<td>thermal diffusivity</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>thermal conductivity</td>
</tr>
<tr>
<td>$\mu$</td>
<td>dynamic viscosity</td>
</tr>
</tbody>
</table>
3 NUMERICAL METHOD

The purpose of this study is to analyze the influence of the free surface deformation upon the thermocapillary flow. Therefore, a numerical method to capture the temporally varying surface motion is employed. The deformed surface is expressed using the boundary fitted coordinate (BFC).

To consider the thermocapillary convection in a liquid bridge, a configuration of the analysis is defined as shown in Fig. 1. The liquid bridge with volume $V_0$ is sustained by two rigid parallel disks of equal radii $r = R_0$ located at $z = 0$ and $H$. The temperature difference between these disks is defined by $\Delta T$.

![Figure 1: Numerical configuration](image)

3.1 Governing equations

The liquid is assumed to be an incompressible Newtonian fluid of kinematic viscosity $\nu$ and density $\rho$. In a cylindrical coordinate system, the continuity, the Navier-Stokes and the energy equations are given by

\[
\nabla \cdot \mathbf{u} = 0
\]

\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla P + \frac{Pr}{Ma} \nabla^2 \mathbf{u}
\]

\[
\frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla) T = \frac{1}{Ma} \nabla^2 T
\]

Variables are non-dimensionalized using scales shown in Table 1.
Table 1: Scales used for non-dimensionalization

<table>
<thead>
<tr>
<th>Variable</th>
<th>Scale</th>
<th>( H )</th>
<th>( H \rho / \sigma \Delta T )</th>
<th>( \sigma \Delta T / \rho \nu )</th>
<th>( \rho (\sigma \Delta T / \mu \nu)^2 )</th>
<th>( \Delta T )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( r, z )</td>
<td>( t )</td>
<td>( \nu = (\nu_r, \nu_\theta, \nu_z) )</td>
<td>( p )</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The non-dimensional numbers are defined by

\[ Re = \frac{U_0 H}{\nu} \]

\[ Pr = \frac{\nu}{\kappa} \]

\[ Ma = \frac{1}{\mu \kappa} \left| \frac{\partial \sigma}{\partial T} \right| \Delta T \cdot H \]

3. 2 Boundary fitted coordinate

The shape of the liquid bridge is deformed dynamically in this calculation. Therefore, the adequate coordinate system must be employed to calculate the flow field with the finite difference method. The boundary fitted coordinate method is applied to the governing equations in all directions. In the previous study, the computational domain was assumed to be cubic. The substantial error arises in the conversion from the cylinder in the physical domain to the cubic in the computational one. Thus, the present computational domain is modified to cylindrical coordinate. Equations (1)-(3) can be transformed from the physical domain to the computational domain by Jacobian matrix.

\[
\begin{bmatrix}
\frac{\partial}{\partial t} \\
\frac{\partial}{\partial r} \\
\frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial z}
\end{bmatrix}
= \begin{bmatrix}
1 & \xi_r & \xi_\theta & \xi_z & \eta_r \\
0 & \xi_r & \xi_\theta & \xi_z & \eta_r \\
0 & \xi_\theta & \xi_\theta & \xi_\theta & \eta_\theta \\
0 & \xi_z & \xi_z & \xi_z & \eta_z
\end{bmatrix}
\begin{bmatrix}
\frac{\partial}{\partial t} \\
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \zeta} \\
\frac{\partial}{\partial \eta}
\end{bmatrix}
\]

\[ (4) \]

\[
\begin{bmatrix}
\frac{\partial}{\partial t} \\
\frac{\partial}{\partial r} \\
\frac{\partial}{\partial \zeta} \\
\frac{\partial}{\partial \eta}
\end{bmatrix}
= \begin{bmatrix}
1 & r_\xi & \theta_\xi & z_\xi \\
0 & r_\xi & \theta_\xi & z_\xi \\
0 & r_\zeta & \theta_\zeta & z_\zeta \\
0 & r_\eta & \theta_\eta & z_\eta
\end{bmatrix}
\begin{bmatrix}
\frac{\partial}{\partial t} \\
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \zeta} \\
\frac{\partial}{\partial \eta}
\end{bmatrix}
\]

\[ (5) \]

Equation (5) is inversely transformed as follows,
\[
\begin{bmatrix}
\frac{\partial}{\partial t} \\
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta} \\
\frac{1}{r} \frac{\partial}{\partial \vartheta} \\
\frac{\partial}{\partial \varphi}
\end{bmatrix}
= \frac{1}{J}
\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial}{\partial t} \\
\frac{\partial}{\partial \xi} \\
\frac{\partial}{\partial \eta} \\
\frac{1}{r} \frac{\partial}{\partial \vartheta} \\
\frac{\partial}{\partial \varphi}
\end{bmatrix}
\]

(6)

where,

\[
A_{11} = \frac{r}{\xi} \left( r \varphi \xi z_\eta + r \varphi \eta z_\xi + r \varphi \xi z_\xi - r \varphi \xi z_\eta - r \varphi \xi z_\xi \right),
\]

\[
A_{12} = -\frac{r}{\xi} \left( r \varphi \xi z_\eta + r \varphi \eta z_\xi + r \varphi \xi z_\xi - r \varphi \xi z_\eta - r \varphi \xi z_\xi \right),
\]

\[
A_{13} = r \left( r \varphi \xi z_\eta + r \varphi \eta z_\xi + r \varphi \xi z_\xi - r \varphi \xi z_\eta - r \varphi \xi z_\xi \right),
\]

\[
A_{14} = -\frac{r}{\xi} \left( r \varphi \xi z_\eta + r \varphi \eta z_\xi + r \varphi \xi z_\xi - r \varphi \xi z_\eta - r \varphi \xi z_\xi \right),
\]

\[
A_{21} = 0, \quad A_{22} = \frac{r}{\xi} \left( \vartheta_\xi z_\eta - \vartheta_\eta z_\xi \right), \quad A_{23} = -r \left( \vartheta_\xi z_\eta - \vartheta_\eta z_\xi \right), \quad A_{24} = \frac{r}{\xi} \left( \vartheta_\xi z_\eta - \vartheta_\eta z_\xi \right),
\]

\[
A_{31} = 0, \quad A_{32} = -\frac{1}{\xi} \left( r \vartheta_\xi z_\eta - r \vartheta_\eta z_\xi \right), \quad A_{33} = \left( r \vartheta_\xi z_\eta - r \vartheta_\eta z_\xi \right), \quad A_{34} = -\frac{1}{\xi} \left( r \vartheta_\xi z_\eta - r \vartheta_\eta z_\xi \right),
\]

\[
A_{41} = 0, \quad A_{42} = \frac{r}{\xi} \left( \vartheta_\xi z_\eta - \vartheta_\eta z_\xi \right), \quad A_{43} = -r \left( \vartheta_\xi z_\eta - \vartheta_\eta z_\xi \right), \quad A_{44} = \frac{r}{\xi} \left( \vartheta_\xi z_\eta - \vartheta_\eta z_\xi \right).
\]

Each component can be related from Eqs. (4) and (6) as:

\[
J = \frac{r}{\xi} \left( r \vartheta_\xi z_\eta + r \vartheta_\eta z_\xi + r \vartheta_\xi z_\xi - r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right),
\]

\[
\xi_s = -\frac{1}{J \xi} \left( r \vartheta_\xi z_\eta + r \vartheta_\eta z_\xi + r \vartheta_\xi z_\xi - r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right),
\]

\[
\zeta_s = \frac{1}{J} \left( r \vartheta_\xi z_\eta + r \vartheta_\eta z_\xi + r \vartheta_\xi z_\xi - r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right),
\]

\[
\eta_s = -\frac{1}{J \xi} \left( r \vartheta_\xi z_\eta + r \vartheta_\eta z_\xi + r \vartheta_\xi z_\xi - r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right),
\]

\[
\xi_p = \frac{1}{J \xi} \left( \vartheta_\xi z_\eta - \vartheta_\xi z_\xi \right), \quad \zeta_p = -\frac{1}{r} \left( \vartheta_\xi z_\eta - \vartheta_\xi z_\xi \right), \quad \eta_p = \frac{1}{J \xi} \left( \vartheta_\xi z_\eta - \vartheta_\xi z_\xi \right),
\]

\[
\xi_\vartheta = -\frac{1}{J \xi} \left( r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right), \quad \zeta_\vartheta = \frac{1}{J} \left( r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right), \quad \eta_\vartheta = -\frac{1}{J \xi} \left( r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right),
\]

\[
\xi_\varphi = \frac{1}{J \xi} \left( r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right), \quad \zeta_\varphi = -\frac{1}{r} \left( r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right), \quad \eta_\varphi = \frac{1}{J \xi} \left( r \vartheta_\xi z_\eta - r \vartheta_\xi z_\xi \right).
\]
The continuity, the Navier-Stokes and the energy equations (Eqs. (1)-(3)) are transformed to the ones in the generalized coordinates.

[Continuity equation]

\[
\frac{1}{\xi} \frac{\partial}{\partial \xi} (J \xi V_\xi) + \frac{1}{\xi} \frac{\partial}{\partial \xi} (JV_\eta) + \frac{\partial}{\partial \eta} \left( J V_\eta \right) = 0
\]  

(7)

where

\[ V_\xi = \xi, v_\xi + \frac{1}{r} \xi \phi v_\phi + \xi \psi v_\psi, \quad V_\eta = \xi, v_\eta + \frac{1}{r} \xi \phi v_\phi + \xi \psi v_\psi, \quad V_\eta = \eta, v_\eta + \frac{1}{r} \eta \phi v_\phi + \eta \psi v_\psi. \]

These velocities are called as contravariant velocities.

[Navier-Stokes equation]

\[
\begin{aligned}
\frac{\partial \xi}{\partial t} + \xi \frac{\partial \xi}{\partial \xi} + \xi \frac{\partial \eta}{\partial \xi} + \frac{\partial \eta}{\partial \eta}
&= \left( \xi \frac{\partial P}{\partial \xi} + \xi \frac{\partial P}{\partial \xi} + \frac{\partial P}{\partial \eta} \right) \xi \\
&+ \frac{Pr}{Ma J} \left[ \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \xi, \xi, v_\xi \frac{\partial \eta}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \xi, \xi, v_\eta \frac{\partial \eta}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \xi, \eta, v_\xi \frac{\partial \eta}{\partial \eta} \right) \right. \\
&\quad + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \xi, \eta, v_\eta \frac{\partial \eta}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \xi, \eta, v_\xi \frac{\partial \eta}{\partial \eta} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \xi, \eta, v_\eta \frac{\partial \eta}{\partial \eta} \right) \] \\
&\quad + \frac{\partial}{\partial \eta} \left( J \eta \xi, \xi, v_\xi \frac{\partial \eta}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left( J \eta \xi, \xi, v_\eta \frac{\partial \eta}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left( J \eta \xi, \eta, v_\xi \frac{\partial \eta}{\partial \eta} \right) \\
&\quad \left. + \frac{\partial}{\partial \eta} \left( J \eta \xi, \eta, v_\eta \frac{\partial \eta}{\partial \eta} \right) + \frac{\partial}{\partial \eta} \left( J \eta \xi, \eta, v_\xi \frac{\partial \eta}{\partial \eta} \right) + \frac{\partial}{\partial \eta} \left( J \eta \xi, \eta, v_\eta \frac{\partial \eta}{\partial \eta} \right) \right]
\end{aligned}
\]
\begin{align}
+ \frac{\partial}{\partial n} \left( J \eta_x \xi_z \frac{\partial \nu}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left( J \eta_z \xi_x \frac{\partial \nu}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left( J \eta_x \eta_z \frac{\partial \nu}{\partial \xi} \right) \\
+ e \left( -J \frac{\nu_x}{r^2} - J \frac{2}{r^2} \left( \frac{1}{r} \xi_x \frac{\nu_y}{\xi} + \frac{1}{r} \xi_y \frac{\nu_x}{\xi} + \frac{1}{r} \eta_y \frac{\nu_x}{\eta} \right) \right) \\
+ e \left( -J \frac{\nu_y}{r^2} - J \frac{2}{r^2} \left( \frac{1}{r} \xi_y \frac{\nu_x}{\xi} + \frac{1}{r} \xi_x \frac{\nu_y}{\xi} + \frac{1}{r} \eta_x \frac{\nu_y}{\eta} \right) \right) \\
+ e \left( \frac{Gr}{Re^2} T \right)
\end{align}

where, \( \nu = (\nu_x, \nu_y, \nu_z) \).

[ Energy equation ]

\[
\frac{\partial T}{\partial t} + \xi \frac{\partial T}{\partial \xi} + \zeta \frac{\partial T}{\partial \zeta} + \eta \frac{\partial T}{\partial \eta} + \nu \frac{\partial T}{\partial \nu} + \kappa \frac{\partial T}{\partial \kappa} + \eta \frac{\partial T}{\partial \eta} + \frac{1}{J} \left[ \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_x T \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_y T \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_z T \right) \right]
\]

\[
= \frac{1}{Ma} J \left[ \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_x \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_y \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_z \frac{\partial T}{\partial \xi} \right) \right]
\]

\[
+ \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_x \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_y \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_z \frac{\partial T}{\partial \xi} \right) \right]
\]

\[
+ \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_x \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_y \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_z \frac{\partial T}{\partial \xi} \right) \right]
\]

\[
+ \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_x \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_y \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_z \frac{\partial T}{\partial \xi} \right) \right]
\]

\[
+ \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_x \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_y \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_z \frac{\partial T}{\partial \xi} \right) \right]
\]

\[
+ \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_x \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_y \frac{\partial T}{\partial \xi} \right) + \frac{1}{\xi} \frac{\partial}{\partial \xi} \left( J \xi \nu_z \frac{\partial T}{\partial \xi} \right) \right]
\]

\[
(9)
\]
In this analysis, fractional step method is utilized to solve these governing equations. Adams-Bashforth method is adapted for time advancement. The Crank-Nicholson scheme is applied only the circumferential constituent of the viscous terms in the Navier-Stokes and the energy equations in order to ensure a larger stability margin.

3.3 Boundary conditions

3.3.1 Boundary condition of the velocity

To derive the boundary condition of the velocity on the free surface, the balance between the shearing stress and the surface tension must be considered.

The relation between the shearing stress and the surface tension is shown in Fig. 2.

![Stress balance between shearing stress and surface tension](image)

**Figure 2: Stress balance between shearing stress and surface tension**

From Fig. 2 the equations of the balance between the shearing stress and the surface tension are described as

\[
\begin{align*}
\tau_{n,s} \cdot rd\theta ds &= \left( \sigma + \frac{\partial \sigma}{\partial s} \cdot ds - \sigma \right) \cdot rd\theta \\
\tau_{r,\theta} \cdot rd\theta ds &= \left( \sigma + \frac{1}{r} \frac{\partial \sigma}{\partial \theta} \cdot rd\theta - \sigma \right) \cdot rd\theta \\
\end{align*}
\]

(10).

Newton’s law of viscosity is expressed as follows.

\[
\begin{align*}
\tau_{n,s} &= \mu \left( \frac{\partial v_r}{\partial n} + \frac{\partial v_n}{\partial s} \right) \\
\tau_{r,\theta} &= \mu \left( \frac{1}{r} \frac{\partial v_r}{\partial \theta} + r \frac{\partial}{\partial r} \left( \frac{v_r}{r} \right) \right) \\
\end{align*}
\]

(11).

From Eqs. (10) and (11), equation (12) is derived.
\[
\begin{align*}
\mu &\left( \frac{\partial v_r}{\partial n} + \frac{\partial v_\theta}{\partial s} \right) = \frac{\partial \sigma}{\partial s} \\
\mu &\left( \frac{1}{r} \frac{\partial v_r}{\partial \theta} + r \frac{\partial}{\partial r} \left( \frac{v_\theta}{r} \right) \right) = \frac{1}{r} \frac{\partial \sigma}{\partial \theta}
\end{align*}
\]

(12).

If the velocity on the free surface in the normal direction is assumed to be zero, equation (12) can be shown as follows.

\[
\begin{align*}
\mu \frac{\partial v_r}{\partial n} &= \frac{\partial \sigma}{\partial s} \\
\mu \left( \frac{1}{r} \frac{\partial v_r}{\partial \theta} + r \frac{\partial}{\partial r} \left( \frac{v_\theta}{r} \right) \right) &= \frac{1}{r} \frac{\partial \sigma}{\partial \theta}
\end{align*}
\]

(13).

Equation (11) can be non-dimensionalized as following equations.

\[
\begin{align*}
\frac{\partial v_r}{\partial n} &= \frac{\partial \sigma}{\partial s} \\
\frac{1}{r} \frac{\partial v_r}{\partial \theta} + r \frac{\partial}{\partial r} \left( \frac{v_\theta}{r} \right) &= \frac{1}{r} \frac{\partial \sigma}{\partial \theta}
\end{align*}
\]

(14).

In the equation of the relation between normal and tangential directions, the tangential velocity \( v_\theta \) is divided into radius and axial directions (See Fig. 3).

\[
\begin{align*}
v_r &= v_r \cos \phi \\
v_\theta &= v_r \sin \phi
\end{align*}
\]

(15)

\[
\begin{align*}
v_r &= \frac{v_r}{\cos \phi} \\
v_\theta &= \frac{v_r}{\sin \phi}
\end{align*}
\]

(16)

\[
\begin{align*}
\frac{\partial v_r}{\partial n} &= \frac{\partial}{\partial n} \left( \frac{v_r}{\cos \phi} \right) \\
\frac{\partial v_\theta}{\partial n} &= -\frac{\partial}{\partial n} \left( \frac{v_\theta}{\sin \phi} \right)
\end{align*}
\]

(17)

\[
\begin{align*}
\frac{\partial}{\partial n} \left( \frac{v_r}{\cos \phi} \right) &= -\frac{\partial T}{\partial s} \\
\frac{\partial}{\partial n} \left( \frac{v_\theta}{\sin \phi} \right) &= -\frac{\partial T}{\partial s}
\end{align*}
\]

(18)

Figure 3: Velocity on the free surface

Generally the following relations are derived in the normal and tangential directions.
[ Normal Derivatives ]

\[
\begin{align*}
\frac{\partial \phi}{\partial \xi} &= \frac{1}{\sqrt{\alpha}} (\alpha \phi_\xi - \beta \phi_\eta) \\
\frac{\partial \phi}{\partial \eta} &= \frac{1}{\sqrt{\gamma}} (-\beta \phi_\eta + \gamma \phi_\xi)
\end{align*}
\]  

(19)

[ Tangential Derivatives ]

\[
\begin{align*}
\frac{\partial \phi}{\partial \xi} &= \frac{1}{\sqrt{\alpha}} \phi_\eta \\
\frac{\partial \phi}{\partial \eta} &= \frac{1}{\sqrt{\gamma}} \phi_\xi
\end{align*}
\]  

(20)

where, \( \alpha = r_\eta^2 + z_\eta^2 \), \( \beta = r_\eta r_\xi + z_\eta z_\xi \), \( \gamma = r_\xi^2 + z_\xi^2 \).

Using eq. (19), the equation of the stress balance in normal and tangential directions is obtained.

\[
\frac{1}{\sqrt{\alpha}} \left( \alpha \frac{\partial \nu_\xi}{\partial \xi} - \beta \frac{\partial \nu_\eta}{\partial \eta} \right) = -\sin \varphi \frac{1}{\sqrt{\alpha}} \frac{\partial T}{\partial \eta}
\]  

(21)

The axial velocity is derived from eq. (21). The radial velocity is derived from the relation of following equation.

\[
\nu_r = \frac{\cos \varphi}{\sin \varphi} \nu_\xi
\]  

(22)

On the other hand, the boundary condition of the circumferential velocity is defined by

\[
\frac{1}{r} \frac{\partial \nu_r}{\partial \theta} + r \frac{\partial}{\partial r} \left( \frac{\nu_r}{r} \right) = -\frac{1}{r} \frac{\partial T}{\partial \theta}
\]  

(23)

Equation (23) is transformed to the one in the computational domain by the Jacobian matrix as

\[
\frac{1}{r} \left( \xi_\theta \frac{\partial \nu_r}{\partial \xi} + \xi_\Phi \frac{\partial \nu_r}{\partial \eta} + \eta_\theta \frac{\partial \nu_r}{\partial \eta} \right) + r \left( \xi_\xi \frac{\partial}{\partial \xi} \left( \nu_r \frac{1}{r} \right) + \xi_\eta \frac{\partial}{\partial \eta} \left( \nu_r \frac{1}{r} \right) + \eta_\eta \frac{\partial}{\partial \eta} \left( \nu_r \frac{1}{r} \right) \right) = -\frac{1}{r} \left( \xi_\theta \frac{\partial T}{\partial \xi} + \xi_\Phi \frac{\partial T}{\partial \eta} + \eta_\theta \frac{\partial T}{\partial \eta} \right)
\]  

(24)

3.3.2 Boundary condition of the temperature

The condition of the heat transfer over the free surface is assumed to be adiabatic. Therefore the equation of the boundary condition of the temperature is

\[
\frac{\partial T}{\partial n} = 0
\]  

(25)
Equation (25) is transformed by equation (19) as

\[
\frac{\partial T}{\partial n} = \frac{1}{\sqrt{\alpha}} \left( \alpha \frac{\partial T}{\partial \xi} - \beta \frac{\partial T}{\partial \eta} \right) \tag{26}
\]

3.3.3 Treatment of the liquid center axis

In this analysis the governing equations are described in the cylindrical coordinate. Therefore the center of the cylinder (r = 0) cannot be solved directly by the present equation. This problem is solved by a method described below. The computational grid is fixed at the center.

The Navier-Stokes equation in the axial direction and the energy equation at the center are derived by azimuthal integration.

\[
r \frac{\partial v_z}{\partial t} + \frac{\partial}{\partial r} \left( rv_z v_r \right) + \frac{\partial}{\partial \theta} \left( rv_z v_\theta \right) + \frac{\partial}{\partial z} \left( rv_z v_z \right)
= -r \frac{\partial P}{\partial z} + \frac{Pr}{Ma} \left[ \frac{\partial}{\partial r} \left( \frac{rv_z}{r} \right) + \frac{\partial}{\partial \theta} \left( \frac{1}{r} \frac{\partial v_z}{\partial \theta} \right) + \frac{\partial}{\partial z} \left( \frac{rv_z}{r} \right) \right]
\]

\[
\Rightarrow \frac{\partial v_z}{\partial t} + \frac{\Delta \theta}{\pi \Delta r} \sum_{\theta=0}^{2\pi} (v_z, v_z) + \left[ v_z \right]_{0}^{\infty} = -\frac{\partial P}{\partial z} + \frac{Pr}{Ma} \left[ \frac{2\pi \Delta \theta \sum_{\theta=0}^{2\pi} \frac{\partial v_z}{\partial r}}{\pi \Delta r} \right] + \frac{1}{\Delta z} \left[ \frac{\partial v_z}{\partial z} \right]_{0}^{\infty} \tag{27}
\]

Energy equation

\[
r \frac{\partial T}{\partial t} + \frac{\partial}{\partial r} \left( rv_z T \right) + \frac{\partial}{\partial \theta} \left( rv_z T \right) + \frac{\partial}{\partial z} \left( rv_z T \right)
= \frac{1}{Ma} \left[ \frac{\partial}{\partial r} \left( r \frac{\partial T}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left( \frac{\partial T}{\partial \theta} \right) + \frac{\partial}{\partial z} \left( \frac{\partial T}{\partial z} \right) \right]
\]

\[
\Rightarrow r \frac{\partial T}{\partial t} + \frac{2\pi \Delta \theta}{\pi \Delta r} \sum_{\theta=0}^{2\pi} (v_z, T) + \left[ v_z \right]_{0}^{\infty} T_{\infty} = \frac{1}{Ma} \left[ \frac{2\pi \Delta \theta \sum_{\theta=0}^{2\pi} \frac{\partial T}{\partial r}}{\pi \Delta r} \right] + \frac{1}{\Delta z} \left[ \frac{\partial T}{\partial z} \right]_{0}^{\infty} \tag{28}
\]

As for the radius and circumference velocity at the center, the velocity is evaluated by summed value over the surrounding mesh points (See Fig.4).
After the summation, the velocities $V_x$, $V_y$ are divided into the radius and circumference components ($v_r$, $v_\theta$) as follows:

\[
\begin{align*}
    v_r &= \left[ V_x \cos \theta_{v_r} + V_y \cos \left( \frac{\pi}{2} - \theta_{v_r} \right) \right] \frac{1}{nj} \\
    v_\theta &= \left[ V_x \left( -\sin \theta_{v_\theta} \right) \cos + V_y \sin \left( \frac{\pi}{2} - \theta_{v_\theta} \right) \right] \frac{1}{nj}
\end{align*}
\]

Here, $nj$ shows the division number of the circumference direction. This treatment at the center axis is also applied to the energy equation.

3.4 Free surface deformation

The stress balance over the free surface must be considered to compute the free surface shape. Along the interface between two immiscible fluids (1) and (2), the forces over the surface must be balanced. If the surface is plane and the surface tension is constant, the stress balance over the surface leads

\[
S^{(1)} \cdot n = S^{(2)} \cdot n
\]

where $S$ is the stress tensor and $n$ is the unit normal vector directed out of liquid (1) into the ambient fluid (2). The each component in the stress tensor is described as

\[
S_{ij} = -P \delta_{i,j} + \mu e_{i,j}
\]

where $e_{i,j}$ can be expressed in the cylindrical coordinate as

\[
\begin{align*}
    e_{rr} &= \frac{\partial v_r}{\partial r}, \quad e_{\theta \theta} = \frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_r}{r}, \quad e_{z} = \frac{\partial v_z}{\partial z}, \\
    e_{r \theta} &= \frac{1}{2} \left( r \frac{\partial}{\partial r} \left( \frac{v_\theta}{r} \right) + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} \right), \quad e_{\theta z} = \frac{1}{2} \left( \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z} \right), \quad e_{z \theta} = \frac{1}{2} \left( \frac{\partial v_z}{\partial z} + \frac{\partial v_\theta}{\partial r} \right)
\end{align*}
\]
On the other hand, if the free surface has curvature and the surface tension varies along the interface, the equation of the stress balance becomes \[^8\]

\[
S^{(1)} \cdot n + \sigma (\nabla \cdot n)n - (I - nn) \cdot \nabla \sigma = S^{(2)} \cdot n
\] (34)

where \(I\) is the identity matrix. The element \(\sigma (\nabla \cdot n)\) in the second term in L. H. S. is so-called Laplace pressure. The mean curvatures of the interface,

\[
\nabla \cdot n = \frac{1}{R_1} + \frac{1}{R_2}
\] (35)

can be expressed as the sum of the inverse principle radii of curvatures \(R_1\) and \(R_2\). The mean curvatures of the interface can be described with Cartesian coordinate system as follows:

\[
\nabla \cdot n = \frac{-1}{R^2 N^2} \left[ R \frac{\partial^2 R}{\partial z^2} \left\{ R^2 + \left( \frac{\partial R}{\partial \theta} \right)^2 \right\} 
+ 2 \frac{\partial R}{\partial z} \frac{\partial R}{\partial \theta} \left( \frac{\partial R}{\partial z} \frac{\partial R}{\partial \theta} - R \frac{\partial^2 R}{\partial z \partial \theta} \right) 
- \left\{ 1 + \left( \frac{\partial R}{\partial z} \right)^2 \right\} \left\{ R^2 + 2 \left( \frac{\partial R}{\partial \theta} \right)^2 - R \frac{\partial^2 R}{\partial \theta^2} \right\} \right]
\] (36).

where

\[
N = \left[ 1 + \left( \frac{\partial R}{\partial z} \right)^2 + \frac{1}{R^2} \left( \frac{\partial R}{\partial \theta} \right)^2 \right]^{1/2}
\]

The second term in the left hand side of equation (36) indicates the surface force acting tangentially originated from the surface tension \(\sigma\). The operator \(I \cdot nn\) represents the orthogonal projection of a vector onto the tangent plane defined by \(n\).

Equation (34) can be non-dimensionalized using the scale as Table 1.

\[
S^{(1)} \cdot n + \left( \frac{1}{Ca} - T \right)(\nabla \cdot n)n - (I - nn) \cdot \nabla T = S^{(2)} \cdot n
\] (37).

Here, the dimensionless parameter \(Ca\) is called as the Capillary number defined as

\[
Ca = \frac{\sigma_r \Delta T}{\sigma_0}
\] (38).

From these equations, the equation of the stress balance is led in the three directions. Since the two directions of the curvature exist in the three dimension, the two tri-diagonal matrices must be considered for axial and circumferential directions. The tri-diagonal equations are indicated below.
\[ \frac{\partial^2 R}{\partial z^2} = \frac{-R^3 N^3}{R^2 + (\partial R / \partial \theta)^2} \left( \frac{1}{1/Ca - T} \right) \left[ \text{Re} \left( (P^{(1)} - P^{(2)}) - \frac{Bo}{Ca} (H - z) - \frac{\partial v_r}{\partial r} \right) \right. \\
\left. \quad - \frac{1}{2} \left( r \frac{\partial}{\partial r} \left( \frac{v_r}{r} \right) + 1 \frac{\partial v_r}{\partial \theta} \right) n_r - \frac{1}{2} \left( \frac{\partial v_r}{\partial z} + \frac{\partial v_r}{\partial r} \right) n_r + \frac{1}{2} \frac{\partial T}{\partial r} + n_r \frac{1}{2} \frac{\partial T}{\partial z} \right] \\
\quad + \frac{1}{R \left( R^2 + (\partial R / \partial \theta)^2 \right)} \left[ -2 \frac{\partial R}{\partial z} \frac{\partial R}{\partial \theta} \left( \frac{\partial R}{\partial \theta} - R \frac{\partial^2 R}{\partial z^2} \right) \right] \\
\left. \quad + \left\{ 1 + \left( \frac{\partial R}{\partial z} \right)^2 \right\} \left\{ R^2 + 2 \left( \frac{\partial R}{\partial \theta} \right)^2 - R \frac{\partial^2 R}{\partial \theta^2} \right\} \right\} \\
(39) \]

\[ \frac{\partial^2 R}{\partial \theta^2} = \frac{-R^3 N^3}{R^2 + (\partial R / \partial z)^2} \left( \frac{1}{1/Ca - T} \right) \left[ \text{Re} \left( (P^{(1)} - P^{(2)}) - \frac{Bo}{Ca} (H - z) - \frac{\partial v_r}{\partial r} \right) \right. \\
\left. \quad - \frac{1}{2} \left( r \frac{\partial}{\partial r} \left( \frac{v_r}{r} \right) + 1 \frac{\partial v_r}{\partial \theta} \right) n_r - \frac{1}{2} \left( \frac{\partial v_r}{\partial z} + \frac{\partial v_r}{\partial r} \right) n_r + \frac{1}{2} \frac{\partial T}{\partial r} + n_r \frac{1}{2} \frac{\partial T}{\partial z} \right] \\
\quad + \frac{1}{R \left( R^2 + (\partial R / \partial \theta)^2 \right)} \left[ -R \frac{\partial^2 R}{\partial \theta^2} \left( R^2 + \left( \frac{\partial R}{\partial \theta} \right)^2 \right) \right] \\
\quad - 2 \frac{\partial R}{\partial z} \frac{\partial R}{\partial \theta} \left( \frac{\partial R}{\partial \theta} - R \frac{\partial^2 R}{\partial z \partial \theta} \right) \\
\left. \quad + 2 \left( \frac{\partial R}{\partial \theta} \right)^2 + R \right\} \\
(40) \]

In addition to these tri-diagonal equations, the constant volume equation is solved to maintain the volume of the liquid bridge constant.

\[ \int_0^\theta \int_0^z \frac{1}{2} R^2 d\theta dz = V \]

\[ (41) \]

The position of the free surface \( R \) can be obtained by using Tri-Diagonal Matrix Algorithm (TDMA) in the axial and circumferential directions.\[10\]
4 RESULTS

4.1 Medium Pr fluid

We perform the simulation with \( \text{Pr} = 4.38 \) (acetone), aspect ratio \( \Gamma = H/R = 1.0 \) and volume ratio = 1.0 under the zero gravity. In all cases, the calculation grid points of \( (40 \times 32 \times 40) \) are employed. Mesh size are unequally distributed in \( r \) and \( z \) direction. All results described below are obtained by applying a finer time step than that in the last year's report. We calculate three cases. In the case 1, the computation without DSD is performed, while the case 2 is taking the DSD into account. At last in the case 3, we calculate with using increased Ca to investigate the effect of larger free surface deformation. We evaluate the effects of the DSD upon the flow field and critical condition by comparing these cases. In addition, the mutual relationship among the DSD, temperature, pressure and axial velocity is investigated.

4.1.1 Without dynamic free surface deformation

The calculations without dynamic free surface deformation are performed for \( \text{Re} = 900,1,030, \) and \( 1,300 \) as the case 1. Under the zero gravity, the liquid bridge shape is cylindrical. Figure 5 shows the temperature and velocity distributions. For \( \text{Re} = 900 \) less than the critical value, the flow becomes axisymmetric steady flow (Fig. 5(a)). Increasing \( \text{Re} up to 1,300 \) the flow field exhibits the standing-wave oscillation first (Fig. 5(b)), and then changes into the traveling-wave one (Fig. 5(c)). The azimuthal wave number \( m \) is mainly determined by the aspect ratio. The relation is indicated as \( m \times \Gamma \approx 2.2 \). The mode number of oscillation is \( m = 2 \) in accordance with the structure obtained by the linear stability analysis (LSA). \([11,12]\)

![Figure 5: Temperature and velocity distributions in axisymmetric steady flow in \( r \cdot z \) place (a), Re = 900, standing wave (b) and traveling wave (c), Re = 1,300 without DSD in \( r \cdot \theta \) place at mid-height](image-url)
Figure 6 shows the azimuthal velocity variation on the free surface at mid-height of the liquid bridge. In the case of $Re = 900$ the azimuthal velocity decreases exponentially, but in the other cases it increases. From this growth rate, we can estimate the critical Reynolds number $Re_c$ (Fig. 6(b)) and compared with the result obtained by LSA for the code validation.

The present calculation gives $Re_c = 980$. This results is in good agreement with the LSA prediction, $Re = 1,013$.\[4\]

![Figure 6: Azimuthal velocity variations (a) and growth rate (b) for $Re = 900\sim1,300$ without DSD](image)

4.1.2 With dynamic free surface deformation

The calculations considering the DSD, as case 2, are performed under the same conditions with the case 1. The Capillary number in the present calculation is assumed to be 0.0027, which corresponds to that of acetone at $Re = 1,300$. Figure 7 shows the temperature and velocity distributions in axisymmetric steady flow for $Re = 900$. The free surface shape is shown in Fig. 8. The DSD is quite small. For $Re = 1,300$ the flow exhibits a transition to the standing wave oscillation first, and changes into traveling wave one like the case 1 ($m=2$).

The surface deformation is shown in Figure 9. The deformation with the largest amplitude takes place at mid-height of the bridge. The maximum amplitude is about 0.033 $\mu$ m for $R = 2.5$mm. Kawaji et al.\[13\] found in their experiment that the DSD was too small to be measured, which must be of order 0.1 $\mu$ m or less.

Figure 10 shows the azimuthal velocity variations. The critical Reynolds number is estimated to be $Re_c = 980$, which coincides well with the one calculated without the DSD (case 1). This result also agrees with the one by LSA considering the DSD, $Re_c = 951$\[8\]. It is noted that no significant effect of the DSD can be found on the critical condition for the onset of oscillatory flow in spite of the difference of the velocity distributions.
Figure 7: Temperature and velocity distribution for Re = 900 with DSD

Figure 8: Free surface shape for Re = 900 with DSD

Figure 9: Free surface variation for Re = 1,300

Figure 10: Azimuthal velocity variation for Re = 900~1,300 with DSD

Figure 11 (a): DSD, (b): surface temperature and (c): axial velocity on the free surface variations of one cycle of traveling wave oscillation.
The capillary number, \( Ca = \frac{\sigma T \Delta T}{\rho \phi} \), is an important non-dimensional parameter for the DSD. \( Ca = 0 \) means that the free surface is not deformed dynamically. In order to evaluate the effect of the DSD, we simulate the flow field with a different \( Ca \) as the case 3. Here we employ \( Ca \) 10 times larger than that in the case 2. Figure 12 shows the free surface shape in the steady flow for \( Re = 900 \). The DSD in this case is about 10 times larger than the one with normal \( Ca \), which means the DSD is proportional to \( Ca \). The \( Re_c \) estimated by the azimuthal velocity growth rate is \( Re_c = 1,000 \) (see Fig. 13) which is a little larger than the case 2 with normal \( Ca \).

It can be considered that the flow is slightly stabilized by the DSD. Here, in the Table 2 the \( Re_c \) of three cases are listed.

Table 2: Critical Reynolds numbers of three cases

<table>
<thead>
<tr>
<th>Case 1 (without DSD)</th>
<th>Case 2 (with DSD)</th>
<th>Case 3 (( Ca_0 \times 10 ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>LSA (^4)</td>
<td>Present</td>
</tr>
<tr>
<td>( Re_c )</td>
<td>980</td>
<td>1,013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>980</td>
</tr>
</tbody>
</table>

Time series of surface deformations and temperature variations for \( Re = 1,300 \) in both cases of 2 and 3 are shown in Fig. 14. The onset of the oscillation of the temperature with larger \( Ca \) delays in comparison with the case using the normal \( Ca \) because of increased critical point.

In qualitatively, however, almost no differences can be seen. There is no striking influence of the DSD on the criticality and flow field in the present conditions.

Figure 12: Free surface shape for \( Re = 900 \) (black line: \( Ca_0 = 2.7 \times 10^3 \), gray line: \( Ca = Ca_0 \times 10 \))

Figure 13: Azimuthal velocity variation (black line: \( Ca_0 = 2.7 \times 10^3 \), gray line: \( Ca = 10 \times Ca_0 \))
(a) Displacement of free surface and temperature variations near the hot corner (about $z = 1/60$ from the hot corner)

(b) Displacement of free surface and temperature variations at mid-height ($z = 1/2H$)

Figure 14: Surface deformation and temperature variations for $Re = 1,300$ (black line: $Ca = Ca_0 = 2.7 \times 10^3$, gray line: $Ca = Ca_0 \times 10$)

Here, we compare the thermal and flow fields with and without DSD. In 2-dimensional steady flow ($Re = 900$), it is hard to find any differences between both cases from temperature and velocity distributions (Fig. 5(a), Fig. 7). The velocity and the temperature on the free surface in both cases are shown in Fig. 15. The critical conditions of both cases almost coincide. For $Re = 1,300$, the surface velocity and temperature variations on the free surface at mid-height are shown in Fig. 16. Although the both cases indicate the same critical condition, the growth of the thermal field in the case considering DSD takes longer time than the case without DSD, and thus the onset of the oscillation delays.
Figure 15: Absolute velocity (a) and temperature (b) on the free surface for Re = 900.

Figure 16: Axial velocity (a) and temperature (b) variations on the free surface at mid-height of liquid bridge for Re = 1,300 with and without DSD.

Figure 17 shows the mutual relationship among the free surface deformation, temperature and pressure variations. Each variation is the deviation from its mean values. Here, the fluctuation of the free surface displacement from the initial position is magnified 10^4 times because the DSD is quite small. From Figs.17 (a) and (b), it can be found that the low and high temperature regions overlap with the low and high pressure ones, respectively. The same relation also exists between the DSD and the pressure. The free surface is deformed asymmetrically due to the azimuthal rotation in the traveling wave state. That is, the liquid bridge is slightly twisted, and rotates with its shape unchanged. Figure 17(c) shows the snapshot at which low temperature fluid arrives at the free surface near the hot corner.

The fluid near the free surface is then accelerated downward by the Marangoni force, which is enhanced owing to the arrived low-temperature fluid. As the result, a low pressure region is induced near the upper disk (see Fig. 17(d)). As the fluid near the upper disk flows downward, the low pressure region also moves down. Consequently the surface becomes concave due to the low pressure in accordance with the stress balance (see Fig. 17 (e)).
Figure 17: Snapshot of fluctuations of the temperature and pressure. Positive and negative temperature fluctuations are illustrated by purple and blue, respectively. As for pressure, red and yellow, respectively. Frames (a) and (b) represent bird-eye view of those fluctuations: Frames (c)-(e) present the scenario of the surface deformation at the hot corner.

This relation near the hot corner can be indicated from Fig. 18. Figure 18 shows the phase correlation among several quantities at the free surface taken at near the upper and lower disks (about 1/10$H$ from each disks), (a) and (c), respectively, and at mid-height ($z = 1/2H$) (b). The variables shown in the figure are the dynamic free surface deformation, the temperature, and the absolute axial velocity in the traveling-wave state. These figures show one cycle of oscillation in the traveling wave state. A phase lag of about $\pi/2$ exists between the temperature difference and the surface deformation near the upper disk. Near the lower disk, on the other hand, the phase difference against the surface velocity and the temperature of the free surface displacement is shifted by $\pi$ or slightly larger than $\pi$. As for the surface deformation, one can conclude that it is mostly determined by the pressure at any axial positions. The non-sinusoidal curves indicate the non-linear character of the oscillation at the computed Reynolds number.
Figure 18: Phase relationship among the surface deformation, pressure, temperature difference and absolute axial velocity in the traveling wave oscillation for Re=1,300.

Figure 19(a) shows the fluctuation of the temperature and the azimuthal component of the velocity over the free surface in the $\theta$-$z$ plane for the traveling wave state, where the wave is advancing in the negative direction of $\theta$. The azimuthal velocity vectors are essentially directed towards the coldest zone. The corresponding radial flow causes the high and low pressure regions (see Fig. 19(b)) and thus results in a surface bulging and receding (Fig. 19(c)).
The concave and convex regions are inclined noticeably against the vertical axis (Fig. 19(c)). The hot temperature region seems to be almost symmetric, while the cold region is distorted near the lower disk (Fig. 19(a)). This distortion causes the inclined pressure distribution and thus the tilted surface deformations. The present relation between the surface deformation and temperature agrees well with that obtained by Kuhlmann et al.\textsuperscript{[8]} using the linear stability analysis.

Almost the entire free surface, the interface recedes at the low temperature region by the influence of the induced high pressure due to the azimuthal Marangoni force.

Figure 19: The fluctuations of the (a) temperature, (b) pressure, (c) surface deformation and the azimuthal velocity over the free surface in the traveling wave in $\theta - z$ plane for $Re = 1,300$
4.2 High Pr fluid

Calculation of high Pr fluid needs finer grids in order to resolve the thermal fluid flow with quite thin boundary layer. This means that a large computational time is required, which could be one of the reasons why there exists few work concerning high Pr fluid. We perform the simulation with 2cSt silicone oil (Pr = 28.11), aspect ratio $I' = 1.0$ and volume ratio $I' = 1.0$ under the zero gravity. The calculation grid points are increased up to $(r \times \theta \times z) = (56 \times 32 \times 70)$.

4.2.1 Without dynamic free surface deformation

With uniform-sized coarse mesh, mode number which appears in the bridge is $m = 1$ in spite of the $I' = 1.0$ (the temperature distribution is shown in Fig. 20). Figure 21 shows the temperature distribution on the free surface and at neighboring three grid points in the case of $Ma = 20,000$. From this temperature distribution, it can be seen that the large temperature gradients for $r$ and $z$ directions exist near the both disks. So, the appearance of different mode number is probably due to the insufficiency of the mesh size. Therefore we use the non-uniform mesh for $r$ and $z$ directions: finer grids are applied in the vicinity of the free surface and in the vicinity of both rods. Widths of the calculation grids $(dr, dz)$ are noted in the Table 3.

Using finer grids, the oscillation of $m = 2$ is exhibited. The temperature distribution is shown in Fig. 22. The flow field exhibits the standing-wave oscillation first (Fig. 22(b)), and then changes into the traveling-wave one (Fig. 22(c)) at a constant $Ma = 40,000$, which is the same as the case of acetone. Following results are obtained by using this non-uniform calculation grid (case 4).

Figure 23 shows the azimuthal velocity variation. The estimated critical Marangoni number is $Ma_c \approx 32,500$. In the experiment, the $Ma_c$ is less than 20,000$^{[14]}$, which is smaller compared with the $Ma_c$ obtained by the present calculation.

<table>
<thead>
<tr>
<th>Table 3: Widths of the grids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>$dr$ (r-direction)</td>
</tr>
<tr>
<td>$dz$ (z-direction)</td>
</tr>
</tbody>
</table>

Figure 20: Temperature and velocity distributions for $Ma = 35,000$ without DSD in $r \cdot \theta$ plane at mid-height.
Figure 21: Temperature distribution on the free surface at neighboring three grid points for \( \text{Ma} = 20,000 \): (a) Using uniform grid, (b) Using non-uniform grid

Figure 22: Temperature and velocity distributions in axisymmetric steady flow in \( r \cdot z \) plane (a) for \( \text{Ma} = 20,000 \), standing wave (b) and traveling wave (c) for \( \text{Ma} = 40,000 \) without DSD in \( r \cdot \theta \) plane at mid-height

Figure 23: (a) Azimuthal velocity variation and (b) growth rate without DSD for \( \text{Ma} = 25,000 \sim 40,000 \)
Figure 24 shows the azimuthal velocity and the temperature variations at mid-height for $Ma = 40,000$. The black line indicates the value at $\theta = 1/4 \pi$, which corresponds to the node point of the temperature and anti-node point of the azimuthal velocity in the standing wave oscillation. On the other hand, the gray line indicates the value at $\theta = 0$, the anti-node point of the temperature and node point of the azimuthal velocity. From this figure, the flow exhibits the standing wave flow at the early stage of the oscillation. But the temperature and the azimuthal velocity of the node point is not stable and keeps increasing gradually. After all, the amplitudes of black and gray lines coincide, and the flow exhibits the traveling wave oscillation. Therefore it can be said that the standing wave oscillation in the present condition is not fully stable and is the transition state for the traveling one.

![Graphs showing azimuthal velocity and temperature variations](image)

**Figure 24**: (a) Azimuthal velocity and (b) temperature variations at mid-height for $Ma = 40,000$ (black: $\theta = 1/4 \pi$, gray: $\theta = 0$)

Figure 25 shows the fluctuations of the temperature, the pressure and the azimuthal component of the velocity over the free surface in $\theta \cdot z$ plane for the traveling wave state, where the wave is advancing in the negative direction of $\theta$. Like the cases 1 and 2, the azimuthal velocity vectors are mostly directed towards the coldest zone. The fluctuation of the temperature indicates, on the other hand, meandering distribution at $z \approx 1/4 H$, which is different from the case of acetone. The fluctuation of the pressure also indicates the meandering distribution.
4.4.2 With dynamic free surface deformation

The calculation with DSD as the case 5 is performed for $Ma = 20,000 \sim 25,000$. The capillary number is assumed to be 0.068, which corresponds to the one for 2cSt silicone oil at $Ma = 25,000$. The calculation is started with the cylindrical shape because of the zero gravity. Figure 26 shows the temperature and the velocity distributions in the axisymmetric steady flow for $Ma = 20,000$. The surface displacement is shown in Fig. 27. The maximum free surface displacement is about $0.38 \mu m$ for $R = 2.5 mm$.

Figure 28 shows the azimuthal velocity variation for $Ma = 20,000$ and 25,000. In the present results, the calculations are carried out for two different $Ma$. Therefore, it is rather hard to estimate $Ma_c$. The growth of the azimuthal velocity between the case 4 and 5 almost coincide for $Ma = 20,000$. For $Ma = 25,000$, the growth rate of the azimuthal velocity with DSD is little larger than the one without DSD. Therefore, it can be estimated that the $Ma_c$ with DSD is less than $Ma = 32,500$.

The velocity and the temperature distributions on the free surface with and without DSD for $Ma = 20,000$ are shown in Fig. 29. Comparison between the case 4 and case 5 indicates that both the velocity and the temperature distributions show no significant differences.
Figure 26: Temperature and velocity distributions for $Ma = 20,000$ in $r \cdot z$ plane.

Figure 27: Free surface shape for $Ma = 20,000$ with DSD.

Figure 28: Azimuthal velocity variation for $Ma = 20,000$ and $25,000$ (black: with DSD, gray: without DSD).

Figure 29: Absolute velocity (a) and temperature (b) on the free surface for $Ma = 20,000$. 
The surface deformation in the oscillatory flow is not obtained in present calculations because of the shortage of the calculation time. From the fluctuation of the temperature and pressure over the free surface of the case 4 (Fig. 25) it can be considered that the surface deformation also indicates meandering distribution.

5 CONCLUSIONS

5.1 Medium Pr fluid acetone (Pr = 4.38)

(1) The thermocapillary convection with dynamic free surface deformation is calculated successfully.

(2) The obtained critical Reynolds number $Re_c = 980$ is in good agreement with the results of the linear stability analysis.

(3) Effect of the DSD upon the $Re_c$ and the flow field is not seen clearly in the range of present numerical simulation.

(4) Mutual relation among the DSD, the temperature, the pressure and the axial velocity is obtained.

(5) Increasing the capillary number ($Ca = 10 \times Ca_0$), the $Re_c$ estimated 1,000 was little higher than normal condition, but we found almost no qualitative differences in the flow field.

5.2 High Pr fluid 2cSt silicone oil (Pr = 28.11)

(1) Using finer grids, the oscillation of $m = 2$ is obtained in the case without DSD.

(2) The critical Marangoni number in the case without DSD is obtained. The $Ma_e$ is higher than the one obtained by the experiment.

(3) The fluctuation of the temperature and the pressure over the free surface indicate meandering distribution, which is different from the case of the medium Pr fluid acetone.

(4) The $Ma_e$ in the case with DSD is estimated smaller than the one without DSD.

(5) In the axisymmetric steady flow, there are no significant difference between the cases with and without DSD from the temperature and the velocity distributions on the free surface.

96
6 REFERENCES


