一報告— Report

第 54-55 次日本南極地域観測隊(JARE-54 & -55)における アイスフェンスを用いた氷海内海洋観測

高橋邦夫^{1,2*}·高村友海¹·小達恒夫^{1,2}

Report on a modified ice-fence for oceanographic observations under heavy sea-ice conditions during JARE-54 and JARE-55

Kunio T. Takahashi^{1,2*}, Tomomi R. Takamura¹ and Tsuneo Odate^{1,2}

(2014年4月8日受付; 2014年6月2日受理)

Abstract: The marine biological monitoring program in the sea-ice area off Syowa Station was started by the 52nd Japanese Antarctic Research Expedition. The use of an "ice-fence" protected observation equipment (e.g., plankton nets and CTDs) from damage due to sea-ice. However, heavy sea-ice conditions have occurred frequently off Syowa Station in recent years. Therefore, we modified the ice-fence (diameter: 1000 mm, height: 1200 mm, stainless steel) to enable observations under heavy sea-ice conditions. This report describes the results of field tests of the modified ice-fence performed during the 54th and 55th Japanese Antarctic Research Expeditions.

要旨: 第52次日本南極地域観測隊より開始した氷海内における海洋生態系モ ニタリング観測において、観測機器の破損やプランクトン試料へのダメージを抑 えるために、測器を海氷からガードする"アイスフェンス"を用いている.これ まで一定の成果を挙げてきてはいるが、近年の昭和基地周辺における厳しい氷状 においても観測を可能とするために、アイスフェンスの改良を継続した.本報告 では第54次隊および第55次隊において実施したアイスフェンスの改良の紹介と、 実際の現場における観測の概要について報告する.

1. はじめに

日本南極地域観測隊(Japanese Antarctic Research Expedition: JARE) では沿岸定着氷の奥深 くまで砕氷航行できる「しらせ」の能力を活かし, 観測空白域であった昭和基地沖, リュツォ・ ホルム湾の大陸棚海域での氷海内海洋生態系モニタリング観測を第52次隊(JARE-52) よ り開始した. これまで海氷の存在により海洋測器を用いた調査が困難であった海氷域での海

南極資料, Vol. 58, No. 3, 393-403, 2014 Nankyoku Shiryô (Antarctic Record), Vol. 58, No. 3, 393-403, 2014 © 2014 National Institute of Polar Research

¹ 情報・システム研究機構国立極地研究所. National Institute of Polar Research, Research Organization of Information and Systems, Midori-cho 10-3, Tachikawa, Tokyo 190-8518.

² 総合研究大学院大学複合科学研究科極域科学専攻. Department of Polar Science, School of Multidisciplinary Sciences, SOKENDAI (The Graduate University for Advanced Studies), Midori-cho 10-3, Tachikawa, Tokyo 190-8518.

^{*} Corresponding author. E-mail: takahashi.kunio@nipr.ac.jp

高橋邦夫・高村友海・小達恒夫

図 1 JARE-52 と 53 で用いた "アイスフェンス" (高橋ほか, 2012; 図 4). Fig. 1. "Ice-fence" used during the JARE-52 and JARE-53 cruises (from Takahashi et al. 2012).

洋観測は、海氷による機器の損傷を防ぎ、脆弱な海洋生物(主にプランクトン)にダメージ を与えることなくネット採集するためのアイスフェンス(図1)を用いることで、海氷の影 響を取り除くことに成功した(高橋ほか, 2012). 実施観測項目は CTD (Conductivity-Temperature-Depth profiler) (SBE 19plus, Sea-Bird Electronics, Inc., USA) と自動採水器 (SBE 55 ECO sampler, Sea-Bird Electronics, Inc., USA) による海洋環境観測,および閉鎖式プランク トンネットを用いた動物性のプランクトン採集であり、現場の氷状はさまざまではあったが. これまでに JARE-52 で 3 回, 第 53 次隊 (JARE-53) で 2 回の合計 5 回, アイスフェンスを 用いた氷海内観測に成功しており、取得データや採集標本に異常は見られていない(高橋ほ か, 2012; 図8を参照). しかしながら, JARE-53の定着氷内においては,「しらせ」が昭和 基地接岸を断念する程に氷状が厳しく、アイスフェンスの設置が不可能であり、観測の実施 を断念した海域が存在した、今後もこのような厳しい氷状が継続することが想定されたため、 1) 厳しい氷状に対応すること、2) 余分なシップタイムの浪費を抑えること、さらには3) 安全性を高めることを目指して第 54 次隊 (JARE-54). 第 55 次隊 (JARE-55) においてアイ スフェンスの改良を継続して試みた.本稿はアイスフェンスの試作を報告した高橋ほか (2012)の続報として、アイスフェンスの改良過程を紹介するとともに、現場において実施 した観測概要を報告する.

JARE-54 におけるアイスフェンスの改良
JARE-53 の定着氷内の氷状は、氷厚 4.0m 以上、積雪 1.5m 以上であり、「しらせ」が砕氷

航行によって砕いた雪と海氷の小片(Brash-ice)が1m程度に積み重なり,高さ700mmの アイスフェンスを設置すること(フェンス内に開放水面を作ること)が困難な海域が存在し た(高橋ほか,2012). そこでJARE-54では,内径(1000mm)は現状の直径幅のままで, 高さを500mm伸ばして1200mmとした(図2).材質は本体の強度を保つために,現状と 同じステンレスの板厚3mmを用いた.これまでは軽量化を計る目的で,側面には直径10

- 図 2 JARE-54 で実施したアイスフェンスの伸長概略図(写真は 2012 年 9 月 11 日に 「しらせ」国内巡航中に撮影).
- Fig. 2. Schematic drawing of the modified ice-fence employed during JARE-54 (11 Sep. 2012).

mmの穴を 50 mm 間隔で空ける工夫を行っていたが,高さを 500 mm 伸ばすことによる重量 化を最小限に抑えるため,側面の穴は直径 10 mm を 15 mm 間隔とした(図 2).本体の総重 量は 70 kg 以内となっている.またアイスフェンスをバランスよく引き揚げるためのフック は、これまで対角線上の縦方向に 2 箇所ずつ取り付けていたが,横方向に 40 mm 間隔で 3 箇所ずつ設置した(図 2).

3. JARE-54 における観測概要

JARE-54 では JARE-53 同様に氷状が厳しく、「しらせ」は2年連続で昭和基地接岸を断念 する事態となった.しかしながら、アイスフェンスを用いた氷海内モニタリング観測は定着 氷内で2回(観測点A,B)の実施に成功している(図3).また後述するが、流氷域の観測 点Cでは一度アイスフェンスの設置を試みた.しかし最終的には流氷縁の開放水面域での 実施となった(図3).

観測点 A では, JARE-53 でアイスフェンスの設置を断念した海氷の小片(Brash-ice)が積 み重なって存在する氷状であった.しかし,高さを 500 mm 伸ばした改良が功を奏し,フェ ンス内への Brash-ice の侵入を許すことなく観測を実施することができた(図 4a).大型化に よる設置および回収時間や手順への影響は見られず,円滑に観測を実施することができた.

観測点Bは定着氷内ではあったが,氷厚が薄い海氷であった.そのため「しらせ」によ る砕氷によって海氷は小片には砕けず,大きな氷盤状に割れる状態であった(図4b).船尾 が氷盤で覆われていたため,船首を定着氷に付けたまま前進をかけて船後方への水流を起こ し,氷盤を押し出すことを試みたが,氷厚が薄くて船が前進する事態となった.そこで「し らせ」は旋回を試み,氷盤の隙間に開放水面域を作りだすことで,アイスフェンスの設置が 可能となった(図4b).アイスフェンスの設置から観測,およびアイスフェンスの回収まで の作業に要した時間は,およそ1時間半程度ではあったが,大きな氷盤が開放水面域に押し 寄せることなく,観測が実施できた.

JARE-54 においては, 流氷域の幅(定着氷縁から流氷縁まで)は狭くなっていた. これは 強い北風によって, 流氷が定着氷縁に押し流されたためと推測された. はじめに浮氷が漂う 流氷域でアイスフェンスの設置を試みたが, 沖合から来た"うねり"が高く, アイスフェン スが上下左右に動揺し, 設置・観測を断念する事態となった(図4c). そのため数マイル北 上して流氷縁に移動し, 開放水面域に観測点 C を設けて, アイスフェンスを使用せずに観 測を実施した(図4d).

4. JARE-55 におけるアイスフェンスの改良

JARE-54 では JARE-53 での経験をもとに, Brash-ice 対策としてアイスフェンスの高さを 伸ばす改良を行って観測に挑んだ.その結果, JARE-53 では困難であった厳しい氷状に対応

図 3 JARE-54 における氷海内海洋生態系モニタリング観測点と観測時における昭和基地沖、リュ ツォ・ホルム湾の海氷密接度(JAXA より提供, AMSR2/GCOM-W1 データをもとに作成).

Fig. 3. Sampling stations for oceanographic observations in the sea-ice zone, and sea-ice conditions in Lützow-Holm Bay off Syowa Station during JARE-54. The sea-ice concentration data were obtained from Daily AMSR2 sea ice maps (http://www.iup.uni-bremen.de:8084/amsr2/).

することができた.一方で安全に観測を実施するためには,クレーンによる引き揚げのバラ ンス維持を確保する必要がある.アイスフェンスの大型化には安全性の確保との両立が必須 であるため,さらなる大型化を伴う改良には限界があり,困難であると考えた.よって JARE-55 では,安全性への配慮およびより効率よくアイスフェンスを厳しい氷状に設置する ために,以下の2点の改良を実施した.

1) 現在の形状では、アイスフェンスを人力で運搬するためにフェンスを確保する部位が なく、70kgの重量物の移動が困難であった.そのため安全で容易に持ち運びができるよう に対角線上に8箇所、移動用の取っ手を取り付けた(図5a).

2) これまでフタ部の開閉はいずれもフタ開閉索を上下させることにより行っていたが, 設置時の角度によっては円滑にフタ部が閉まらず,浮氷を取り除くタイミングを逸すること があった.そこで,上部のフタ部の閉鎖を容易に実施するために,フタ部に閉鎖索用金物を 取り付けた(図 5b).これによりフタ部を開く動作は,これまで通りフタ開閉索を引き揚げ ることにより行い(図 5c),一方で閉鎖動作は,取りつけたフタ閉鎖索を引き揚げることに より円滑に行うことが可能となった(図 5d).

図 4 JARE-54 における氷海内海洋観測時の氷状. (a) 観測点A (2013年2月10日に 68°50′S, 38°55′E において実施), (b) 観測点B (2013年2月16日に 68°40′S, 38°38′E において実施), (c) 流氷域においてアイスフェンスの設置を試みた観測点 (2013年2月17日に 68°27′S, 37°55′E において実施), (d) 観測点C (2013年2月17日に 68°23′S, 37°50′E において実施).

Fig. 4. Sea-ice conditions at sampling stations during the JARE-54 cruise. (a) Station A (10 Feb. 2013). (b) Station B (16 Feb. 2013). (c) Observations using the ice-fence were cancelled by a heavy surge on the sea surface (17 Feb. 2013). (d) Station C (17 Feb. 2013).

5. JARE-55 における観測概要

JARE-55 では「しらせ」が3年振りに昭和基地接岸を果たしたが、定着氷内の氷状は JARE-53 および JARE-54 同様に厳しいものであった.アイスフェンスを用いた氷海内モニ タリング観測は、定着氷内で2回(観測点A,B)の実施に成功した(図6).また流氷域の 乱氷帯において一度アイスフェンスの設置を試みたが、アイスフェンスを静置することがで きず、最終的には JARE-54 と同様に流氷縁の開放水面域での実施となった(観測点C)(図6).

- 図 5 JARE-55 で実施したアイスフェンスへの持ち運び用取っ手およびフタ部閉鎖用金物の取り付け図. (a) 移動用取っ手の取り付け位置, (b) フタ閉鎖用金具の取り付け位置, (c) 改良前のフタ開閉索, (d) 改良後のフタ開閉索. 従来はフタ開閉 素のみでフタ部の開閉操作を行っていたが, フタ閉鎖索を取り付けることによっ て閉鎖を容易に行えるようにした. (写真は 2014 年 2 月 11 日に 68°11′S, 38°51′E において高野直氏撮影).
- Fig. 5. Schematic drawing of improvements made to the ice-fence during JARE-55 (11 Feb. 2014; photograph by N. Takano).

観測点Aは定着氷内にあるわずかな開放水面域において実施した.周囲の氷厚も薄くア イスフェンスの設置も10分以内で容易に行うことができた.観測中に大きな氷盤が押し寄 せることもなく,円滑に観測を実施することができた(図7a).

観測点 B は海氷の小片(Brash-ice)が積み重なり、また観測点 A に比べて厚い海氷が混 在する氷状であった(図 7b). そのため何度か前進をかけて船後方への水流を起こし、海氷

図 6 JARE-55 における氷海内海洋生態系モニタリング観測点と観測時における昭和基地沖,リュ ツォ・ホルム湾の海氷密接度 (JAXA より提供, AMSR2/GCOM-W1 データをもとに作成). Fig. 6. Sampling stations for oceanographic observations in the sea-ice zone, and sea-ice conditions in Lützow-Holm Bay off Syowa Station during JARE-55. The sea-ice concentration data were obtained from Daily AMSR2 sea ice maps (http://www.iup.uni-bremen.de:8084/amsr2/).

を押し出すことで,アイスフェンスを設置した.また,2回目のCTDキャスト前に厚い海 氷によりアイスフェンスの位置がわずかに移動したため,一度水面から離してから再設置を 行った.再び水流によって海氷を押し出すことにより,設置を容易に行うことができた.ア イスフェンスの設置から観測,およびアイスフェンスの回収までの作業に要した時間は1時 間半程度であり,再設置を要したにも関わらず予定時間内ですべて実施することができた.

JARE-55 復路の北上時では一年氷帯を抜けると乱氷帯が拡がっており,いわゆる流氷域が 存在せず,乱氷帯を抜けると開放水面域であった.これはJARE-54 のわずかな流氷域と同 様に強い北風によって,流氷が定着氷縁に押し流されて乱氷帯を形成したものと考えられた. はじめに開放水面域より数マイル南側の乱氷帯でアイスフェンスの設置を試みたが,乱氷帯 を砕氷した氷状は比較的大型の浮氷が多く,さらには海氷密接度が高いことから海氷を押し 出して開放水面を作っても、すぐに浮氷で埋まってしまった(図7c).そのためアイスフェ ンスを海氷下に沈めることが困難であり,設置作業を何度もやり直す状況であった(図 7d).さらには設置したアイスフェンスが沖合から来た"うねり"によって上下左右に動揺 し、静置することが困難であった.約1時間の設置作業を試みたが,観測測器を沈めている

- 図 7 JARE-55 における氷海内海洋観測時の氷状. (a) 観測点A (2014年2月9 日に68°52′S, 38°42′Eにおいて実施,水野団氏撮影),(b) 観測点B (2014 年2月9日に68°29′S, 38°40′Eにおいて実施,水野団氏撮影),(c) およ び(d) 流氷域においてアイスフェンスの設置を試みた観測点(2014年2 月11日に68°11′S, 38°51′Eにおいて実施,高野直氏撮影).
- Fig. 7. Sea-ice conditions at sampling stations during the JARE-55 cruise. (a) Station A (9 Feb. 2014; photograph by D. Mizuno). (b) Station B (9 Feb. 2014; photograph by D. Mizuno). (c) and (d) Observations using the ice-fence were cancelled by a heavy surge on the sea surface (11 Feb. 2014; photograph by N. Takano).

時間(CTD および自動採水器でおよそ 20 分程度),アイスフェンスを常に静置させている ことは困難と判断し,観測を断念する事態となった.そのため数マイル北上して,開放水面 域においてアイスフェンスを使用せずに観測点 C を実施した.

6. おわりに

JARE-52より開始した氷海内海洋生態系モニタリング観測は、アイスフェンスを用いるこ とで一定の成果を挙げている(高橋ほか、2012).アイスフェンスは厳しい氷状への対応、 安全性,円滑な観測の実施を考慮した改良を JARE-55 まで毎年繰り返し行ってきた.その 結果,特に定着氷内においては十分に有用性が評価できることから,現時点での形状で一応 の完成形と判断している.一方で,JARE-54の流氷域および JARE-55 の乱氷帯域においては、 開放水面域から入る"うねり"が高く、アイスフェンスを静置することができない事態が発 生した.アイスフェンスの内径は 1000 mm であるのに対し、用いている観測測器は直径 794 mm の CTD と自動採水器,および直径 600 mm の閉鎖式プランクトンネットである(高 橋ほか、2012).現状のアイスフェンスは大型化を避けるために、測器を通すのに十分に余 裕のある直径幅を持って製作されてはおらず,あくまでもアイスフェンスが海水面に静置さ れることを前提としている.そのため、流氷域での観測は"うねり"が入ってこない海域で の実施が必要条件となるが、今後も JARE-54, JARE-55 のように流氷域がほとんどなく、高 い"うねり"が入ってくる条件に遭遇した場合は、アイスフェンスを安全に設置すること、 また測器との接触を避けることを優先し、アイスフェンスによる観測を避け、開放水面域で 実施するのが賢明であると思われる.

アイスフェンスを用いた観測は、JARE-52~55の4年間で合計9回の実施に至った.これ まで知見の乏しかった大陸棚海域における観測結果は、世界的にも希少なデータセットであ り、すでに海氷分布に伴った動物プランクトンの分布、種組成に関する成果が公表されてい る (Ojima *et al.*, 2013). 今後も様々な氷状や天候の中で、アイスフェンスを用いた観測経験 を積み重ねることで、より安全にモニタリング観測を継続することが重要である.

謝 辞

第54次および第55次日本南極地域観測隊隊長はじめ隊員の皆さま,および「しらせ」乗 員の皆さまには氷海内観測における様々な援助をいただいた.またアイスフェンスの改良に あたり,防衛省海上自衛隊「しらせ」艤装員およびユニバーサル造船株式会社の皆さまにご 協力いただいた.ご支援に心より感謝する.海氷密接度の情報は国立極地研究所,南極観測 センター,清水大輔博士から提供いただいた.第55次日本南極地域観測隊夏隊同行者の高 野直氏,水野団氏からは現場における観測風景写真を提供していただいた.以上の皆さまに 厚く感謝する.アイスフェンスを用いた本研究観測は,国立極地研究所プロジェクト研究「東 南極海洋の環境変動に関する研究」(KP-4)および日本南極地域観測隊基本観測課題「生態 系変動モニタリング」(AMB-2)の一部として実施されたものである.

文 献

- Ojima, M., Takahashi, K.T., Iida, T., Odate, T. and Fukuchi, M. (2013): Distribution patterns of micro- and mesozooplankton communities in sea ice regions of Lützow-Holm Bay, East Antarctica. Polar Biol. **36**, 1293–1304, doi:10.1007/s00300-013-1348-y.
- 高橋邦夫・飯田高大・橋田 元・小達恒夫 (2012): 氷海内海洋観測に用いるアイスフェンスの試作. 南極資料, 56, 447-455.