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Abstract. The purpose of this article is to construct a family of uncountably many

non-periodic 3-Archimedean tilings with 6-fold rotational symmetry, which admit three

types of vertex configurations by regular triangles and squares.

1. Introduction

In 1982, a quasicrystal with 5-fold rotational symmetry was discovered by

Shechtman et al. (published in 1984, [14]). Its model is a non-periodic tiling

with 5-fold rotational symmetry, called a Penrose tiling ([11], [12]), constructed

using the substitution rule of tiles which replaces tiles by unions of tiles. In

addition, there is an Ammann-Beenker tiling with 8-fold rotational symmetry

([2], [3]) and a Danzer tiling with 7-fold rotational symmetry ([10]) constructed

by the substitution rule of tiles. In [6], the second author and his collabora-

tors studied the procedure for constructing non-periodic tilings with rotational

symmetry under the substitution rule of tiles.

We recall basic definitions concerning a tiling following [4]. A tiling is

a set of non-overlapping polygons with the property that their union is the

Euclidean plane. Here polygons are said to be non-overlapping if their inter-

iors are pairwise disjoint. A non-periodic tiling is one that admits no nontri-

vial translations to itself. A patch is a set of finitely many non-overlapping

polygons with the property that their union is a topological disk (cf. [4, p. 19]).

Each polygon of a tiling (or patch) is called a tile. Moreover, we say that a

tiling (resp. patch) by polygons is edge-to-edge if each pair of tiles in the tiling

(resp. patch) intersects along a common edge, at a common vertex, or not at

all (cf. [4, p. 58]). In this paper, we assume that tilings (or patches) are edge-

to-edge. For a point x in the Euclidean plane, a vertex configuration (of x) is

a patch P ¼ fTaga AA such that x is a vertex of every tile Ta and that x is

contained in the interior of 6
a AA Ta. A tiling by regular polygons is said to

be k-Archimedean if its vertex configurations belong to k congruence classes.
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The (1-)Archimedean tiling by regular triangles and squares is well-known and

is periodic (for instance, see [4, p. 63]).

In 2007, a polymeric quasicrystal was discovered ([5]). It is modeled by a

non-periodic 3-Archimedean tiling with the three vertex configurations shown

in Figure 1. In models of quasicrystals, we often see 3-Archimedean tilings with

these three vertex configurations (Figure 1), which are not periodic ([5], [9], [13]).

In [8], we constructed uncountably many non-periodic 3-Archimedean

tilings with these three vertex configurations (Figure 1) by using the substitution

rule of patches which replaces patches by other patches. Unfortunately, there

is no tiling with rotational symmetry in this family.

We call the following procedures for laying tiles ‘‘ringed expansion’’:

First, vertex configurations are given. Starting from a patch P0, we then

attach a vertex configuration on a vertex in the boundary of P0. We then

attach a vertex configuration on the next vertex counterclockwise, repeatedly.

If we can attach vertex configurations on all vertices, we get a larger connected

patch P1. If a similar expansion can be repeated ad infinitum, we get a tiling

with given vertex configurations. The ringed expansion works fine in the

construction of k-Archimedean tiling with rotational symmetry.

In this article, we propose a new method for constructing non-periodic

tilings with rotational symmetry by using ringed expansion:

Theorem 1. There exists a family of uncountably many non-periodic 3-

Archimedean tilings by regular triangles and squares which have 6-fold rotational

symmetry.

In order to prove Theorem 1, we use representation by words to describe

procedures for laying tiles, which is called the substitution rule of boundary

words. This idea was introduced by Prof. Shigeki Akiyama for tilings in the

hyperbolic plane ([1]).

2. Proof of Theorem 1

We use the three vertex configurations shown in Figure 1. The symbol 3

or 4 denotes a vertex of a regular triangle or square, respectively (Figure 2).

Fig. 1. (a) 36 (beehive-shaped) vertex configuration, (b) ð42; 33Þ (house-shaped) vertex configu-

ration, (c) ð3; 4; 32; 4Þ (tent-shaped) vertex configuration
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We prepare 10 symbols 4, 33, 34, 43, 44, 333, 334, 433, 434, 3333, where 4

denotes a vertex of degree 2 of angle p=2 and a1 . . . al ðai ¼ 3; 4Þ denotes a

vertex of degree lþ 1 in the boundary of a patch which consists of corners of

angles y1; . . . ; yl in this order, where yi ¼ p=2 or p=3 according to whether

ai ¼ 3 or 4. For simplicity, we use the notation 33 ¼ 32, 44 ¼ 42, 333 ¼ 33,

334 ¼ 324, 433 ¼ 432, and 3333 ¼ 34. For a patch P, let wðPÞ be a cyclic

word obtained by reading the symbols of vertices of P in the counterclockwise

direction along the edges. We call it a boundary word of P. Note that wðPÞ is
well-defined up to cyclic permutation. For example, for the patch P in Figure 3,

the boundary word wðPÞ is given by 43 34 43 34 43 34 43 34 43 34 43 34. For

simplicity, we use the notation 43 34 43 34 43 34 43 34 43 34 43 34 ¼ ð43 34Þ6.
When we attach a vertex configuration on a vertex in the boundary of a

patch, the symbol at the vertex of the boundary is replaced by a subword of

the boundary of the larger patch. We call such a replacement a substitution of

boundary words. For example, as in Figure 4, we can construct a new patch

by attaching a vertex configuration (c) on the vertex for a given patch P and its

vertex with the symbol 33 (here, the shaded portion is a part of P). Let b½s�
(resp. h½s� or t½s�) denote a substitution given by attaching a vertex configura-

tion (a) (resp. (b) or (c)) on a vertex with a symbol s. Then, in Figure 4, the

symbol at the vertex of the boundary is replaced by t½33� : 33 ! 43 34.

We use the following substitution rules:

b½333� : 333 ! 33 33; b½3333� : 3333 ! 33; h½44� : 44 ! 33 33;

h½333� : 333 ! 44; t½4� : 4 ! 34 4 43 33; t½4� : 4 ! 33 34 4 43;

t½33� : 33 ! 43 34; t½34� : 34 ! 43 33; t½34� : 34 ! 34 4 43;

t½43� : 43 ! 33 34; t½43� : 43 ! 34 4 43; t½334� : 334 ! 43;

t½433� : 433 ! 34; t½434� : 434 ! 33:

Fig. 2. Tiles with symbols 3; 4 Fig. 3. A boundary word
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Note that we might have di¤erent substitution rules even when the same vertex

configuration is attached on a vertex with the same symbol.

We explain how the boundary word of a patch changes when we apply

the substitutions successively to adjoining vertices. For example, in Figure 5,

the two symbol 44’s at the vertex of the boundary of the original patch are

replaced by the substitution h½44� : 44 ! 33 33. Then, the symbol 33 is

doubly assigned in the vertex at the center above. If more than one symbols

s1; . . . ; sn are assigned to a vertex by successive substitutions, then we tempo-

rarily assign the symbol s1 � . . . � sn to the vertex. To identify this temporary

symbol with a subword of a boundary word, we need the relations that

a3 � 3b ¼ a3b, a1 . . . ak3 � 3b1 . . . bl ¼ a1 . . . ak3b1 . . . bl. In fact, we use the

following relations: 33 � 33 ¼ 333 (Figure 5), 43 � 33 ¼ 433, 33 � 34 ¼ 334,

43 � 34 ¼ 434, 33 � 33 � 33 ¼ 3333, and so on.

Let P0 be the vertex configuration (a) in Figure 1. In the following, we

construct an infinite sequence of patches Pn (n A N) starting from the patch P0

by repeatedly applying ringed expansions.

Up to Step 4 of the ringed expansion, the patch is expanded by using the

following five substitutions:

Fig. 4. A substitution of a boundary word

Fig. 5. The relation 33 � 33 ¼ 333
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h½44� : 44 ! 33 33;

h½333� : 333 ! 44;

t½33� : 33 ! 43 34;

t½34� : 34 ! 43 33;

t½43� : 43 ! 33 34:

In Step 4, the boundary word ð33 33 34 42 43Þ6 of P4 (Figure 6) is a cycle in

the directed graph I (Figure 7).

When we expand the patch Pn ðnb 4Þ to Pnþ1, we apply one of the five

operations I-1, I-2, II, III and IV, described below.

Operation I-1. Suppose that wðPnÞ is a cycle in the directed graph I

(Figure 7). Then Operation I-1 denotes the ringed expansion described as

below. We apply the substitution 333 ! 33 33 for all vertices with the symbol

333 in the boundary of Pn. And we expand the patch Pn to P 0
nþ1 by using

the following five substitutions:

b½333� : 333 ! 33 33;

b½3333� : 3333 ! 33;

h½44� : 44 ! 33 33;

t½34� : 34 ! 34 41 43;

t½43� : 43 ! 34 42 43;

Fig. 6. Step 4 patch P4
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where 4k ðk ¼ 1; 2Þ denotes the symbol 4. We add the su‰xes 1, 2 because

41 and 42 play di¤erent roles in the next step. 41 and 42 use replacements by

di¤erent substitutions in the directed graph II.

If the symbol 4334 appears in wðP 0
nþ1Þ and the ringed expansion proceeds,

we need more symbols, substitutions and relations. To remedy this situation,

we partially expand P 0
nþ1 to Pnþ1 by S : 4 4334 4 ! 43 34. As a result, the

patch Pn is expanded to Pnþ1 by using the above five substitutions and S.

Note that wðPnþ1Þ is a cycle in the directed graph II (Figure 7).

Operation I-2. Suppose that wðPnÞ is a cycle in the directed graph I

(Figure 7). Then Operation I-2 denotes the ringed expansion described as

below. We apply the substitution 333 ! 44 for all vertices with the symbol

333 in the boundary of Pn. And we expand the patch Pn to Pnþ1 by using

the following five substitutions:

h½44� : 44 ! 33 33;

h½333� : 333 ! 44;

t½33� : 33 ! 43 34;

t½34� : 34 ! 43 33;

t½43� : 43 ! 33 34:

Fig. 7. Directed graphs I, II, III, IV
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Note that wðPnþ1Þ is a cycle in the directed graph IV (Figure 7).

Operation II. Suppose that wðPnÞ is a cycle in the directed graph II

(Figure 7). Then Operation II denotes the ringed expansion described as

below. We apply the following seven substitutions:

h½333� : 333 ! 44;

t½41� : 41 ! 34 41 43 33;

t½42� : 42 ! 33 34 42 43;

t½34� : 34 ! 43 33;

t½43� : 43 ! 33 34;

t½334� : 334 ! 43;

t½433� : 433 ! 34:

Note that wðPnþ1Þ is a cycle in the directed graph III (Figure 7).

Operation III. Suppose that wðPnÞ is a cycle in the directed graph III

(Figure 7). Then Operation III denotes the ringed expansion described as

below. We apply the following eight substitutions:

h½44� : 44 ! 33 33;

t½41� : 41 ! 34 4 43 33;

t½42� : 42 ! 33 34 4 43;

t½34� : 34 ! 43 33;

t½43� : 43 ! 33 34;

t½334� : 334 ! 43;

t½433� : 433 ! 34;

t½434� : 434 ! 33:

Note that 33 � 33 � 34 ¼ 3334 and 43 � 33 � 33 ¼ 4333. If the subword

4 4333 ð333Þk 3334 4 appears in wðP 0
nþ1Þ and the ringed expansion proceeds,

we need more symbols, substitutions, and relations. To remedy this situation,

we partially expand P 0
nþ1 to Pnþ1 by Sk : 4 4333 ð333Þk 3334 4 ! 44 ð44Þk 44.

As a result, the patch Pn is expanded to Pnþ1 by using the above five sub-

stitutions and Sk. Note that wðPnþ1Þ is a cycle in the directed graph IV

(Figure 7).
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Operation IV. Suppose that wðPnÞ is a cycle in the directed graph IV

(Figure 7). Then Operation IV denotes the ringed expansion described as

below. We apply the following five substitutions:

h½44� : 44 ! 33 33;

h½333� : 333 ! 44;

t½34� : 34 ! 43 33;

t½43� : 43 ! 33 34;

t½434� : 434 ! 33:

Note that wðPnþ1Þ is a cycle in the directed graph I (Figure 7).

The oriented labeled graph in Figure 8 illustrates relation among the five

operations described in the above, where Op.I-1, for example, denotes the

Operation I-1. Note we can choose Op.I-1 or Op.I-2 as we like when wðPnÞ is
a cycle in the directed graph I (Figure 7). For a given infinite edge path in the

oriented graph starting from the vertex I, we can construct an infinite sequence

fPng of ringed expansions of patches starting from the patch P4 in Figure 6 by

successively applying the operations indicated by the edge path.

We show that the tiling determined by fPng has only one rotational

symmetry. To this end, we look at blocks in the boundary layer of Pn con-

sisting of three or more consecutive squares. Let bn be the maximum of the

lengths of such blocks contained in Pn. Then bn grows as n becomes bigger.

Hence, the tiling admits only one rotational center, and so it is non-periodic.

The loop I ! II ! III ! IV ! I doesn’t change bn, whereas the loop

I ! IV ! I increases bn by one. There is a one-to-one correspondence be-

tween the set of tilings by our construction, and the set of increasing sequences

1; 2; k3; k4; k5; . . . ð2a k3 a k4 a k5 a � � �Þ of positive integers. For example, a

tiling in Figure 7 corresponds to an increasing sequence 1; 2; 2; 3; 3; 4; . . . . This

Fig. 8. Upper-level directed graph
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set of increasing sequences is clearly uncountable. Hence we have uncountably

many number of tilings up to isomorphism, and our proof of Theorem 1 is

completed.

Remark 1. In [7], the first author tried to extend the scheme of sub-

stitution rules, and to handle partial expansions used in our proof in a unified

scheme of substitution rules.
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