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A Theoretical Approach to Dynamical Diffraction of X-rays in the Laue Case with the Green’s
Function Method

Hidenobu ISHIDA*!

*! Department of Management and Information Sciences

X-ray dynamical diffraction for the Laue case is treated theoretically as an application of the theory for a largely
distorted crystal using the Green’s function method given by the previous report. In the Laue case, the transmitted and the
diffracted waves in the crystal are expressed as the integrals with the kernels of the transmitted and diffracted wave
components of the Green’s function over the crystal surface. In the case of a perfect crystal, the Green’s function
components are analytically obtained and the waves in the crystal are expressed using the analytical forms of the Green’s
function. The result shows the analytical forms of the waves are essentially three-dimensional with a divergent wave

image like a spherical wave, which are different from those given by Takagi’s theory, and, however, are reducible to those.
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1.  Introduction

Historically, dynamical diffraction theories of X-rays using the Green’s function were first developed based on quantum
mechanics in 1960’s®,  Later the fundamental solution of the Green’s function of the classical Maxwell’s equation was
shown analytically in 1970’s ¥, which brought useful results for dynamical diffraction studies. However, the theoretical
treatment was developed based on the equation of Helmholtz type deduced from Maxwell’s equation, although the Maxwell’s
equation is originally non-Helmholtz type. Recently, the present author gave a new dynamical theory for a largely distorted
crystal based on the Maxwell’s equation of non-Helmholtz type, for which a Green’s function of tensor type was introduced to
describe the wave field in the crystal®©.  In this paper, dynamical diffraction in the Laue case is theoretically treated with the
Green’s function, based on the dynamical theory. The wave filed in the crystal in the Laue case is directly represented using
the surface integrals with the Green’s function. When the crystal is perfect, the Green’s function is analytically obtained in 3-

dimensional form. This becomes an extension of Takagi’s theory ’ which treats two-dimensional diffraction process.

2. Fundamental Equation

In dynamical diffraction of X-rays in a perfect or distorted crystal, X-ray wave field excited in the crystal is described by
Maxwell’s equation with the dielectric constant periodical or quasi-periodical over the crystal lattice. When a beam of X-rays
monochromatic with the angular frequency w is incident on the crystal and then excites an X-ray wave filed with the same
angular frequency in the crystal, the crystal wave filed may be expressed with the electric field, E = E(r) exp(—iwt), then
the behavior of the crystal wave field is described by the following Maxwell’s equation:

—rotrot E(r) + k2E(r) + k?y(r)E(r) =0, 1)
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where k is 2 x times the wavenumber of the X-rays, k = w/c, c the light velocity, and yx the polarizability of the crystal
generally being a function of position. In general, when a crystal lattice is distorted and the lattice displacement is given by a

function of position, wu(r), at arbitrary position point r, the polarizability of the distorted crystal is given by

X) = ) xgexplig- (r—u@)} o)
g

g being the reciprocal lattice vector.
In the previous report®, in order to treat a general case of one or more strong diffracted crystal waves, the waves in a distorted
crystal were expressed by a sum of modulated waves

E(r) = ZEg ), E,)=g,@exp(ik, 1), ky=ko+g, o)
g9

where k, is the wave vector of the transmitted wave. Each amplitude function ¢,(r) in eq. (3) and each
Xgexp{—ig - u(r)} ineq. (2)are assumed to be slowly varying so that their high frequency Fourier coefficients higher than a
given level are neglected.

E,() =0, x,()=0, licl > 1o S

where ko = 271/ (3Amax)> Amax being the longest side length of the three sides constituting the unit cell of the crystal, and
E ;(x) is the Fourier coefficient of ¢, (r) defined by

dr

Py (r) = f Eg (rc) exp{ixc - T}W , (5)

ve

where V" is the unit cell region of the reciprocal crystal lattice, and x, (k) is the Fourier coefficient of the reciprocal lattice

component of y(r) defined by

d
Xoespl=ig - u) = [ 2,00 explin 1) g5 ©)

Assuming eq. (4), Maxwell’s equation (1) derives a set of equations for the crystal waves ©

(—rot rot + K)E, (r) + k? Z Xo-grexpli(g — g") - (r— u()}E,, () =0 . )
g’

This is the fundamental equation to determine the wave field of the crystal. When the crystal wave is divided into the

transverse component E( and the longitudinal components E® by
E,(r) = EX@+EY @), divES’(@) =0, rot E’() =0 , ®)

then, with respect to the left second term in eq. (7), the longitudinal components of the waves may be neglected © so that eq.

(7) becomes
VZED () + K2E, (r) + k2 Z Xo-g ) expli(g — g) - TIEQ@) =0 . o)
gl
From eq. (9) may be derived the equation for the Fourier coefficientof E;(r). Using E (k) defined by eq. (5), the Fourier
expansion of E(r) is given by

dk
P — =k, + K. (10)

E, r)= f E, (1) exp{iKg ' T} (2m)3 K, g

ve
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When E (k) is expressed as a sum of the components of three independent polarizations, it may be shown as
E, (1) = E; (1) |ej (1)) + EZ (1) |e2 (1)) + E3 (1) |e (x)) , (11)

where |e£} (x)) and |e§ (x)) are two independent polarization vectors perpendicular to K - L.e, polarization vectors for the
transverse wave components of E;, and |e§ (rc)) is the longitudinal polarization vector parallel to K, represented as column

vectors using the bra-ket notation. Then the Fourier expansions of the transverse waves are expressed as

2
) dx
Eg’)(r) = Z fE;(x) exp{LKg r}m . (12)
u=1yz
Also, the electric field vector itself is represented as a column vector. Using egs. (6), (10), (11) and (12), equation (9) gives

the following equations for the Fourier coefficients of the transverse waves:

2 ’

, o ~ dk
{21+ x0) — K2 JE) (1) + k? Z Z f Xg-g'(KC oy (1e, K VEL, (1 — 1) = 0, (13)
gr#g u'=1 |Kr|<Kg

where p = 1,2 and Cj, (i, k") = ey (x)|e}, (k—K")) being the inner product of the two vectors. The transverse waves

can be determined by eq. (13), because the longitudinal waves are not included in the equation.  Similarly equation (9) gives
the determination equations of the longitudinal waves®. However, in general, the longitudinal waves are negligible, that is,

their magnitudes are in the order of the crystal polarizability y, 10™*~~° , compared with those of the transverse waves.

3. Green's Function
Based on equation (1), a Green’s function in 3-dimensional tensor form is defined by
—rotrot G(r,r") + kK2G(r, ") + kK2x(r)G(r, ") = =8(r — 1) 1®), (14)

where 8(r — ') is the Dirac’s delta function and I is the 3-dimensional unit matrix tensor.

The following relationship is established between the Green's function and the wave field in a crystal ©:

E(r) = f {G(r, ') 6(21’ E(r) — <ai, G(r, r’)) E()+ (E()-n)divG(@r,r') — (divE(@)) G(r,r')n'tdS’, (15)
S

where S is the crystal surface, n’ the unit vector normal to the crystal surface toward the outer direction, div G a column
vector with the i-th component (i =1, 2, 3) being the divergence of the i-th row vector of G.

The Green’s function, as seen from the definition equation (14), satisfies exactly the same equation (1) as the crystal wave
field does in all points except the point r = r".  As seen from eq. (15), if the amplitudes of the crystal waves are slowly

varying, the Green’s function itself should be represented as a sum of slowly varying modulated waves given by

G(r, 1) = Z Gog(r, 1), Gy (1) = P, (r, ) expliky T —iky, 1}, (16)
99’

where G,4,(r,7") is the (g, g')-th diffracted wave component with the slowly varying amplitude 3,4, (r, "), both of which
are 3 X 3 matrix tensors. ¥, (r, ") should be assumed to be slowly varying for each of the main and vice variables, r and
1’, in the same meaning as for the crystal waves, because the reciprocal relationship G(r', 1) = G (r,r") holds.

On this assumption, equation (14) gives the fundamental equations to determine the component waves of the Green’s
function®,

(=rotrot + k?) Gy, (r,7") + k? Z)(g_g-- exp{li(g—g") - (r- u(r))}Gg--g,(r, ') =—As 1), (17)
T
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where

3 ’

d
Dyg (") = Z ffdm, 84400 — Kexp{iK, -7 — i K}, r}|e”(x))( ,(1c’)|dlc(2'c)3 . (18)

nwv=1yr

Ifthe Green’s function is divided into the transverse component G and the longitudinal wave component 6 given by

N — ~© ’ o ’ ® _ O _
Gyg/(r,7") =Gy, (r,7") + Gy, (r,7") . div, Ggg, =0, TOt,. Gyp, =0, (19)

and the longitudinal waves of G is neglected in the left second term in eq. (17), then equation (17) becomes

V2 Gg;, (r, 1) + k?Gyg, (r,1") + k2 Z)(g_g-- exp{li(g—g") - (r- u(r))}Gg;,(r r)=—A7y, 1) . (20)
=

This equation is transformed to that for the Fourier coefficients of the Green’s function. When the Fourier expansions of

the wave components G,,4, and G are given by

991
’ N uv ’ . R u , de  dx’
Gyy(r, 1) = Z ﬂ Goo (e, k) expliKy -1 — i Ky, - 7'}el (1))e ,(lc)|(2ﬂ)3 o 1)
nwv=1yr
and
(t) QAN uv ’ . R N v o de dx’
6O, (r, ZZ f Gl c,) expliK, -1 = 1Ky, 1Yl (0)el, ()] s s 22)
u=1v=1yr

with K, =k, + Kk, K = kg, + K, then using egs. (6) and (18) equation (20) gives

2

, . . dx"
{k2(1 + x,) — K? }Gé‘;’,(x, k) + k2 Z Z f C;;. (re, ") x g g (") G;;,(K K' K)—— )
g'tgu'=1 |K"| <Ko

=—-(2m)35 991 V5(K—K') , u=12, v=1,2,3. (23)

All of the Fourier coefficients of the component waves of the Green’s function to be determined by eq. (23) give enough

information to calculate Gé;,.

components and negligible as indicated in the previous paper®.

Similarly, the remained coefficients of ¢ =3 and v =1,2,3 are the longitudinal

As mentioned in section 2, the longitudinal component waves are negligible. Ishida® showed that on the assumption of

slow varying equation (15) is reduced to

o, F(t) ’
JE, (r) aG, ., (r,r") ,

Ey(r) = Z f { Gy, (r,r) =G = =20 B )y s’ 4)
where E®)(r) is a wave in vacuum, consisting of the incident wave and diffracted waves with the amplitudes being slowly
varying given by

E@@r) = Z EX@), EST) =0 explik, -}, divES @) =0. 25)

The vacuum waves are connected to the crystal waves by the boundary conditions given by the continuity of the wave function

itself and its derivative normal to the crystal surface. Ggg,)

defined, using the pure transverse part of the Fourier coefficients of the amplitude function of G4, (1, 7"),
2

gg,)(r r) = Z ff gg,(lc K" exp{LK ‘r—iK, -r }|e”(lc))( ey, ()|

HV=1y(nggr>0)

is referred as “Forward propagation Green's function™® , which is

de  dx’
@n)’ 2n)° 26)

— 182 —

This document is provided by JAXA.



A Theoretical Approach to Dynamical Diffraction of X-rays in the Laue Case with the Green’s Function Method

where 744, > 0 means
Ny =Ky +Kp,) (r—1) >0, 27)

which limits the integral volume of V.*. The use of equation (26) is much more useful, which enables us to express directly
the crystal waves in the Laue case and in the cases where all strong diffracted waves emerges from the back surface of the

crystal. In such cases, the integral over the back crystal surface can be neglected © and the boundary conditions

0E, O0EY E, OE®
—_r@© 0 _ 0 _ g _ g_""g9 _ 28)
E,=EY, = , E,=E% = =—2 =0, g+0 , (
0 0 on on g g on on g

on the entrance surface of the crystal are given. Then, equation (24) becomes

IEC G 965 (r,r")
E,(r) = f {Ggg”(r,r') 06n' - ~"°an, EL@ds’, (29)

Iy

where T is the entrance surface of the crystal. ©  This means that the crystal waves are given directly by the integrals of the

incident wave with the kernel of the Green’s function over the entrance surface.

4. Two-Wave Approximation for the Laue case

In the case of two strong waves, that is, in the case where the transmitted and only one diffracted waves have appreciable

amplitudes, the fundamental equations are given from eq. (7) by

{—rot rot + k2(1 + x)}Eo (1) + k? y_pexp{—ih - (r —u(@))}E,() =0,

(30)
{—rot rot + k2(1 + xo)}E, (1) + k? ynexp{ih - (r —u(r))}E,(r) =0,
or using the transverse wave approximation (9) by
VZELD (1) + K2E,(r) + k2B () + k2 y_pexp{—ih - (r —u(@))JEP @) =0,
@31

VZED (1) + K2E, () + k24 B (1) + k2 ypexpfih - (r — u@)}EP () =0,

where E, and E}, are the transmitted ant diffracted waves, respectively. When expressing with the Fourier coefficients of

the waves, the fundamental equations (13) become

{k2(1 + x0) — Ko JEy (1) + K? Z f CE (e, () Y (1 — 1) X — ]

2 3
v=12 |kr|<Kg ( T[)
, (32)
{k2(1 + xo) — K2 JEV (10) + K2 Z f CLy (i, )y (1) EY (ke — k) o = 0.
v=1,2 |I€I|<KZ0 J
To get the solution of the equations, eq. (29) is available, because the boundary conditions may be given by eq. (28), i.e.,
IES () 0Go(r,1)
— F(6) ’ d (€)1 ’
Eo(r) - f{600 (T,T) Oan/ - Ooan, Eoe (r) as ) (33)
Iy
and
IES () 096Gy (r,1)
_ F(t) ’ 0 ho ’ (e ra.r ’
En(r) = f {Gho (r,1) an on' E; (r")ds’. (34)

Iy
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Therefore, it is enough the use of the two components of the Green’s function, 'Y and GF(t) to give the solution. The
g p 00 g

Fourier coefficients of the two component are determined as derived from eq. (23) by
2

{kz(l +x0) — KOZ}G (1, k') + k? le nlf C(’)"}ll‘-’(x, K" y_n (k") GP' V(K K", k") (27_[;3
= -(2n)%5,,6(k—x) , 2 (35)
{k2(1 + xo) — K,2}GEY (1, k) + K2 WZ:“ ..lf CEM (e, k™) 0, (™) Go¥ (ke — K", K1) (;:)3 =0.

Equations (33) and (34) gives general expressions of the two waves for the Laue case, where the incident wave with any
waveform may be available as long as the assumption of slow varying is kept.  Ifthe modulated amplitude functions as defined

in egs. (3), (16) and (25) are used, then equations (33) and (34) may be rewritten as

@) o F(t) ’
0y = [J0r0em 22 M0 Ty 0y g O 0@ s (6)
on on

Iy

Here, g = 0, h, k,, is the component of the wave vector k, of the incident wave normal to the crystal surface toward the

inner direction, and ¥, PO s the amplitude function of Ggét) , using egs. (16) and (26), expressed by
2

Pr ) = Z ff Gho (e, k") explirc - 7 — i k' 7'} |ef (1) e (i)

WV=1yz(nge>0)

de dx’
(2m)3 (27.[)3 : (37

If the variations of the amplitudes ®,, ) and IIJF(t) are negligibly small compared with k, so that the first and second terms
may be omitted and only the third term is retained in the integral in eq. (36), then

o, (r) = —2i fkoztpm)(r,r’)¢ge)(r’)dS’, g=0nh. (38)
Iy

This equation leads to the result given by another theory, as discussed in section 6.

5. Perfect Crystal

In the case of a perfect crystal, i.e., in the case where a crystal is undistorted so that the lattice displacement vector u(r)
equals to 0, the Fourier component of the crystal polarizability y, () equals to(2m)3 Xg0(x). Here, the polarization vectors
el(k) and e} (k) are chosen as o -polarization, and e3(k) and e%(k) to m-polarization. Then, Cpa(k,0) =
Cot(r,0) = 1,C2(k,0) = C(x,0) = cos 26, (k) with 26, (k) being the angle between the directions of K, and K,
and Cp2(x,0) = Coi(k,0) = CZ(x,0) = C&t(k,0) =0 so that equations (32) are reduced to the well-known
determination equation for the transmitted and diffracted waves ® ©),

{k?* (1 + xo) — Ko*}E§ (6) + K*Cu x -1 Efy ()) =0,

u=12, 39)
{kK2(1 + xo) — K JEY (1) + K2 CuxnES () =0,

where C, is the polarization factor given by C; = 1 for o-polarization and C, = cos 26, (k) for T -polarization.

Similarly, for the Green’s function equations (35) become

{k2(1 + x0) — Ko*}Ghy (6,6 + k2C, x_nGrg (6, K") = —(21)36,,6(k — k') ,

wv=12. (40)
{k2(1 + x0) — Kn*}Grg (6, 5") + k2 Cuxn Gy (6, K6") =0,
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Equation (40) is a set of linear equations with unknown Goo and Gy, and the solution may be given by
G;(;’(x, k') = (2m)368,,6(k — K')G 0(1c) g=0nh. (41)
Here, using K = ko + k= K, ,

Gho () = —{k*(1 + xo) — K, 2}/D(K) = Gl (K) (42)

no(©) = K*Cuxn /D(K) = Gy (K) (43)
with D(K) being
D(K) = (k*(1 + x0) — K*H{k*(1 + x0) — Ky *} = k*CZ xn X, - (44)

By substituting egs. (41), (42) and (43) into eq. (26) and integrating it, ¢
Gg(()t) and GF(t) can be obtained analytically. Here, we introduce an
approximation to extend the integral range of eq. (26) from the reciprocal
unit cell space to infinite space. Such approximation has no negative
effect on the integrals (33) and (34), because the incident wave amplitudes
are slowing varying within the present assumption given by eq. (4) and,
therefore, the integrals are significant only around the region satisfying the
condition (4). Inaddition, as seen from egs. (42) and (43), since Gy (k)
and Gpo(k) are the functions of K(= K, = k, + k), let the integral
variables change from Kk to K and let Gy, (K) and G,,(K) be used
instead of Gyo(x¢) and Gpo(x) . Then, equation (26) may be

Fig. 1 &n{-coordinate system.

approximated by
GO N . N u " dK
Z Gpo () expliK - (r 1) +1 g ey (KNl B sy - 9 =0h, @5)
M:

where the integral is over the total space constrained by a condition n, = (2K + g)- (r —7') > 0. The notation of the
polarization vector is changed from e* (k) to e*(K). For convenience, when integrating eq. (45), Gy, (K) is divided by

modifying eq. (42) into two terms in order to calculate them separately, as follows:

1 .k4CiXhX—h

K —k(+1) K-k +x)  DK) (46)

(F)LO(K) =

When substituting egs. (46) and (43) to eq. (45) and integrating eq. (45) , the result becomes as follows ( see Appendix A):

F(t) N (3 k cos 6y o o .
(1) =Gy(r — I + Z —an(r = WO’(‘)(so(r ), s,(r—r ))exp{zk cos g 47)
x p(r —r") — ik sin 6y ({ — {")} le§ (k(d))Neg k(PN ,
and
F(t) / k cos 6 / o . ) o
) = Z 2o — 1) —————— Wk (so(r —17),5,(r — 7"))expfik cos 05 - p(r — 1) 48)
— ik sinBg ({ =) +i h 1} ey (k(po))Neg (ko))
where
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e ik(1+x0) /2 lr=7/]

GO (r — r’) = W . (49)

The 3 X 3 unit matrix tensor I® has the property of I® = Y3 |ed (K))(el(K)| for any wave vector K. And,

C(XhX—h) "kXO(SO+Sh)
Wy (so,sp) = e isin20, ] (Byfsosn) e 2 , So>0, s, >0, (50)
° ikxo(so+sn)
W, (S0, Sp) = 451n29 eyl (B/s051) " e 2 , So>0, s,>0. (51)

Here, J, and J, arethe Bessel functions of 0-th and 1-st order, respectively, and f = kC (xn )(_h)%. If s <0 or s, <O,
then Wy (so, sn) = W (so,s,) = 0. Furthermore, 65 is the Bragg angle given by 2d sin 6y = 4, C the polarization
factor given by € = 1,cos20; (u = 1,2). As shown in Fig.1, when we use an orthogonal coordinate system (&,7, )
where (- axis is taken along the reciprocal lattice vector h,and ¢ — { planeis a plane made by k, and k;, the coordinates
of points  and r’ areexpressedas r = (§,1,{) and r' = (¢',n',{'). Then,the factor p(r — r') in egs. (47) and (48)

is given by

pr—1) = -2+ 0 -7, (52)
and sy(r) and s,(r) isgiven by

5 (1) = p(r) ¢ s = p(r) ¢ (53)

2cosf; 2sinfy 2cosfp  2sinfy

Also, k(¢,) isdefined, in the én{ coordinate system, using the following vector
k(¢p) = (k cosOgzcos¢p,kcosOysing,—ksinbg) , (54)

where ¢, is given, using the coordinates of ¥ —r’,by tan ¢, = (n —n')/ (¢ — &").

By substituting eqs. (47) and (48) into eqs. (33) and (34), the two crystal waves are expressed analytically. When the
expressions of the wave amplitudes are desired, equation (36) is available. In this case, let the wave vector k,, referred in eq.
(3) to be

ko = k(¢ =0) = (kcos0y,0,—ksin6g) , (55)

as shown in Fig.1. Then, the amplitude functions IIJF(t) and 1/:’,'23” are given using eqs. (47) , (48) and (16) by

PO 1) = Gyl — 7 )e ke I Z Rl e T CKUEE NG (56)
—1"))expfik cos 0 - (p(r — 1) — (£ — &)} el (k(p))eh (k())]
PO = Z ~ig _Jecoss W (so(r —1"),5,(r — "))exp{ik cos 8
= 27'[/)(1" r,) hO 0 »°h p B (57)

X (pr =71 = (& =€)} lef (k(@))eh (k(@)]

Substituting egs. (56) and (57) into eq. (36), the waves are obtained analytically in the case of a perfect crystal.
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6. Comparison With Other Theory

To investigate the validity for the result given in the former section, we
compare the present results with those given by Takagi’s theory. Let us Inglf::t
¢

assume that the incident wave amplitude <Dge) is much smaller compared Crystal
. Surf:
with the wave vector. Then, the crystal waves may be calculated by eq. — x

(38). The crystal surface is assumed to be flat so that &, is constant.
If the distribution of <Dge) is homogeneous toward the n-direction ogf| Oe
perpendicular to the incident plane made by k, and k;, asshown in
Fig.2, instead of 1/;5(()” and 1/;’;;(()” the next functions given by ko Sh

So

v (§,8) = fllizgt)(s‘,r')dn’, g=0nh, (58)
Ty

may be used, and then eq. (38) becomes

Fig.2 The relation between the rectangular -,

Y F(t) N (@) rN gt x-z coordinate systems and oblique $,-si
9o) = —2i f kozVgo (€, x)Po (x)dx, (59) coordinate system.
Iy

where § and §' arepointsin § — ¢ planerepresentedas § = (§,¢) and §' = (§',{"),and 7" = (§',n",{"). T, and [},
show the integral ranges for x and 7, respectively.
If we suppose that the crystal surface is infinitely extended to 7-direction, then the integrals (58) become

O(n€ = 89) yyss—s0r2

v (8 = 3 5inaa, 1@+ ;Wo‘s (50 = &5 = §)) leg e)Xeg Ul (60)
:
VD& E) = D W (so(& — £),50E — ) ek o)) el (ko) 1)
=
using eqs. (56) and (57), where
¢ ¢ e ¢

50(§) =

, sp(§) = (62)

2cosf, 2sinfy 2cosfp  2sinfy

The first term on the right-hand side of eq. (60) can be obtained, using the Fourier expansion of the function G, where the
Fourier coefficient 1/{K? — k?(1 + x,)} is approximated by 1/(2k, - 8k — k?y,) with 8k = K — k,, in the first order
around K = k,. The second term on the right-hand side of eq. (60) and the right-hand side of eq. (61) can be obtained by
integrating with the saddle point method, substituting the second term on the right-hand side of eq. (56) and the right-hand side
of eq. (57) into eq. (58).

According to eq. (59), when the incident wave is singly polarized and its amplitude width is very narrow, namely,
@7 (x) = 5(x) leg° (ko)) (63)
then the crystal waves are expressed as
Py (&) = —2iko, 05 (§,0) |e)° (ko)) , g=0h . (64)

Alternatively, using egs. (50), (51), (60), (61) and (64), they are expressed by
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Yo kC(X X— ) ikxo(so+sp)
®o(s0,51) = 8(sp)elxoso/2 — —LRy, J (Byfsosn) e 2 les® (ko)) , (65)
sin 26, 2sin 26y
ikxo(so+sn)
@, (S0, 5p) = 2 n29 Vo.] (ﬁ\/sosh) e 2 |eh°(k0)) (66)

where sy = 50(§), s, = s,(§) and yo = ko, /k .
Thus, the obtained results are comparable with those shown by the previous theory given by Takagi ?. The expressions of

(10)

the waves given by egs. (65) and (66) are essentially the same as the fundamental solution of Takagi’s equation Therefore,

it may be concluded that the present theory becomes an extension of Takagi’s theory.

7. Conclusion

Many experimental studies on X-ray dynamical diffraction have been performed using experimental arrangements for the
two strong wave case of the transmitted and only one diffracted wave. In that sense, it is important to show in detail what
useful results are derived in the case of the two-wave approximation, when investigating the effectiveness of dynamical
diffraction theory. In this paper, we took up the Laue case, which is one of the typical cases of two-wave diffraction. There,
it has been shown in detail how the wave field in a crystal is represented using the Green’s function, especially in a general case
of arbitrary incident wave with any amplitude function. Ifthe crystals are perfect, it has been shown that the Green's function
is analytically obtained and explicitly expressed with a spherical wave and Bessel functions. In a special case of the present
theory, these results are reduced to those given by Takagi’s theory, and, therefore, the present theory becomes an extension of
Takagi’s theory. In the two-beam approximation, besides the Laue case, there is another typical case called the Bragg case.
Because the boundary conditions are different between the Laue case and Bragg case, the present results are not available for

the Bragg case. A detailed investigation for the Bragg case will be reported in another paper !V,

Appendix

A. Derivation of egs. (47) and (48)

At first, we will show the deviation of the right first term of eq. (47). When performing the Fourier integral of the first term
on the right-hand side of (46) using eq. (45), the longitudinal tensor component |ed(K)){e3(K)| may be added to the
summation of Z |e0 (K))( e, (K)| to use the relation ZM=1|eg(K))( ey (K)| = I®, because the vacuum wave is pure
traverse and so the longitudinal component does not contribute at all to the integral of eq. (33). Then the integral becomes

1
el (r-r") K eik(1+)(0)f|r—r'| 1

3
d
_ Iz u ~ | (60—
GO(T r) f KZ k2(1 +X0) Z |€0 (K)>(e() (K)l (27’[)3 47_[|r _ rrl 47'['1" _ r/l
u=

K-(r-r")>0

@)

Here, the second term on the right-hand side is neglected since it does not propagate as wave, and then the first term on the
right-hand side of eq. (47) is derived.

Next, we explain about the derivation of eq. (48). According to eq. (45), GF(t) (r,r") may be calculated with
2

GO, = Z f Gl (K) exp(iK - (r — ') + i h - r}|el (K)Xe! (K)|

u=1np>0

dK
n)? (Al

In the én¢ coordinate system, since the reciprocal lattice vector h is represented as h = (0,0, 2k sin6y), k(¢) defined
by eq. (54) is a wave vector satisfying the Bragg’s diffraction law, i.e.,|k(¢p)| = |k(¢p) + h| = k. Here, let K to be K =
k(¢) + 6k, and Sk to be represented as Sk = (6kp cos ¢, 6k, sin ¢, Sk() in the én{ coordinate system. Then, it is
shown that (2k(¢) + h) - 6k = 2k cos 0y - 6k, = kt,, and h- S5k = 2ksinfp - 6k; = kr, . The Fourier component
G}, (K) shown by eq. (43) has a significant value around |K|~|K + h|~k. Around this area, §k may be supposed to be
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small amount compared with K, and C,~C(= 1,cos 26 for p = 1,2). If we neglect higher orders of Sk, KOZ =K? =
k2 + k(‘[p - T() and K,>=k*+ k(‘[p + T() so that equation (43) becomes

Cxn
(Tp - k)(o)2 — 12— p?

1
where 8 = kC(xpx-pn)2?-
On the other hand, the phase part of the integrand of the Fourier integral given by eq. (A1) is rewritten as

Gho(K) = = Gy (TP'T( ) (A2)

K-(r—r)=k(¢) (r—r)+ {(f §)cos¢p +(m—n)sind}+ (-7 . (A3)

2cC 2 1n9

Furthermore, ~changing the integral variable as dK = (k cosfp /2sin260g)d¢pdr,dr, and approximating
|e (K))el (K)|~ |e (k(P))) el (k(¢))| the result of the integration of eq. (A1) becomes

F(t)(r r) = Z k cos 0 f _el.k((p) (r—r")+ihr |e;:( k((p)))( (l)‘-( k((P))l Vvh(é‘-)(s’ t) (A4)
Np>0
where
1 o . . dt,drt
VVh((i")(s’ t) = 2 sin 293 ff G;:O(TP’T() elTpS‘HT(t 4p7-[2 ‘ 4 (AS)
and
= seosg (G~ EDcosp+ Gr=nIsing),  t=5m =) (A6)

By substituting eq. (A2) into eq. (A5), the integration of eq. (AS) can exactly be performed. The result is shown by

Jy (857 = e2) etirns, (A7)

Wﬂ t) =
ho(5,8) = " 4sin 29

when s > |t]|. If s <|[t], I/I/h(;4 ) (s,t) = 0. Alternatively, introducing new variables given by
So=S—t, sp =5+t (A8)
equation (A7) is rewritten as the following equation , when s, > 0 and s, > 0.

ikxo(so+sn)

M/;l’:)(so,sh) ~Zsin 29 J (ﬁ\/ sosh)e 2 . (A9)

If 5o <0 or s, <0, W/ (s s,)=0. Finally,ifintegrate eq. (A4) with the saddle point method, equation (A4) is reduced
to eq. (48). In this case, there are two saddle points ¢ = ¢, and ¢ = ¢, + m. But the latter saddle point is excluded,
because the integral constraint condition, 1, = 2K + h) - (r —r') = 2k(¢p) + h) - (r —r') > 0, that is, cos(¢ —
¢o) >0, as derived from k(¢p)  (r—1'")=kcosOz-pr—1'")-cos(¢p —¢y) —k sinfz-({—-¢) and h=
(0,0,2k sinfg). Similarly, the second term on the right-hand side of eq. (47) can be derived. If we refer the second term
of eq. (46) as G(’fo(z) (K), using egs. (43) and (A2) it can be rewritten

1 .k4le)(h)(_h kZC b (K) ~ ( )
KZ—k*(1+y,) DMK k2(1+ ) o (t, —r() gy Cro\Ter -

Gao () =

By integrating this term according to eq. (45), similar to derive from eq. (A1) to eq. (A4), the following result is derived:
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2

Z f Gho” (K) expliK - (r — 1)} eg (K)){ef (K)| %

n=1n,>0
X (A10)
d¢ ik(p)-(r—1") | 4 I3 (]
= ) kcost, | e B ONCACONAZ DY
u=1 N0>0
Here,
- u
W (s, t) = kCxn ff Gro (7, 7¢) iTpsHiTst drydrg (A1)
00 \S 2sin 26, (Tp — T() —kx, 472

The integration of eq. (A11) becomes

S

0

KC*XnX_h oy L COtnx-)"* | s

(@) - _ hA-h ikyes — = _j_MhA-h k 20

Wy (s, t) = Z5in20, el xoszf dso J, (B/sosn) = —i 4sin20, eikxos shjl (By/s05n) (A12)
0

when sy >0 and s, > 0. If s, <0 or s, <0, Wo(ou ) =0. Finally, if the right side of eq. (A10) is integrated with the

saddle point method, then the second term on the right-hand side of eq. (47) can be derived.
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