Radio and Plasma Wave Investigations (RPWI) in Japan

Radio: first Direction/Polarization, Subsurface (80kHz – 45MHz)
Wave: first Wave-Particle interaction (few – 1MHz/20kHz)
E-field: first DC E-field measurement (Langmuir probe)
Plasma: first Low-T plasma measurement (Langmuir probe)

LATEST Status (just after SWT [Sep @ ESTEC] & RPWI-Airbus [Oct @ Uppsala] meetings)

* EM1: Shipment to Europe on 8 Feb 2016
 - Development & Tests in Japan
 - First integration tests with all RPWI

* 'Software-type Wave-Particle Interaction Analyzer' (SWPIA) function for ion heating
 with MAG (B-field) & PEP (ion) teams.

* 'Passive SubSurface RADAR (PSSR)' function
 for the detection of 'ICE – WATER boundary'
 = subsurface ocean surface
 by the reflection of Jovian radiation.

Radio and Plasma Wave Investigation (RPWI) on JUICE
(Jan. 2016) -1-

Radio and Plasma Wave Investigation (RPWI) on JUICE
(Jan. 2016) -2-

Radio and Plasma Wave Investigation (RPWI) on JUICE
(Jan. 2016) -3-
Radio and Plasma Wave Investigations (RPWI)

RPWI: Contribution from Japan

[PI] Jan-Erik Wahlund
(IRF – Uppsala, Sweden)

[Co-PI] Y. Kasaba (Tohoku Univ.)

<Remote sensing: Radio>

- **[HF-System]**
 - Preamp (Tohoku/Meisei)
 - HF – Receiver (Tohoku/Meisei + IRF-Uppsala)
 - DPU: HF - Software (Tohoku/Kanazawa)

- **[HF-System]**
 - IRF-Uppsala

- **[LF-System]**
 - Software-type WPIA (Tohoku/Kyoto/Kanazawa)

- **[LP-System]**
 - Contribution to design: E/B sensor, Wave-Particle correction

<In-situ: Wave, DC-field, Low-T plasma>

- **[LF & LP-System]**
 - **[Science]**
 - Contribution to design: E/B sensor, Langmuir Probe (Kyoto/Kanazawa/Tohoku)

- **[Heritage]**
 - MMO/WPT-Pre Kaguya/PWS-Pre
 - RWI-Pre BBM (developed from 2012)

<In-situ: Wave, DC-field, Low-T plasma>

- **[Critical] Radiation, Low-T, Long herness**
 - 2.5m tip to tip x 3 pairs (8m from S/C)

[Heritage]

- MMO/WPT-Pre Kaguya/PWS-Pre
- RWI-Pre BBM (developed from 2012)

Radio and Plasma Wave Investigation (RPWI) on JUICE

(Jan. 2016)
Radio and Plasma Wave Investigation (RPWI) on JUICE

RPWI: Contribution from Japan --- H/W

- **High Radiation** (Mrad ??)
 - “Al 3.0mm + Ta 1.3mm”
 - <100krad

- **Long Harness** (10.5m for 50MHz)
 - To be tested in Nov. - Dec.

- **Low Temperature (30-40 K ??)**
 - LN2 (-77K) test
 - Ok above 45K!
 - Low-TEMP chamber
 - in TU & Meisei

LN2 low temperature function and performance test (BBM#2, 2013)

LN2 low temperature Shock-cycle test ‘300K <> 80K’ x 20 (BBM#4, Sep 2015)

Thermal Vacuum Test: +120 ~ -150degC (BBM#4, 2015)

RFWI

- Long Harness (10.5m for 50MHz)
 - To be tested in Nov. - Dec.

Plasma wave receiver (Waveform observation)

- **Pros**
 - Less attenuation ($\propto 1/f$) in the subsurface media is expected in ~1MHz.
 - Radio Source: Low-Frequency (& Wide-band) radio waves from Jupiter which continuously emitted.

Cons

- Jupiter-side area of the moons only (Ganymede: 7.15 day orbit around Jupiter)

Pros

- Radio Source: Low-Frequency (& Wide-band) radio waves from Jupiter which continuously emitted.

Cons

- Jupiter-side area of the moons only (Ganymede: 7.15 day orbit around Jupiter)

- **Jupiter case: AKR by Kaguya LRS**

Direct measurement of energy flow by Wave – Electron/Ion interaction

- It is larger demand for the low-TLM missions!

- **Pros**
 - Radio Source: Low-Frequency (& Wide-band) radio waves from Jupiter which continuously emitted.

- **Cons**
 - Jupiter-side area of the moons only (Ganymede: 7.15 day orbit around Jupiter)

Ice crust

- ~150km thickness?

Liquid Ocean

- ~500km away
Radio and Plasma Wave Investigation (RPWI) on JUICE

[<Reflectance>]

Space ($\varepsilon_r=1$) \Leftrightarrow Ice ($\varepsilon_r=3$) \Leftrightarrow Liquid ocean ($\varepsilon_r=87$)

Surface echo (Space \Leftrightarrow Ice)

$$R_S \sim 0.27$$

Subsurface echo (Ice \Leftrightarrow Ocean)

$$R_{SS} \sim (1-0.27) \times 0.69 \times T_{ice}$$

$$\sim 0.50 \times T_{ice}$$

<Transmission in ice ~ 150 km>

$$T_{ice} \sim 0.25 - 0.06 @ 50$MHz$$

$$[f_{TiO2,FeO} = 1 - 10\%]$$

Ice thickness: $D>150$km

(suggested in prev. studies)

[kivelson et al. 2002; Spohn and Schubert, 2003]

<Reflectance>

PSSR (passive radar) @ 1MHz

[up to ~ 90km ??]

[Transmission in ice ~ 150 km>

PSSR (passive radar) @ 1MHz

[up to ~ 90km ??]

Ice ($\varepsilon_r=3$) \Leftrightarrow Liquid ocean ($\varepsilon_r=87$)

Surface echo (Space \Leftrightarrow Ice)

$$R_S \sim 0.27$$

Subsurface echo (Ice \Leftrightarrow Ocean)

$$R_{SS} \sim (1-0.27) \times 0.69 \times T_{ice}$$

$$\sim 0.50 \times T_{ice}$$

[<Transmission in ice ~ 150 km>]

$$T_{ice} \sim 0.25 - 0.06 @ 50$MHz$$

$$[f_{TiO2,FeO} = 1 - 10\%]$$

Ice thickness: $D>150$km

(suggested in prev. studies)

[kivelson et al. 2002; Spohn and Schubert, 2003]

[jankovics et al. 2012]

[jankovics et al. 2012]