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Abstract 

This paper presents a framework of accuracy assured machining which enables information driven 
manufacturing. As a framework of accuracy assured machining, a closed loop machining operation is 
proposed based on four fundamental functions. They are physics conscious operation planning, 
intelligent monitoring, on-machine shape measurement and error source estimation and determination 
of re-machining strategy. Last three functions are essential in accuracy assured machining. As a 
preliminary development of the accuracy assured machining, a method to achieve a rapid and 
accurate on-machine shape measurement is also explained. 
 
Keywords: Accuracy assurance, line laser displacement sensor, process monitoring 

 

 

 
1  INTRODUCTION 

 
From the MAP (Manufacturing Automation Protocol) 

project proposed by General Motors in 1980’s, network 
connectivity of manufacturing facilities has been an 
important issue. Recently, network connected and 
information driven manufacturing based on modern 
information technologies such as IoT (Internet of 
Things), Cloud computing technology and CPS 
(Cyber-Physical System) becomes a realistic solution(1). 
In such an emergent manufacturing system, agile and 
smart adaptation to changeable demands must be 
accomplished (2). Functional modularity of each facility 
is an essential characteristic of the system. Accuracy 
assured part machining guarantees the modularity of 
machining stations. In the conventional manufacturing 
system, accuracy inspections are separated from 
machining station. Furthermore, accuracy 
improvements are often based on an empirical human 
know-how.  

It is reported that a closed loop machining using 
on-machine shape measurement can achieve an 
accuracy assured machining (3)(4). Furthermore, 
contactless measurement using a laser displacement 
sensor is also reported as a promising method for 
on-machine shape measurement. From the previous 
research related to the closed loop machining, the 
following problems have not been overcome. 

 Efficiency and accuracy of measurement are not 
enough to utilize actual machining situation. 

 There is no systematic re-machining principle.  
 Monitoring of machining process is not 

integrated to the closed loop machining. 
The objective of this research is to construct a 

systematic accuracy assurance procedure and to design 
a prototype of the accuracy assured machining station 
based on an intelligent monitoring method (5) and rapid 
on-machine shape measurement. A framework of the 
accuracy assured machining and developed 
fundamental methods are explained in this paper. 

 
2  FRAMEWORK OF ACCURACY ASSURED 

MACHINING 
 

In order to overcome the problems of conventional 
machining process, on-machine shape measurement 
and error source estimation based on intelligent 
monitoring are introduced. Figure 1 illustrates a 
framework of an accuracy assured machining. The 
framework contains four topics: 1) physics conscious 
operation planning, 2) intelligent monitoring, 3) 
on-machine shape measurement and 4) Error source 
estimation and determination of re-machining strategy.  
Before the machining, operation planning is generated 
based on a machining process simulation. The method 
is called model-based operation planning. Furthermore, 
predicted machining situations are recorded as a 
systematic representation scheme which is called 
machining scenario (6)(7). During the machining, an 
accurate and workpiece wide state estimation method is 
applied. The method is based on a combination of 
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(a: before temperature controlling) 
 
 
 
 
 
 
 
 
 
 
 

(b: after temperature controlling) 
 
Fig. 6 Comparison of vibration waves (N = 25 s 1; W = 
20 N; Cooling of T2, T3, and T4; Heating of T1 and T5) 
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APPENDIX 
 
Nomenclature 
N : rotational speed 
t : temperature 
W : bearing load 
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locally measured values (temperatures and strains) and 
the process simulation technique (5). After the 
machining, workpiece shape is measured by using a 2D 
laser displacement sensor. The 2D displacement sensor 
enables rapid measurement of the workpiece shape. A 
method to improve an accuracy of the 2D displacement 
sensor will present a next section. Furthermore, the 
measured shape is compared with designed workpiece 
shape. If the accuracy is not sufficient, error sources 
must be estimated. Development of a method to 
estimate the error source is a future work of this 
research. Decomposition of machining error into 
possible error source based on a compositional 
machining model (7) is a possible approach to estimate 
the error source. Conventional approach to 
re-machining is only based on geometrical information. 
By using the estimated error source, a determination of 
a re-machining strategy will become more rational and 
reasonable. Based on the strategy, operation planning 
for re-machining can be carried out. The re-machining 
is executed same as the original procedure. This 
systematic and rational re-machining process is 
expected to reduce a number of trials. From the 
following sections, methods to implement the proposed 
framework are presented. 
 

3  ON-MACHINE SHAPE MEASUREMENT 
 

Contactless on-machine measuring systems have been 

attracted attention for accuracy assurance of products. 
2D laser displacement sensors are expected as 
promising devices because of their efficiency. However, 
their accuracies are not enough to utilize on-machine 
shape measurement (8)(9). An accuracy improvement 
method is necessary to utilize the 2D laser sensor to the 
on-machine shape measurement. 

In order to improve the accuracy of the 2D laser 
sensor, a geometrical feature-based compensation 
method is evaluated. In this method, local workpiece 
shape is categorized into pre-determined shapes such as 

 
Fig.1 Framework of accuracy assured machining 

 
Fig.2 Measured data for 10mm gauge block 

 

 
Fig.3 Experimental setup 

 

 

Fig.4 Measured error at different conditions 
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flat plane, cylindrical surface, sphere and so on. Output 
values of sensor for each shape category are calibrated 
in advance. In this paper, compensation for flat plane is 
evaluated. 

As a reference flat surface, gauge blocks (Mitsutoyo 
Rectangular Gauge Block grade 0) which have accurate 
dimensions are employed for calibration. Based on 
measurements of gauge blocks surface with 2D laser 
sensor (Keyence LJ-V7080, measurement range 
±23mm, linearity 0.1% of measurement range), the 
characteristics of the sensor are obtained. The 
dispersion of measured values follows the normal 
distribution as shown in Fig. 2. Therefore, 
compensation of measured values by averaging is 
considered effective. Differences between the average 
value and real displacement come from the 
measurement range. It is expected that measured values 
can be compensated as a function of the distance 
between a sensor head and a workpiece surface. In 
order to verify this assumption, seven workpieces 
which have 5-35 mm height are set on a z-table and 
measured by moving z-table shown in Fig. 3. The result 
is shown in Fig. 4. 

A compensation model based on a multiple regression 
model is derived from the measured data. The 
suitability of the compensation is evaluated by 
comparing the compensated values and the result of 
precise measurement. Different workpiece is prepared 
as an evaluation object. A 3D-CMM and an accurate 
digital micrometer are employed as the precise 
measurement instruments. Figure 5 shows comparison 
of these values. The compensated values show good 
agreement with the results of precise measurements.  

This result shows a feasibility of efficient and accurate 
contactless measurement. However, the proposed 
compensation method is to be applied for a workpiece 
which have a flat top. Compensation for measurement 
of 3-dimensional shape including cylindrical surface, 
sphere and curved surface is a future works of this 
research. 
 

4  INTELLIGENT MONITORING 
 

Modern machine processes are separated from the 

operators to secure the safety. This separation will be 
enlarged in the digital and networked production 
situations. Therefore, monitoring technologies become 
more important than the conventional operator 
controlled machining environment. A framework for 
accurate and simple setup monitoring method has been 
proposed. The framework is based on combining 
locally measured information and FEM (Finite Element 
Method)-based process simulation (5). 

 
Fig.7 Configuration of thermal state estimation 
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Fig.5 Evaluation of compensated values 

8.8800
8.9000
8.9200
8.9400
8.9600
8.9800

-20 -15 -10 -5 0 5 10 15 B C

H
ei

gh
t  

of
 a

 ra
nd

om
 w

or
k

m
m

Height of z-table mm / Insturuments

Measured value Compensated value

 
Fig.6 Adaptive estimation procedure 
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locally measured values (temperatures and strains) and 
the process simulation technique (5). After the 
machining, workpiece shape is measured by using a 2D 
laser displacement sensor. The 2D displacement sensor 
enables rapid measurement of the workpiece shape. A 
method to improve an accuracy of the 2D displacement 
sensor will present a next section. Furthermore, the 
measured shape is compared with designed workpiece 
shape. If the accuracy is not sufficient, error sources 
must be estimated. Development of a method to 
estimate the error source is a future work of this 
research. Decomposition of machining error into 
possible error source based on a compositional 
machining model (7) is a possible approach to estimate 
the error source. Conventional approach to 
re-machining is only based on geometrical information. 
By using the estimated error source, a determination of 
a re-machining strategy will become more rational and 
reasonable. Based on the strategy, operation planning 
for re-machining can be carried out. The re-machining 
is executed same as the original procedure. This 
systematic and rational re-machining process is 
expected to reduce a number of trials. From the 
following sections, methods to implement the proposed 
framework are presented. 
 

3  ON-MACHINE SHAPE MEASUREMENT 
 

Contactless on-machine measuring systems have been 

attracted attention for accuracy assurance of products. 
2D laser displacement sensors are expected as 
promising devices because of their efficiency. However, 
their accuracies are not enough to utilize on-machine 
shape measurement (8)(9). An accuracy improvement 
method is necessary to utilize the 2D laser sensor to the 
on-machine shape measurement. 

In order to improve the accuracy of the 2D laser 
sensor, a geometrical feature-based compensation 
method is evaluated. In this method, local workpiece 
shape is categorized into pre-determined shapes such as 

 
Fig.1 Framework of accuracy assured machining 

 
Fig.2 Measured data for 10mm gauge block 

 

 
Fig.3 Experimental setup 

 

 

Fig.4 Measured error at different conditions 
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Because transient heat conduction problem is 
formalized based on FDM (Finite Differential Method) 
formulation in time domain, the problem is solved step 
by step. Simulation results are obtained as the time 
series of thermal states. As shown in Figure 6, we 
introduce a model tuning procedure into the every state 
transition. Concerning the thermal state estimation, 
parameter tuning of heat transfer coefficient and heat 
flux is enough to realize the model tuning. A procedure 
of thermal estimation is as follows: 

1. Measured state of predetermined region (RSi) and 
simulated state at present step (SSi ) are compared. 

2. Model parameters are estimated based on the 
results of comparison. 

3. Simulated state at next step (SSi+1) is calculated 
by using the estimated parameters.  

By tuning the model parameters at every state 
transition, the procedure is expected to achieve an 
adaptively of situational variation.  

Figure 7 illustrates a configuration of the prototype 
system developed for the thermal state estimation. The 
prototype system consists of two major modules. They 
are a data collector and a state estimator. The system 
acquires temperatures of predetermined points by using 
thermocouples when a data acquisition request message 
is sent to the data collector. A minimum interval of data 
collection is one second. A state estimator is developed 
based on an optimization method which searches 
parameters. The Quasi-Newton method is employed as 
an optimization method. FEM analysis provides to 
evaluate the optimization candidates. After iterating the 
optimization procedures, appropriate parameters to fit 
the measured data are selected so as to reduce the 
difference between measured data and corresponding 
analysis results. After determining the parameters, the 
estimation step is incremented to a next time step. 
Communication between state estimator and data 
collector is implemented based on RS-232C protocol. 
All software are coded by C++ language.  

Figure 8 shows an example problem for an evaluation 
of the procedures of thermal state estimation. 
Workpiece material is S45C steal. Axial depth of cut is 
1mm and tool path is shown in Fig 8(a). Measurement 
points of temperature for the estimation are also 
illustrated in Fig. 8(b). By using these measured 
temperatures (Ch1, Ch3, Ch6), temperature distribution 
in transient heat conduction is estimated. In this case, a 
heat flux of the heat source and a heat transfer 
coefficient of the surface are estimated as variable 
parameters. From the comparison between the 
measured temperature and estimated temperature at 
Ch2 and Ch 7, mean square errors of both points are 
less than 3°C (5). Figure 9 shows the estimated 
temperatures distribution at different time. By using the 
limited surface information, a whole temperature 
distribution of workpiece can be estimated accurately. 
Converging this information into the machining error 
information obtained by post-process measurement is 
an important future work. 
 

5  CONCLUTIONS 
 

As a basic component for the smart manufacturing, a 
concept and framework of accuracy assured machining 
are proposed. As the topics regarding fundamental 
technologies to implement the proposed concept, 
outline of on-machine shape measurement and 
intelligent monitoring are explained. Although the 
results are only from small-scale evaluation, these 
technologies can be employed to implement the 
accuracy assured machining.  By integrating these 
technologies, the changeable manufacturing, which 
enables product personalization, becomes a common 
production style in near future. 
 
 

 
Fig.8 Experimental setup and tool path 

 
Fig.9 Temperature distribution of workpiece 
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Because transient heat conduction problem is 
formalized based on FDM (Finite Differential Method) 
formulation in time domain, the problem is solved step 
by step. Simulation results are obtained as the time 
series of thermal states. As shown in Figure 6, we 
introduce a model tuning procedure into the every state 
transition. Concerning the thermal state estimation, 
parameter tuning of heat transfer coefficient and heat 
flux is enough to realize the model tuning. A procedure 
of thermal estimation is as follows: 

1. Measured state of predetermined region (RSi) and 
simulated state at present step (SSi ) are compared. 

2. Model parameters are estimated based on the 
results of comparison. 

3. Simulated state at next step (SSi+1) is calculated 
by using the estimated parameters.  

By tuning the model parameters at every state 
transition, the procedure is expected to achieve an 
adaptively of situational variation.  

Figure 7 illustrates a configuration of the prototype 
system developed for the thermal state estimation. The 
prototype system consists of two major modules. They 
are a data collector and a state estimator. The system 
acquires temperatures of predetermined points by using 
thermocouples when a data acquisition request message 
is sent to the data collector. A minimum interval of data 
collection is one second. A state estimator is developed 
based on an optimization method which searches 
parameters. The Quasi-Newton method is employed as 
an optimization method. FEM analysis provides to 
evaluate the optimization candidates. After iterating the 
optimization procedures, appropriate parameters to fit 
the measured data are selected so as to reduce the 
difference between measured data and corresponding 
analysis results. After determining the parameters, the 
estimation step is incremented to a next time step. 
Communication between state estimator and data 
collector is implemented based on RS-232C protocol. 
All software are coded by C++ language.  

Figure 8 shows an example problem for an evaluation 
of the procedures of thermal state estimation. 
Workpiece material is S45C steal. Axial depth of cut is 
1mm and tool path is shown in Fig 8(a). Measurement 
points of temperature for the estimation are also 
illustrated in Fig. 8(b). By using these measured 
temperatures (Ch1, Ch3, Ch6), temperature distribution 
in transient heat conduction is estimated. In this case, a 
heat flux of the heat source and a heat transfer 
coefficient of the surface are estimated as variable 
parameters. From the comparison between the 
measured temperature and estimated temperature at 
Ch2 and Ch 7, mean square errors of both points are 
less than 3°C (5). Figure 9 shows the estimated 
temperatures distribution at different time. By using the 
limited surface information, a whole temperature 
distribution of workpiece can be estimated accurately. 
Converging this information into the machining error 
information obtained by post-process measurement is 
an important future work. 
 

5  CONCLUTIONS 
 

As a basic component for the smart manufacturing, a 
concept and framework of accuracy assured machining 
are proposed. As the topics regarding fundamental 
technologies to implement the proposed concept, 
outline of on-machine shape measurement and 
intelligent monitoring are explained. Although the 
results are only from small-scale evaluation, these 
technologies can be employed to implement the 
accuracy assured machining.  By integrating these 
technologies, the changeable manufacturing, which 
enables product personalization, becomes a common 
production style in near future. 
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