

ISSN 2185-2375

大同大學紀要

第 51 卷

2015

ISSN 2185-2375

大同大學紀要

第 51 卷

2015

目 次

学生の英語力自己認識について

梅田礼子 1

流体潤滑下におけるテクスチャ表面の潤滑液流れの可視化

坪井 潤 7

Repeatability Evaluation Using Contact Finite Element Modeling

篠原主勲 石村康生 荻芳郎 田中宏明 松本康司 11

Special function:Leaf function $r=sleaf_n(l)$

(First report)

篠原主勲 23

Special function:Leaf function $r=cleaf_n(l)$

(Second report)

篠原主勲 39

液相合成法によるダイヤモンド様炭素膜の作製

橋本雄一 69

RHEEDロッキング曲線によるZnO(0001)表面の極性評価

堀尾吉巳 安部功二 高桑雄二 75

油汚染地盤に対する汎用的な非掘削浄化技術開発に関する室内土槽実験

棚橋秀行 81

最小定和の素数魔方陣の検索

大石弥幸 91

簡易脳波センサを用いた快・不快音聴取時の情動推定に関する一考察

柴田 慎一 秋田 貴俊 木村 春彦 97

小型PCクラスタ実験システム構築の検討

本田隆司 105

福祉サービス事業所の抱える課題の研究を卒業研究として推進した結果にみる

教育観点での効果

横井健二 109

ドイツにおける鉄道貨物ターミナルの実態に関する研究

小澤茂樹 121

匠の技と伝統技術その可能性と限界について

—越前打ち刃物と関の刃物の比較研究—

西崎雅仁 133

催事販売型インターンシップ・プログラムの開発と検証

村松俊明 西崎雅仁 143

実践体験型PBLによる就業力育成の試み

村松俊明 西崎雅仁 181

研究成果報告 189

学生の英語力自己認識について

Students' perception of their own English skills

梅田 礼子*

Reiko Umeda

Summary

Students with good skills of English tend to observe their own skills analytically. While those with poor skills of English tend to see themselves just as “I am weak in English” or “English is too difficult a subject for me,” without analyzing the skills and knowledge they’ve acquired. They judge their skills of English top-down, not bottom-up. This “unconscious” perception can affect their attitude toward learning English negatively. Breaking this wrong perception can be one of the ways to lower the psychological barriers those students have toward learning English.

キーワード：無意識、心理的障壁

Keywords : unconscious, psychological barriers

1. はじめに

語学学習において、基礎を固めること、特に文法と語彙の基礎を固めることは大変重要である。大同大学ではこの目的に照らして、特に基礎学習を行う一年生科目でこれまで対策を講じてきた。2005 年には「基礎英語」科目において学年全体で統一のテキストを使用することとし、前年度から外国語教室スタッフで作成した、基礎的な語彙・文法・短い文章の読解を総合的に学習できるテキストを使用した。2008 年には同じスタイルで新たなテキストを作成し、シラバスも統一した。2009 年からはリメディアル制度を開始、2012 年から英語教育改革の名のもとに新カリキュラム開始、1 年の基礎英語文法、基礎英語リーディングは合冊の新規作成テキストを使用し、より徹底して基礎を固めることができるように制度を整えてきた。また、単語学習も並行して行うことを開始した。

これら制度改革を行ってきたが、学生の英語力が飛躍的に伸びたという結果は出てきていないようである。2010 年、2011 年ごろの一時期増えていた不合格者数が 2014 年には 2009 年以前程度（全体の 2 割程度）に落ち着いたが、2012 年より統一の単語テストを半期に三回行っていて、その点数が 30 点分評価に含まれている。単語テストは範囲が狭く、すべきことも限られており、取り組みやすいためか、平均点が 10 点中ほぼ毎回 9.0 点前後と高い。これを含めての成績評価であるため、2012 年以後は不合格者が落ち着いてきたと言っても楽観はできない。むしろ、基礎英語文法、基礎英語リーディング自体の得点は下がっている可能性もある¹⁾。

このように、さまざまな対策にも関わらず、学生の英語基礎力が、こちらが期待するほど順調に伸びるということが見られず、試行錯誤の段階にある。

半期ごとに行う学習到達度評価アンケートの、自習時間の質問の回答を見ると、週当たりの当該科目にか

* 大同大学教養部外国語教室

けた学習時間が「30分未満」が科目にもよるが5~6割を占める。「30分未満」には「0」も含んでおり、分けて聞いていないので詳細は不明だが、語学学習で、週あたり学習時間が最大の30分であったとしても、十分とは言えない。学生にとって、英語を学習するという動機づけがあまりないように見受けられる。

制度や教科書などは整備してきたが、学生自身の態度や考え方を変える方策が必要なのではないだろうか。それについて考察する。

2. 学生による自己評価～学習到達度評価アンケートより

学生は自己の英語力をどのように評価しているか、二種類のアンケートから観察する。

2.1 学習到達度評価アンケートより

本学では半期ごとに全科目で行う「学習到達度評価アンケート」という、自己の学習を振り返るアンケートがある。欠席状況やその科目にかけた学習時間を聞く項目と、各科目で定めた学習到達目標に関し、自身の到達度を回答する項目、それに任意で自由記述形式で、到達目標の到達度評価が低い項目、高い項目についてその理由を自己分析する記述欄がある。

この自由記述欄の記入率は高くなく、30~40名程度のクラスで毎回2~6名程度、1年生は「英語基礎文法」や「基礎英語グラマー」を筆者は3クラス担当していて、合計で12~16名程度、多い時で20名程度、である。しかし、学生にとっては、全科目でこのアンケートがあり、毎回しっかり記述するのはやや面倒だと思われる中、わざわざ何か書いているのはよほどコメントしたいことである。軽視すべきでない。この自由記述を観察すると、クラス編成・レベルによって少し興味深い事実が見えてきた。

2005年頃より1年生についてはプレイスメントテストにより習熟度別クラス編成としており、2011年までは完全な輪切り、段階別としていた。そして、当時の主任の判断により、専任はなるべく下位クラスを担当していた。2012年から新主任となり、専任は上位層の引き上げを行うということで、主に上位クラスの担当となった。この、クラスレベルによって、自己分析記述に少し違いが見られる。

2.1.1 上位クラスでの「低い項目」についての理由分析

2012年以降、筆者の担当している1年3クラスは1つが上位クラス、あと2つは中・下位のミックスクラスであるが、成績からは実質的に2つがやや上位・上位クラス、もう1つは下位クラスと呼んでよいレベル

である。上位クラスではbe動詞や動詞の過去形、進行形等の基本事項の復習は学生にとって退屈だが、下位クラスではそうした基礎もまだ固まっていない学生もいる、というくらいの開きがある。上位クラスで「難しい」「英語は元々苦手」など、全面的に否定的な分析をした記述は25年後期に1名、27年前期に4名あったのみである。(27年前期は通常に比べて記述数自体が多く、計22名記述があった。)

上位クラスでの、「到達度評価が低い項目」の理由分析では、全面的に自分の英語力がない、と書くのではなく、理由を分析的に書いているものが多く見られる。

(1) 上位クラス「低い項目」の理由分析記述

- ・文章の音読や訳が苦手。プリントの文を自分で訳せなかった。
- ・語句の意味などのストックが少ない。単語テキストで学習したが、まだ意味をだいたいしか理解できていない。
- ・理解しようと深めればよかったです。
- ・関係代名詞の使い分けが最後まで出来なかった。自分の努力不足以外の何物でもない。
- ・時々英語圏特有の言い回しがあり、訳すのが難しかった。
- ・三人称のSを忘れたりするのをなくしたい。
- ・形容詞と補語を時々間違えてしまうことがあったので3にした。
- ・分詞がしいて言えばあまりできなかった。
- ・最初の方の授業が簡単だったから。
- ・高校でやった単語が多かったから[最後二つは学習時間が低いことの理由と思われる]。

このように、全面的に自分は英語ができない、というのではなく、ある文法項目は習得できているが、ある特定の項目がまだ習得できていない、と分けて分析している。

2.1.2 下位クラスでの「低い項目」についての理由分析

これに対し、下位クラスでの「到達度評価が低い項目」についての理由分析では、以下のように全面的な否定コメントが多い。

(2) 下位クラス「低い項目」の理由分析記述

2012年以降の、中・下位ミックスクラス

- ・極めて低い項目はないが、少し授業スピードが速く、ついて行くことが難しいことがあった。
- ・ちゃんと理解できていなかったから。
- ・文法問題が苦手だったので。
- ・やる気が起きなかった。・自分の学習不足。2名
- ・英語は苦手だったので、難しかったし、覚えられているか微妙。けど、最初よりは理解できていると思

う。

- ・全くできない自分には難しすぎた。
- ・英語力が低いため、あまり英語を理解することができなかつた。
- ・完了形はもともと苦手。

2011 年までの完全習熟度別制度での下位クラス

2006 年

- ・英語をやることでいかなる知的興味を引き出そうとするのか分からず、英語はできればやりたくない。
- ・自分の学習不足。2名
- ・元々苦手。・単語力不足。
- ・外国語、英語が苦手、能力が低い。3名
- ・英語が好きになれない。

2007 年

- ・英語は元々苦手。8名 特に文法2名 内「大学に入ってやる気になった」1名
- ・難しい。4名 ・学習不足。5名

2008 年

- ・英語は苦手。・基礎ができていない。
- ・復習が足りなかつた。3名
- ・何から覚えていいのか分からなかつた。覚え方が分からぬ。
- ・いろいろと無理。・難しい。2名

2009 年

- ・日本人だからか、英語は難しく思われ、そのせいか勉強もはかどらずこのような結果になつてしましました。
- ・中学の時から苦手だった。
- ・英語が苦手なのでこれくらいがよい。

2010 年

- ・英語が嫌いだから。
- ・単語の意味が分かっていないから訳せない。

2011 年

- ・英語が苦手。5名
- ・まだしっかりと英語を覚えていないので、文法が似たものがたくさんで理解しきれなかつた。
- ・予習復習を全くと言っていいほどしてない。

このように、ほぼ毎年、毎期、「英語が苦手」「英語は難しい」「無理」等、自己の英語力、学習能力を全面的に否定するようなコメントが見られる。

2.1.3 上位クラスでの「高い項目」についての理由分析

一方で、到達度評価が高い項目について、その理由をどう分析しているか。上位クラスでは客観的に、自己の基礎力を分析している記述が多い。

(3) 上位クラス「高い項目」の理由分析記述

- ・基礎のところをよくやっていたので{十分理解する

ことができた。/前からできる。/基礎が固められた。}

(類似 8名)

・英語の語法は高校でいっぱい習ったからよくできた。(類似 2名)

・ある程度の内容はすべて理解している。後は練習のみ。

・英語は元々好き、勉強が苦じやなかつたから。

・分かりやすかつた。

・毎回小テストがあつたので、内容はだいたい理解できた。

・スライドとメールの二つで復習ができたので、小テストが前期に比べて良かった。

・丁寧に教えていただき、助かつた。

・英語が苦手でも分かりやすく解説していたから。

一部、授業方法へのコメントと思われるものもあるが、大半が高校までの既習事項、基本なのですでにおよそ理解できている、という理由であった。

それではそのような高校までで学習した基本が固まつてない下位クラスでは、成長の望みが無いのだろうか?前節(2)の「低い項目」の理由分析記述を見ると、かなり諦めている様子が見え、どのような対策をすべきか、指導側も苦慮する状態である。その下位クラスでも、ある程度目標に到達できたケースもあり、その理由分析を見てみよう。

2.1.4 下位クラス「高い項目」の理由分析記述

(4) 下位クラス「高い項目」の理由分析記述

・中高からの知識でできた、基礎的なことだったのである程度できた5名

・苦手だが頑張った、苦手だが分かつた場所が多くあつた。

・教科書に入る前に基礎の基礎からやつたのでわかりやすかつた。6名

・最初から教えてくれた、説明が丁寧だった等。

・自信が持てた。

・授業と補習センターで同じことを何度も教えてもらってやつとわかってきた気がする。

・パワポのデータを送つてもらったおかげで予習や勉強がしやすかつた、よく理解できた。

一部、元々の知識で出来た層も下位クラスにあるが、「基礎からやつたので分かりやすかつた」というコメントが多い。学年統一テキストが導入されたが、下位クラスでは be 動詞や人称代名詞、動詞の形といったかなり入門期の事項でつまづいている学生が多く見受けられたため、入門事項に絞ったプリントを作成し、基礎を徹底学習してからテキストに入った。それにより、2.1.2 節(2)の低い項目の理由分析に見られるような、全面的な自己の英語力否定ではなく、この項目は分かつたが、この項目はまだ理解できていない、暗

記しきれていない、など整理ができたようである。少しずつでも理解できる項目が増えてくると自信に繋がる。それが学習意欲にも繋がるようで、完全習熟度別の下位クラスを担当していた時は、机間巡視の際に質問が多く出た。授業評価アンケートの教員コメントに「多くの質問が出て丁寧に回答した。これはミックスクラスでは対応できていなかったと思われる」とコメントしている。完全習熟度別制では下位クラスで諦めの気持ちから学習意欲が低下するのではないか、受講態度が悪くなるのではないかという懸念から、現在は上位クラスのみ切り分け、中・下位がミックス、という制度になっている。しかし、筆者が数年にわたり下位クラスを担当した経験からは、確かに当初は諦めや拗ねるような態度が出そうであったが、丁寧に説明する、初步的質問にも丁寧に対応する、ということを続いていると、次第に「この部分は分かってきた」という状況になり、受講態度も良好であった。学科にもよるが、苦手な者同士の連帯感が生じて皆で努力したクラスもあった。というように、マイナス面ばかりではないように感じた。

ただ、期末試験までに暗記・知識の定着が間に合わない学生も多く、基礎徹底学習をしたからといって即多くが優秀な成績で合格、とは行かなかった。が、不合格の学生が「今まで何が分からなかつたが、今期でそれがだいぶ分かってきた。再履修では合格出来る気がする」と感想を伝えてくれたこともあった。各自の理解度に応じて丁寧に指導できるのはやはりメリットである。

3. 学生による自己評価～授業外学習補助システムについてのアンケートより

2013 年度より授業外学習の促進手段として、授業で使用したパワーポイントファイルをクラウドストレージに保管して提供することを開始、2015 年からは授業で学習した文法事項や単語の解説、辞書の利用法、勉強法、文化にまつわる話などをブログに記載して提供している。

3.1 ブログ等利用に関するアンケートより

これらの利用状況について、2015 年（平成 27 年度）前期、5 月の連休明けに 1・2 年生にアンケートを取った。4 月にこれらサービスについて周知してから日が浅かったためか、利用している学生は各学年とも 2 名程度であった。

興味深かったのが、改善提案についての質問に、ほとんどが利用していない状況なのに回答してくれたことである。2 名を除き利用していないのに、改善アイデ

イアで「もっと基礎的な解説を載せる」を選んだ学生が 1 年 8.8%、2 年 7.8% 居た。つまり、内容を見てもらっていないのに、「どうせ自分には難しい・分からない」と決めてかかっている。そのくらい英語=難しい・嫌い、教員が用意する物=どうせ難しい、という意識があるのだろう。まずはこの苦手意識を打ち碎くことが必要だ。しかし、「多少楽しい内容を載せてもらっても英語は自習しない」を選んだ学生も少なからずいて（2 年生で多く、19.1%）、このハードルを打ち碎くことの困難さを痛感させられる。

4. 苦手意識についての考察

特に英語の基礎的力が固まっていない学生に、英語についての苦手意識が強く、例えば文法事項の一部がまだ習得できていない、というような自己分析ではなく、「英語は苦手だ」「自分は語学が不得意だ」「日本人だからか、分からない」というように、全面的に否定する見方をしていることが観察できた。

苦手意識があるから学習しない、という悪循環に陥る学生も多いようである。（基礎英語グラマーの週当たり自習時間は「30 分未満」が約 6 割。「30 分未満」には「0」も含まれている。分けて聞いていないので詳細は不明だが。）こうした苦手意識について考察し、対策についても考えたい。

4.1 New unconscious

Leonard Mlodinow (2012) は現代の unconscious の概念は Sigmund Freud によって広まった概念とは異なる、“new unconscious”であると紹介し (pp. 15-16)、この「無意識」が人の行動に与える影響を様々な事例を挙げて述べている。

また、人は自分の行動がそのような「無意識」に多大な影響を受けているとは認めたがらないとも述べている。

(5) Human behavior is the product of an endless stream of perceptions, feelings, and thoughts, at both the conscious and the unconscious levels. The idea that we are not aware of the cause of much of our behavior can be difficult to accept. (Mlodinow, 2012, p.16)

「無意識」が人の行動に多大な影響を与えた、しかし、自覚が無い例として、ある研究を挙げている。警察署長を選ぶのに、候補者の履歴書に street smarts (犯罪のはびこる都会で生きて行くしたかさを持った) と、高い教育を受けて洗練された候補を、男女それぞれ混ぜておいた。すると、被験者たちは street smart な男性を選ぶときにはこの特性が重要だ、と述べ、

洗練された男性候補の場合は street smart が過大評価されている、としてこの候補を選んだというのである。つまり、明らかにステレオタイプ的に男性の職である警察署長に、性別に基づいて候補を選んだわけだが、被験者たちには全く自覚が無く、その候補者を選んだ理由を尋ねても誰も性別が決断に影響を与えた、とは答えなかった。

このように、「無意識」が我々の決断や行動に大きな影響を与えている。しかし、それについて自覚はない。

4.2 学生の英語苦手意識

2節・3節で観察した、本学学生の英語苦手意識だが、2節では学習到達度アンケートという場面で、自己の学習を振り返っているので、自己分析した結果としての苦手意識と思われる。3節では授業外学習促進サービスについてのアンケートなので、そこで「どうせ難しい」などとしている回答は（しかも、それらのサービスを利用していないのに！）無意識に「自分は英語が苦手」と感じているということだ。

しかし、実は我々が客観的に判断していると思い込んでいることも、実はさほど客観的データに基づいていないこともある、と Mlodinow (2012) は述べている。

(6) As these studies suggests, the subtlety of our reasoning mechanisms allows us to maintain our illusions of objectivity even while viewing the world through a biased lens. Our decision-making processes bend but don't break our usual rules, and we perceive ourselves as forming judgments in a bottom-up fashion, using data to draw a conclusion, while we are in reality deciding top-down, using our preferred conclusion to shape our analysis of the data. When we apply motivated reasoning to assessments about ourselves, we produce that positive picture of a world in which we are all above average. Mlodinow (2012, pp.213-214)

bottom-up でなく、top-down で判断をしている、という点は 2.1.1 節の上位クラスでの「到達度評価が低い項目の理由」と 2.1.2 節の下位クラスでのそれの比較にも現れていた。上位クラスでは到達度が低い項目について、「関係代名詞がまだ理解できていない」（その他の項目は理解できた）、というように分析的である。一方で下位クラスではそのように文法項目（テキストでは単元になっている）ごとに自己の理解度を分析するのではなく、ともかく「自分は英語が苦手」と、いわば top-down で分析している。

苦手意識を克服させる一つの突破口として、この点が考えられる。苦手と言っても、理解できている、定着している文法事項もあるはずで、それを確認し、学習し身に付いたことと、まだ理解できていないこと、

暗記できていないこと等に分けてゆく作業をすると、パニック的に「どうせ英語は分からない」「英語は苦手科目」「ともかく無理」という、誤った自己分析から解放されるのではないだろうか。

一点気になるのは、前出（6）にもあるように、また、以下の文にあるように、人には自分は平均より上だと思いたい傾向があるという点だ。

(7) Psychologists call this tendency for inflated self-assessment the “above-average effect,” and they’ve documented it in contexts ranging from driving ability to managerial skills. Mlodinow (2012, p198)

しかし、下位クラスの学生は 2 節・3 節で観察したとおり、自己の、理解できている項目などを肯定するのではなく、項目に分けることすらせずに「英語は苦手だ」等、自己を否定する分析をしている。これは一般的な傾向と一見矛盾する。だが、「苦手である」と宣言することで、「だからできない」という、いわば自分（あるいは教員）に対する言い訳ができるので、安心してそちらを選ぶのではないだろうか。

6 割の学生が週当たりのその科目的学習時間が「30 分未満」、つまり、学習時間がかなり不足しているということを考え合わせると、学生が言う「苦手」が、精一杯学習したうえで、それでも理解できない、という状態ではなく、苦手だから学習していない、だから苦手なままであることが推測される。

まずは、この「苦手意識」を前述のように、例えば文法項目ごと、単語学習ならジャンルごとなどに分けて分析し、少しでも崩すことがまず重要と考えられる。リーディングやスピーチング、リスニングのスキルは総合的なので、文法や語彙の学習など、項目に分けやすい科目、場面でまず苦手意識を崩していくのが一つの対策のようである。

5. まとめと今後の課題

このように、自己の学習到達度分析というアンケート、授業外学習促進サービスの利用状況アンケートという二種のアンケートから、学生の、自己の英語スキルについての分析・意識を観察した。

英語が得意な学生が、特に文法では項目ごとに自分の得意不得意を認識しているのに比べ、苦手な学生は分割してみることもせず、全体的に「自分英語は苦手」と、いわば top-down 式にとらえてしまっていることが分かった。特に、文法や語彙の学習の場面で、理解できた項目とそうでない項目に分けるなどして、苦手意識を碎くことが肝要であるようだ。

完全習熟度別クラス制で下位クラスを担当していた

時期には時間をかけて説明する、質問に応じる、細かな小テストをし、自信をつけさせる、というケアを行うことが出来た。現在は上位のみ習熟度で切りとり、中・下位はミックスという制度のため、中・下位クラスで授業の進度について行けない、また、質問したいがしにくいという学生がいる可能性はある。ただ、どちらの制度にもメリット・デメリットはありそうで、今後十分な検討が望まれる。

学生の自己分析に「基礎からやったので分かりやすかった」「授業と補習センターで同じことを何度も教えてもらってやっとわかつてきた気がする」というコメントがあったように、躊躇しているところまで戻って学習することや、反復学習することも効果的である。が、通常の授業の中では、学習予定項目が多いこともあり、なかなか大きく戻っての復習や、反復学習を行いにくいのが現状である。学習支援センターやリメディアルとの連携も必要だろう。

授業外学習促進のための課題や、オフィスアワー利用の推奨など、これまでも教員側も工夫してきているが、それに加えて、苦手意識の克服、という課題に教員側もその仕組みを理解して取り組むことが重要なようである。

注

1) これらの取り組みのまとめ、不合格者数データなどは外国語教室同僚小西章典先生が教室会議（2015年3月18日）に提出して下さった資料による。ここに資料提供のお礼を申し上げる。

参考文献

- 1) Leonard Mlodinow (2012) “Subliminal: How your unconscious mind rules your behavior.” Vintage Books
- 2) 梅田 礼子 (2015) 平成27年度教育戦略ICT大会(公益社団法人私立大学情報教育協会主催、2015年9月2日～9月4日)抄録 pp.164-165

流体潤滑下におけるテクスチャ表面の潤滑液流れの可視化

Visualization of lubricant flow on surface texturing under hydrodynamic lubrication

坪井 涼*

Ryo TSUBOI

Summary

Surface texturing is one of the attractive techniques which changes lubricant properties. In hydrodynamic lubrication, one of the effects is generating of hydrodynamic pressure. This leads improvements of a load capability and friction characteristics. Some experimental and numerical studies are performed to clarify the mechanisms about generating hydrodynamic pressure with the surface texturing. However, small number of the researches described the information of the lubricants flow. In this study, visualization of lubricant flow on surface texturing using fluorescent particles and high-speed camera was performed and some results of the visualization are shown.

キーワード：表面テクスチャリング、流体潤滑、可視化

Keywords : Surface Texturing, Hydrodynamic Lubrication, Visualization

1. はじめに

表面テクスチャリングとは、表面に凹凸や溝などの微細な形状を人為的に加工する技術であり、表面改質技術の一つとして挙げられている。近年、微細加工技術の進歩によってミクロンサイズの形状を規則的に付与する研究が多く、実験ならびに数値計算によって様々な用途に応じた検討が行われている。表面テクスチャリングは主に摩擦低減を目的としているが、中には意図的に摩擦を増加させる研究も行われている^[1]。

表面テクスチャリングの効果は摺動面の潤滑状態により異なる。各潤滑領域で期待されるテクスチャリングは、流体潤滑では流体動圧を発生させ、潤滑膜厚さを増加させることで、摩擦係数を低減する効果である。混合潤滑での効果も流体潤滑よりもとなる。境界潤滑では、摺動表面のテクスチャに潤滑油が溜まることで、摺動面へ潤滑油を供給する効果である。

また、異物が潤滑油に混ざっている状態では機械の寿命が大幅に低下してしまうということも報告されている^[5]。機械の運転状態により潤滑状態が変化し、境界

潤滑における固体接触時に発生した摩耗粉が、流体潤滑状態の維持を阻害する。したがって、異物をトランプすることで、潤滑を阻害する摩耗粉などの異物を排出する効果があることがわかっている^[2-4]。

本研究においては、流体潤滑、混合潤滑領域における表面テクスチャリングの効果を対象とした。摺動面が平行かつ平滑な場合、2面間の流体膜には理論上圧力が発生しないが、表面の凹凸形状を制御することで、流体膜に正圧が発生し、摺動面を浮上させる力（負荷容量）が発生する。正圧と負圧が同等になる凹凸形状でも、負圧部にキャビテーションが発生することで全体として正の圧力となり、浮上する力が発生すると言われている。しかし、この説明は物理的な根拠に基づく説明が困難であり、表面テクスチャリングによる負荷容量の向上メカニズムが未だ明らかとなっていない。

本研究では、流体潤滑における表面テクスチャリングによる摩擦特性の向上メカニズムを解明することを目的とし、テクスチャ表面の潤滑液の流動状態を観察するため、ハイスピードカメラを用いた流体潤滑下のテクスチャ周りの流れ場の可視化を行った。

* 機械工学

2. 実験概要

2.1 実験装置

本研究で製作した観察装置を図 1 に示す。この装置は、石英製ディスクをモーターで回転させ、下部よりテクスチャ試験片を押しつけてその摩擦表面をその場観察する装置である。ハイスピードカメラの映像を PC に送り、画像処理を行う。流体潤滑状態を維持するため、ディスクの下部はすべて潤滑液によって浸されている。ディスクには、白色光を透過する石英ガラス ($\phi 160 \text{ mm} \times t10 \text{ mm}$) を用いた。試験片の固定器具には、角度調節が可能なステージを用い、ディスクと試験片を平行に調節することを可能とした。また、膜厚を調節するために試験片固定器具のシャフトはマイクロメーター式の Z 軸ステージと接続されている。ここでの膜厚とはディスク下表面と試験片表面の距離を指す。

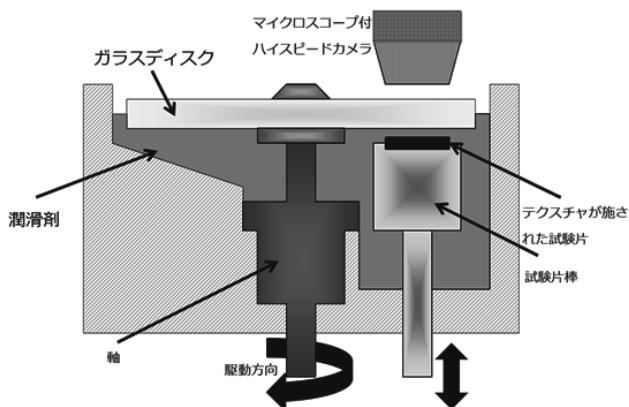


図 1 実験装置の概要

本研究は他研究所で使用されていた観察装置を改良することにより実施した（図 2）。この装置の問題点は回転軸の振れ、ガラスディスクと回転軸の取り付け精度により、回転時のガラスディスクと試験片の平行度が低いことであった。そこで、回転時の精度を上げるために、改良を施した。

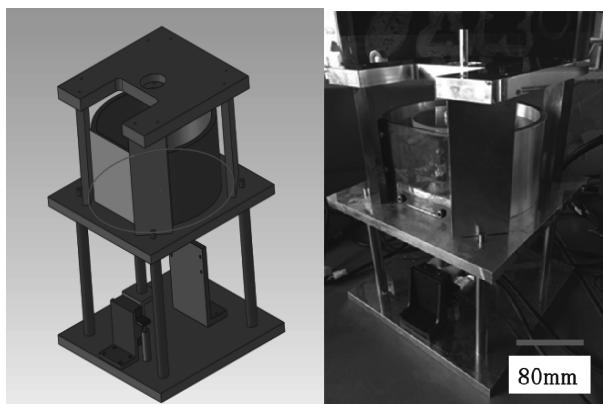


図 2 改良した試験装置の概要および外観

2.1 観察装置

テクスチャ表面に流れる粒子の観察をするために、顕微鏡付のハイスピードカメラ、KEYENCE ハイスピードマイクロスコープ VW-9000 を使用した。また、観察のためのトレーサー粒子は平均粒径 $10 \mu\text{m}$ の蛍光粒子を用いた。

2.2 実験方法

実験の手順は以下の通りである。

- (1) 試験片ホルダーに試験片をセットする。
- (2) ガラスディスクを中心軸にセットする。
- (3) 水槽にトレーサーを混入させた水をガラスディスクの下部まで浸す。
- (4) マイクロメーターで試験片の高さを調節する。
- (5) モーターを回転させる。
- (6) マイクロスコープ付きハイスピードカメラで撮影する。
- (7) 撮影した動画からデータを取得する。

2.3 試験片

実験に使用する試験片は 3 種類用意した。いずれの試験片もレーザー加工による表面テクスチャリングがなされている。図 3 に示す試験片 A は表面にディンプル形状を加工し、算術平均粗さ R_a は $14.7 \mu\text{m}$ である。図 4 に示す試験片 B は同じくディンプル形状で、平均粗さ R_a は $21.6 \mu\text{m}$ である。図 5 に示す試験片 C は溝形状の加工が施され、平均粗さ R_a は $4.81 \mu\text{m}$ である。

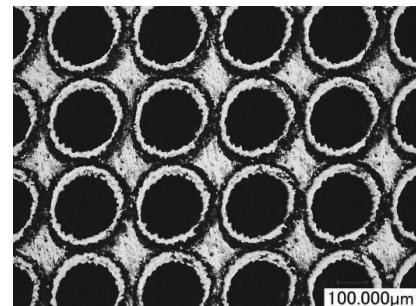


図 3 試験片 A : ディンプルパターン (a)

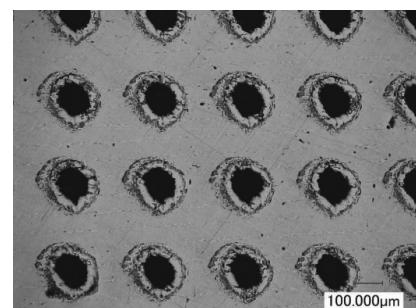


図 4 試験片 B : ディンプルパターン (b)

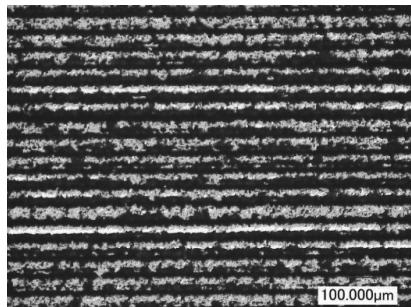


図 5 試験片 C : 溝パターン

4. 実験結果

製作した装置を使用し、トレーサーによる流れを観察した結果、試験片とディスクの間を流れる粒子を観察することに成功した。

試験片 A のテクスチャ付近で撮影されたトレーサーの挙動を図 6 に示す。摺動方向は図の上から下方向である。0.0 秒からトレーサーが下に流れしていくのが確認出来る。周囲の明るさと比較すると、トレーサーの確認は非常に難しく、光量の増加など、改良が必要と考えられる。また、ディンプル上部を通過する際は、摺動表面からの光の反射が少なく、特に確認が困難であった。

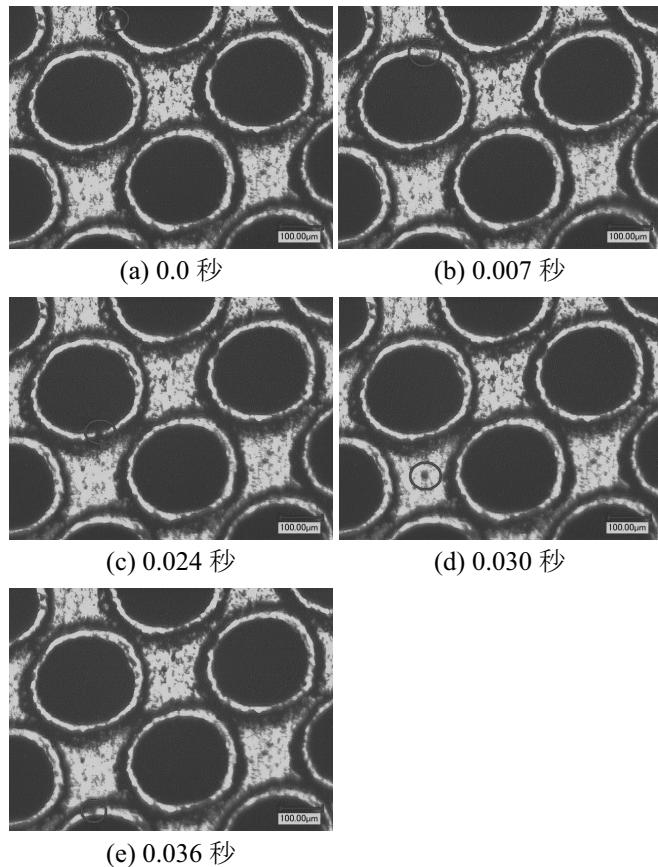


図 6 試験片 A におけるトレーサーの流れ

図 6 を合成し、トレーサーの軌跡を描いた画像を図 7 に示す。若干の流れの変化はみられたが、テクスチャリングの影響による変化なのかは解らなかった。この図からもディンプル上部でトレーサーが確認できないことが分かる。

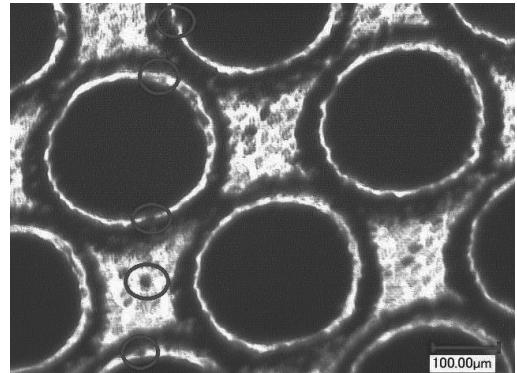


図 7 試験片 A におけるトレーサーの軌跡

試験片 B のディンプル付近で撮影されたトレーサーの挙動を図 8 に示す。摺動方向は図の右から左である。トレーサーが左に流れしていくのが確認出来る。また、(a) には大きな影のようなものも確認でき、これはテクスチャ表面付近ではなく、もっと離れた位置でのトレーサーが確認されたのではないかと考えられる。

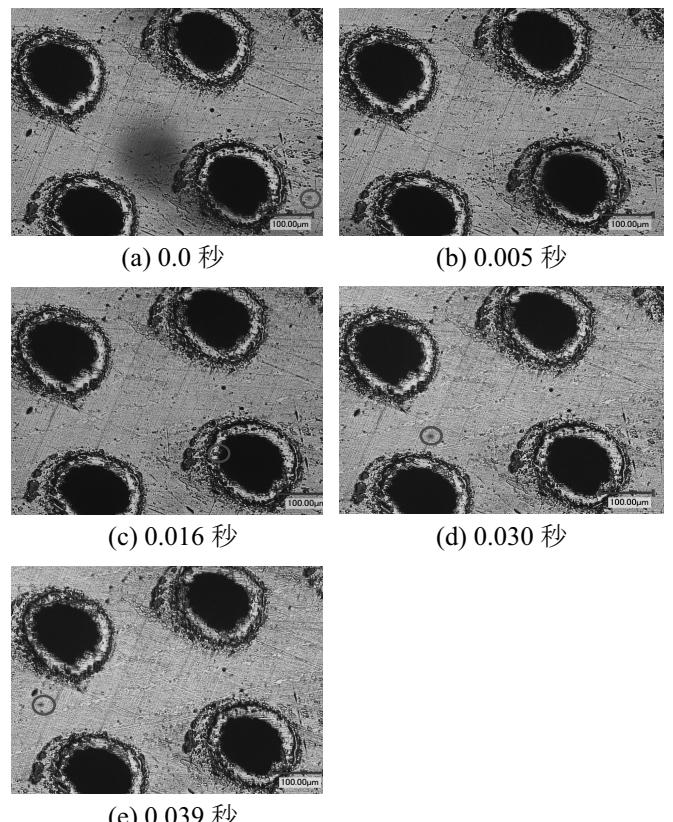


図 8 試験片 B におけるトレーサーの流れ

図 8 を合成し、トレーサーの軌跡を描いた画像を図 9 に示す。試験片 A と同様に、流れの変化はみられたが、テクスチャリングの影響による変化なのかは判別できなかった。

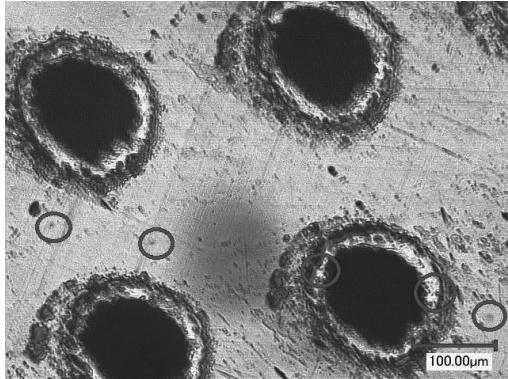


図 9 試験片 B におけるトレーサーの軌跡

試験片 C の溝付近で撮影されたトレーサーの挙動を図 10 に示す。摺動方向は右から左である。トレーサーが右から左に流れていくのが確認出来る。これらの画像から、テクスチャ表面は非常に暗いことが分かる。これは、溝形状は表面の粗さが小さく、細かい形状が表面に付与していると考えられ、光の拡散が大きいことが原因であると考えられる。

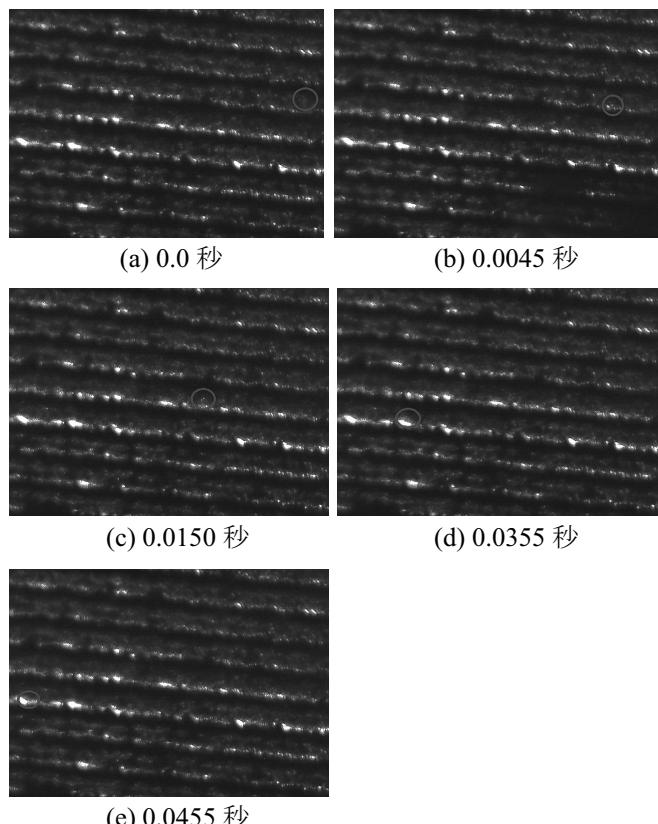


図 10 試験片 B におけるトレーサーの流れ

図 10 を合成し、トレーサーの軌跡を描いた画像を図 11 に示す。こちらの画像からも、光の反射が弱く、トレーサーの観察が困難であったことが分かる。

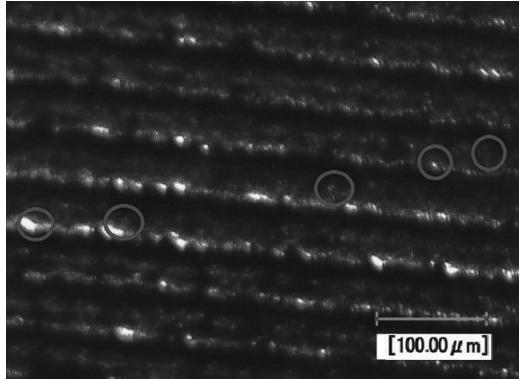


図 11 試験片 C におけるトレーサーの軌跡

4. まとめ

本研究はテクスチャ表面の潤滑液の流れの状態の把握のための観察装置を設計・製作し、ハイスピードカメラを用いて蛍光粒子を観察することにより以下の結果を得た。

- (1) テクスチャ表面付近を流れるトレーサーの追跡に成功した。
- (2) テクスチャ表面の形状によって光の反射具合が異なり、得られた撮像結果に違いが生じた。
- (3) 今回の実験結果からは、テクスチャの影響により潤滑液の流れに変化が起こる様子は確認できなかった。

今後の課題として、テクスチャ表面の潤滑駆の流れへの影響を深さ方向で計測するために、テクスチャの断面内での潤滑油の流動状態を撮影する手法の確立が求められる。

参考文献

- 1) 佐々木 信也, トライボロジー特性改善のための表面テクスチャリング, 潤滑経済, 2010/10
- 2) I. Krupka et al., "Effects of surface topography on lubrication film formation within elastohydrodynamic and mixed lubricated non-conformal contacts", Proceeding of IMechE, Vol. 224, Part J, Engineering Tribology, pp.714-722.
- 3) T. E. Tallian, "On Competing Failure Modes in Rolling Contact", ASLE Transactions, Vol. 10 (1967), pp.418-439.
- 4) 佐田 隆, 三上 剛, “異物混入潤滑化の軸受寿命に及ぼす油膜厚さの影響 第 1 報：異物混入油中における玉軸受の寿命試験”, Koyo Engineering Journal, No.167 (2005), pp.19-23.

Repeatability Evaluation Using Contact Finite Element Modeling

Kazunori SHINOHARA¹⁾, Kosei ISHIMURA²⁾, Yoshiro OGI³⁾,
Hiroaki TANAKA⁴⁾, Koji MATSUMOTO⁵⁾

Summary

High-precision deployable antennas have been developed for artificial satellites. To meet future demand for such antennas, we developed hinge and latch mechanisms with deployment repeatability, based on solid-type mechanical contact connections. The latch mechanism consists of a pair of mechanical structures/parts that come into contact with each other at their respective surfaces. Kinematic couplings are attached to the latch mechanism, which constrain the relative freedom of motion of the two constituent structures. In this study, we compared the experimental repeatability results for the latch structure of the solid-type antenna with computational results based on the contact finite element method (FEM). Developing a robust and efficient contact FEM is one of the most challenging tasks in deployable antenna FEM problems. To facilitate computation of the repeatability of the latch structure, modeling techniques for the contact interactions between two deformable bodies were developed.

Keywords : Satellite, Deployable Structure, Contact, Friction, Finite Element Analysis

1. Introduction

Rockets represent the only way to transport satellites into space at present, and have limited available room to carry a satellite. In this respect, a deployable mechanism is required in order to fold a large antenna. Large deployable antennas are associated, however, with various technical issues, including those associated with: a) precise positioning control, such as the case of the parabolic antenna, and b) instability due to incomplete expansion. A major reason for such technical issues is the friction between parts that are in contact. As satellite observation systems become more sophisticated and highly developed, the demand for large and precise structural parts is increasing. In accordance to

the literature, deployable antennas used thus far, are either mesh antennas (e.g., ETS-VIII [1]) or solid antennas (e.g., JWST [2] and LIDAR [3]).

To meet the future demand for high-precision deployable antennas, hinge and latch parts with deployment repeatability were developed, based on the mechanical contact connections. To verify proper functionality of the deployable latch parts in the solid antenna, we used a testbed comprising of contact facing surfaces with several attached fittings. When the two plates are overlaid, a slight shift occurs between them.

The contact state between the two plates depends on the shape or position of the parts on the plate. As time elapses, the contact area and friction vary locally because of the

¹⁾ Department of Integrated Mechanical Engineering, Daido University, Nagoya, Japan

²⁾ Institute of Space and Astronautical Science (ISAS), JAXA, Sagamihara, Japan

³⁾ Oxford Space Systems Ltd., Harwell, United Kingdom

⁴⁾ Department of Aerospace Engineering, National Defense Academy of Japan, Yokosuka, Japan

⁵⁾ Research and Development Directorate, JAXA, Chofu, Japan

deformation and sliding of the parts in contact. The testbed was used (i.e., the latch deployable structure), to study the displacement repeatability, based on the rotational angles between the initial and subsequent positions of a plate after repositioning [4]. In the effort to create a computational model for the testbed, the contact model of this structure becomes an important problem.

To the best of our knowledge, no repeatability calculation results relevant to both the backlash and shift of a latch structure have ever been published. To predict the latch repeatability, a computational model based on the finite element method (FEM) for the contact interactions between the two deformable bodies was developed.

2. Structure of the Solid Antenna

Fig. 1 shows the solid antenna. A folding mechanism is needed to fold the parabolic structure. The mechanism consists of the plates, hinges, and couplings. The plates are fixed to each other through the couplings that is the contact points. Coupling arrangements on the plate and the coupling contact state affect the position accuracy of the parabolic antenna surface.

Fig. 2–Fig. 4 show the conceptual design schematics of the couplings. The couplings are sets of sphere-flat, sphere-vee and sphere-cup fittings that constrain motion to six relative degrees of freedom. As shown in Fig. 2, the sphere-flat consists of a sphere and a plate. The relative displacement between the plate and the sphere is fixed by friction. In this paper, the sphere-flat is referred to as “1DOR” [Degree Of Redundancy (DOR)]. 1DOR has a contact state between a plain surface and the spherical cap, and it constrains motion to one degree of freedom. As shown in Fig. 3, the sphere-vee consists of both the spherical cap and a V-shaped channel, subsequently referred to as “2DOR”. 2DOR has a contact state between a V-shaped channel and the sphere and constrains motion to two degrees of freedom. As shown in Fig. 4, the sphere-cup consists of both the sphere and a conical shape. In a similar manner, the sphere-cup is referred herein to as “3DOR”. 3DOR has a contact state between a conical shape and the sphere and constrains motion to three degrees of freedom. The principle of an object constrained by the kinematic coupling is applied, similar to the cases of machining devices and optical instruments for which positioning accuracy is required.

As shown in Fig. 5, the sphere is sliced so that kinematic couplings can be implemented in the limited space between

the upper plate and the lower plate. Similarly, to make the V-groove shown in Fig. 3 shallow, the area around the two contact points between the sphere and the V-groove is extracted from the structure shown in Fig. 3. Therefore, the slice from the spherical shape is constructed as shown in Fig. 6. In the case of Fig. 4 (3DOR), the structure shown in Fig. 7 is constructed by the same means.

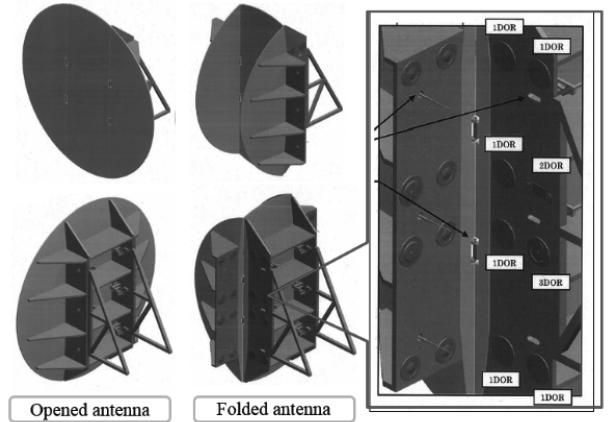


Fig. 1. Structure of solid antenna with contact parts (1DOR, 2DOR, and 3DOR)

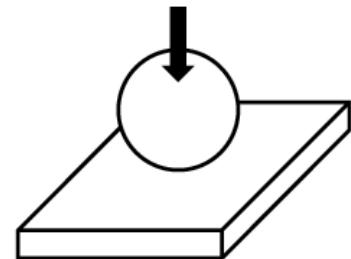


Fig. 2 Sphere-flat (Conceptual figure of 1DOR)

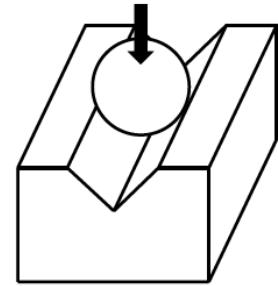


Fig. 3 Sphere-vee (Conceptual figure of 2DOR)

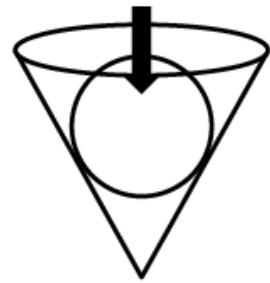


Fig. 4 Sphere-cup (Conceptual figure of 3DOR)

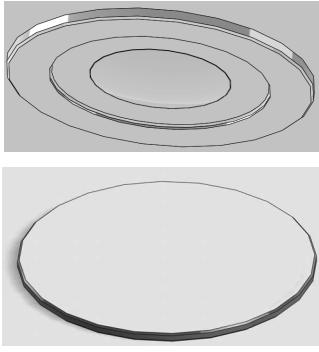


Fig. 5 Implemented 1DOR

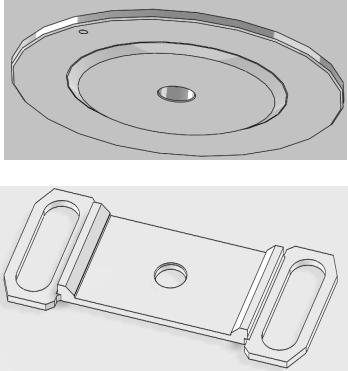


Fig. 6 Implemented 2DOR

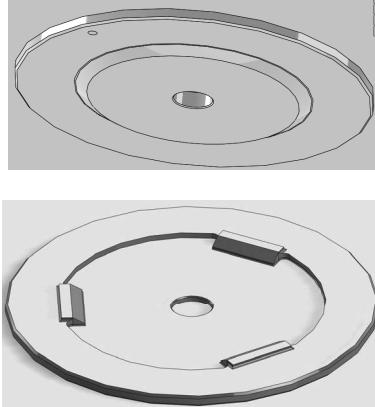


Fig. 7 Implemented 3DOR

3. Test of Latch Deployable Structure

Figs. 8 and 9 show the testbed of the latch deployable structure. The structure consists of two plates: the upper and the lower. The two plates are made from iron and come in contact at three locations on each plate, namely at contact states 1DOR, 2DOR, and 3DOR. 1DOR, 2DOR, and 3DOR are made from SUS440C and include mechanical structures to support each plate at one, two, and three contact points, respectively. The displacement of the lower plate is fixed. Lifting the upper plate draws it away from the lower plate. The upper plate is subsequently lowered toward the lower

plate so that the two come in contact with each other. The rotational angles are measured by determining the displacement between the initial and subsequent positions of the upper plate. Table 1 represents the testbed results for the rotation with respect to the x-, y-, and z-axes. The symbol \odot in the figure 8 represents the positive direction of the z-axis. The positive direction is defined as the outward normal to the plane of the paper.

At small angles, the upper plate becomes parallel with respect to the lower plate. At large angles, there is a slight relative displacement between the initial and subsequent positions of the upper plate. This relative displacement between the plates occurs because of a partial contact state of 1DOR, 2DOR, and 3DOR. In the testbed results, after the upper plate was repositioned on the lower plate, the relative displacements between the upper and lower plates with respect to the x- and y-axes were approximately ± 0.1 mm. As shown in Table 1, the absolute values of the rotational angles were measured repeatedly, eight separate times. The average rotational angles along the z-, x-, and y-axes were 4.42, 3.49, and 2.60 arcsec, respectively.

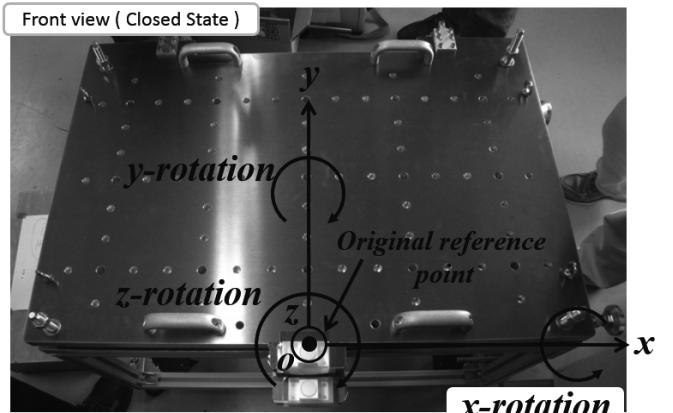


Fig. 8. Testbed [4]

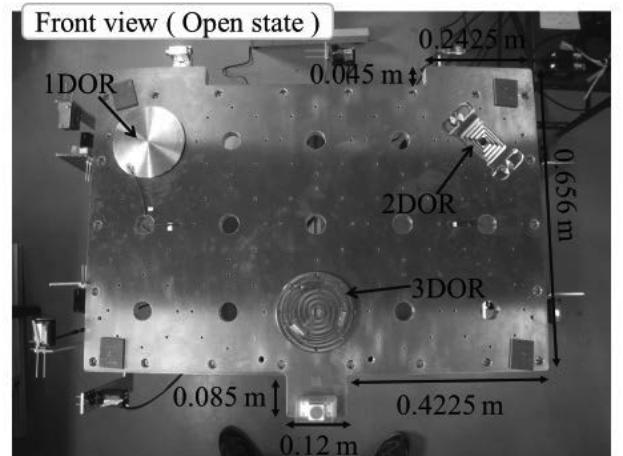
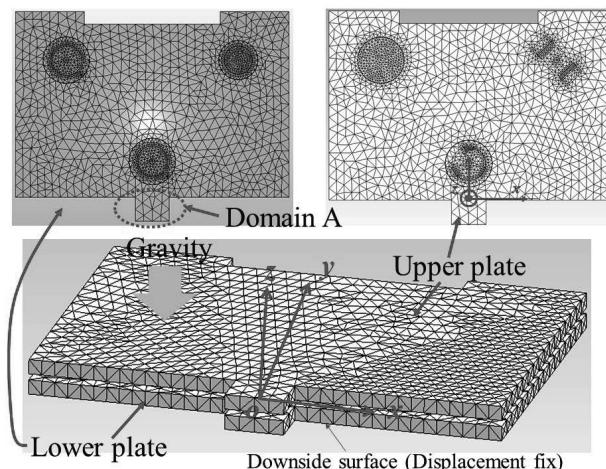
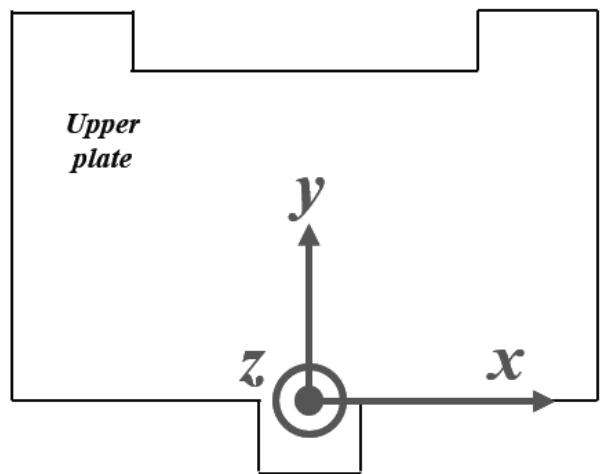


Fig. 9. Configuration of latch structure with contact parts (1DOR, 2DOR, and 3DOR) [4]

Table 1. Rotational angle of upper plate computed as differences between the initial and subsequent positions [4]

	<i>z</i> rotational angle (arcsec)	<i>x</i> rotational angle (arcsec)	<i>y</i> rotational angle (arcsec)
Testbed data (absolute value)	1.08	2.25	2.58
	0.48	5.09	4.68
	6.73	1.19	0.93
	10.11	1.81	5.00
	5.18	5.52	2.43
	6.54	2.00	3.82
	2.99	5.44	0.59
	2.24	4.53	0.74
Average value	4.42	3.49	2.60

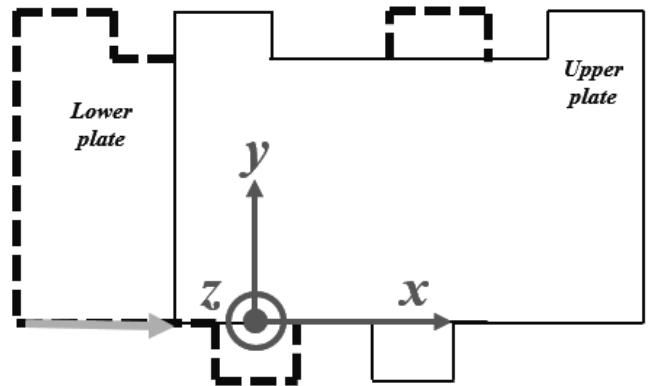



Fig. 10. Computational model

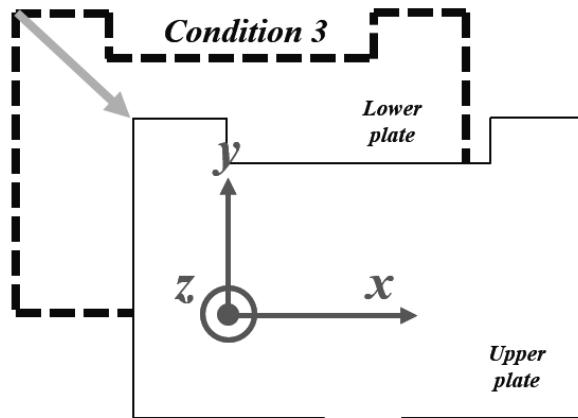
4. Computational Model

To explain the mechanism of the partial contact state on contact parts, we also attempted to construct an FEM computational model based on the latch deployable antenna. Fig. 10 shows the computational model and Table 2 lists the material properties used in the model. Indicatively, the Young's modulus, density, coefficient of friction, and Poisson ratio values were set to 210 GPa, 7874 kg/m³, 0.17, and 0.3, respectively. The displacement of the downside surface (Fig. 10) on the lower plate is fixed. The model had approximate 48,000 nodes and 27,000 tetrahedral elements. In order to calculate the contact state with high accuracy, the FEM model divided the contact parts into small segments relative to the actual plate segments. The model was loaded with the force of gravity with respect to the negative z-axis. In the testbed, the relative displacements between the lower

and upper plates were measured to be ± 0.1 mm with respect to the x- and y-axes. Therefore, the relative displacements in the computational model were also set to ± 0.1 mm with respect to the x- and y-axes. Figs. 11–19 show the nine calculation conditions of the relative displacements between the upper and lower plates with values $(x, y) = (0.0, 0.0)$, $(0.1, 0.0)$, $(0.1, -0.1)$, $(0.0, -0.1)$, $(-0.1, -0.1)$, $(-0.1, 0.0)$, $(-0.1, 0.1)$, $(0.0, 0.1)$ and $(0.1, 0.1)$. These were defined as conditions 1–9, respectively.


Condition 1

Relative displacement $x=0.0, y=0.0$


Fig. 11. Condition 1 of computational model

Condition 2

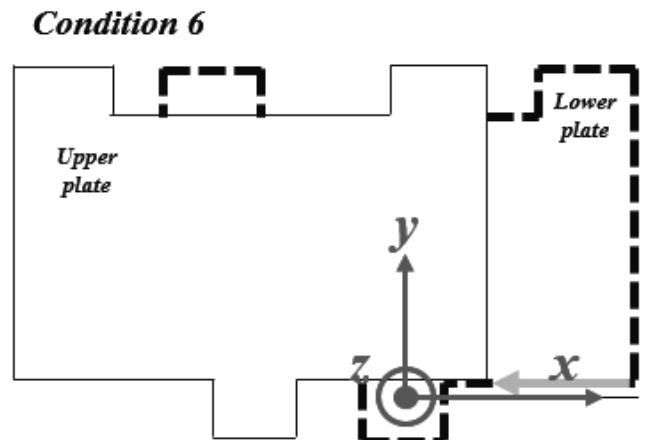

Relative displacement $x=0.1, y=0.0$

Fig. 12. Condition 2 of computational model

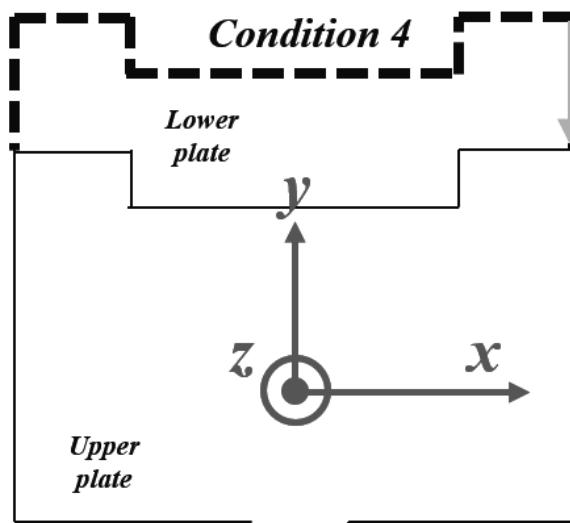

Relative displacement $x=0.1, y=-0.1$

Fig. 13. Condition 3 of computational model

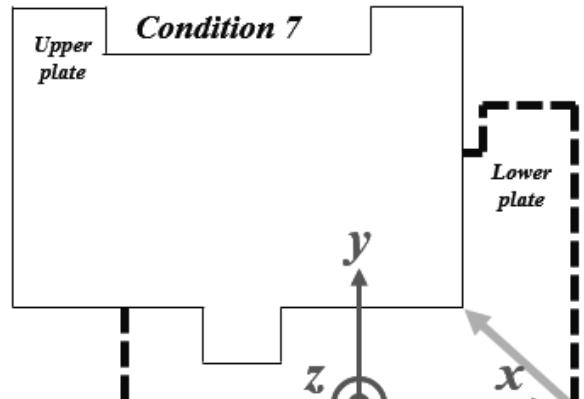

Relative displacement $x=-0.1, y=0.0$

Fig. 16. Condition 6 of computational model

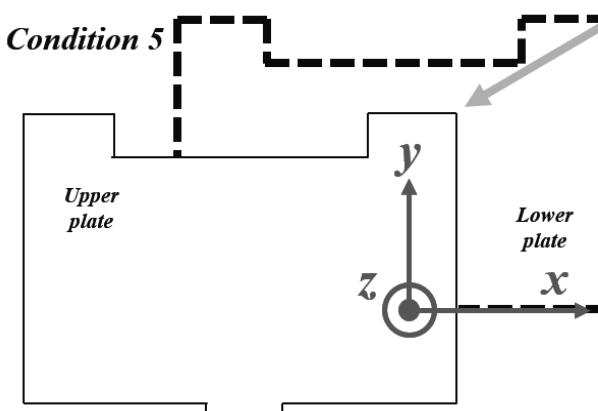

Relative displacement $x=0.0, y=-0.1$

Fig. 14. Condition 4 of computational model

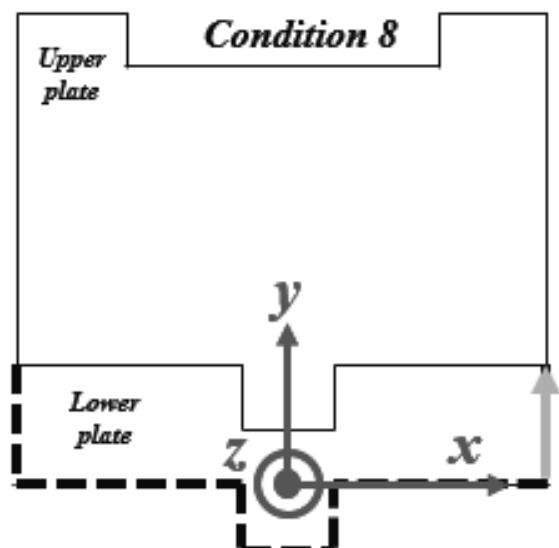

Relative displacement $x=-0.1, y=0.1$

Fig. 17. Condition 7 of computational model

Relative displacement $x=-0.1, y=-0.1$

Fig. 15. Condition 5 of computational model

Relative displacement $x=0.0, y=0.1$

Fig. 18. Condition 8 of computational model

5. Computational Results

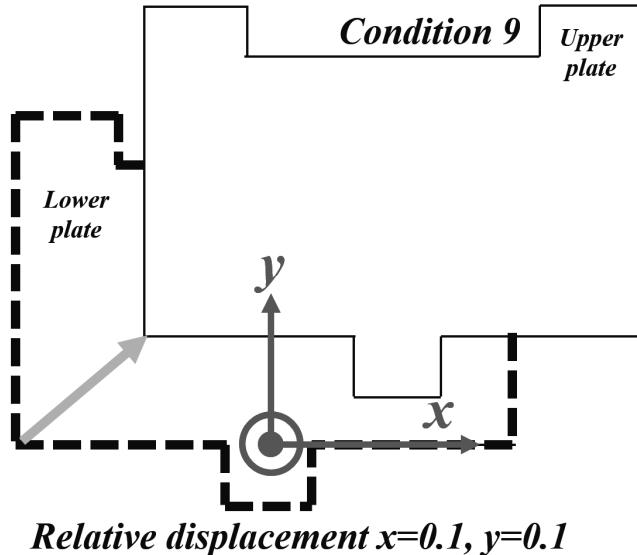


Fig. 19. Condition 9 of computational model

Table 2. Properties of the constructed computational model.

Property	Value
Young's modulus	210 GPa
Density	7874 kg/m ³
Poisson ratio	0.3
Gravity	9.8 m/s ²
Coefficient of friction	0.17
Mass of upper plate	149.5 kg
Mass of lower plate	148.5 kg
Plate thickness	30.0 mm

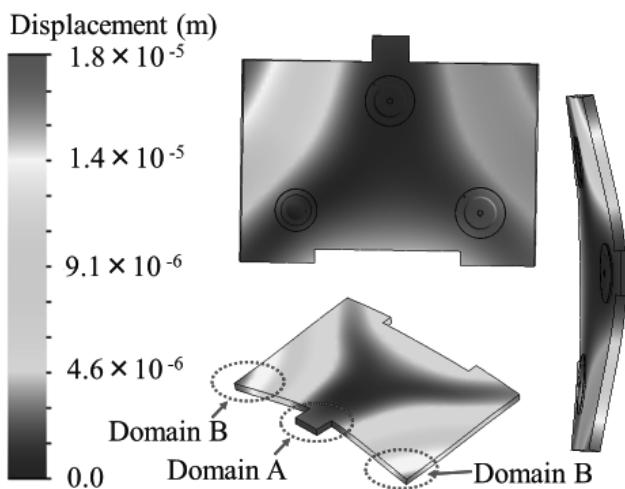


Fig. 20. Displacement contour of the upper plate (condition 1)

5.1 Results of complete contact state (condition 1)

The computational model was initially set to condition 1 (see Fig. 11). The x- and y-coordinates of the four edges on the upper plate agreed with those on the lower plate. Fig. 20 shows the resulting displacement contour results. The displacement scale factor of the upper plate was set to 5000. Around the domain A shown in Fig. 20, the upper plate is supported by 3DOR. On the other hand, around the domain B, the upper plate sagged under its own weight.

Figs. 21–27 show the von Mises stress contours. In order to support the self-weight, a stress occurred at 1DOR, 2DOR, and 3DOR. Specifically, Fig. 22 and Fig. 23 show the von Mises stress contour of 1DOR on the upper and lower plates, respectively. The contact state occurred at the center of the sphere in 1DOR. Correspondingly, Fig. 24–27 show the von Mises stress contours of 2DOR and 3DOR on both plates. In such cases, the contact state occurred at two and three points, respectively.

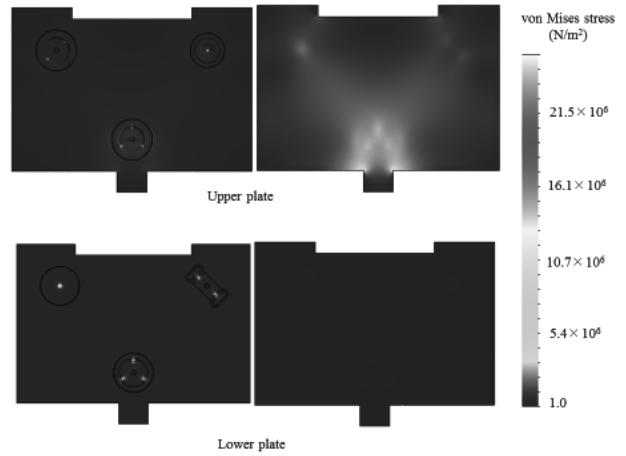


Fig. 21. von Mises stress contour

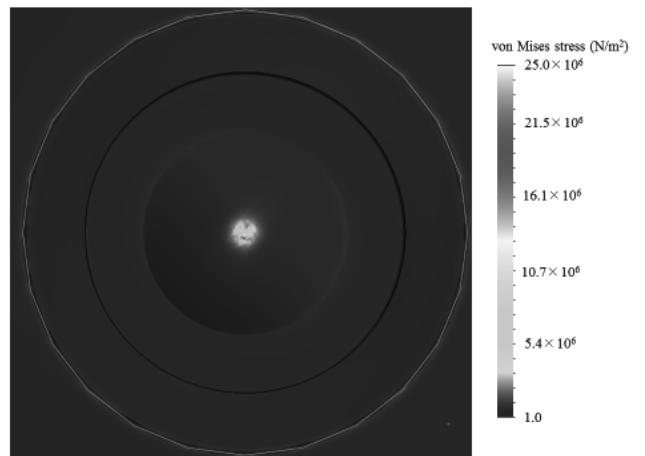


Fig. 22. von Mises stress contour of 1DOR on upper plate

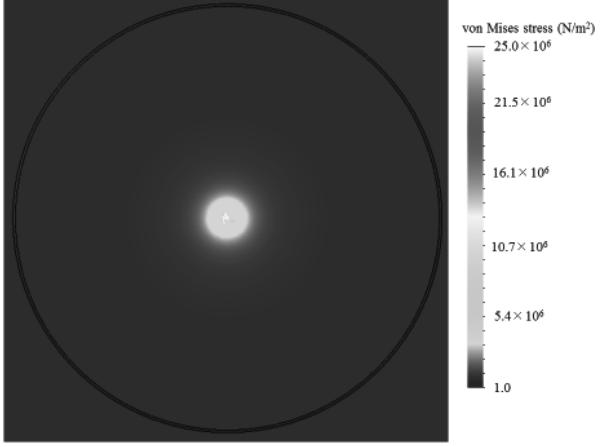


Fig. 23. von Mises stress contour of 1DOR on lower plate

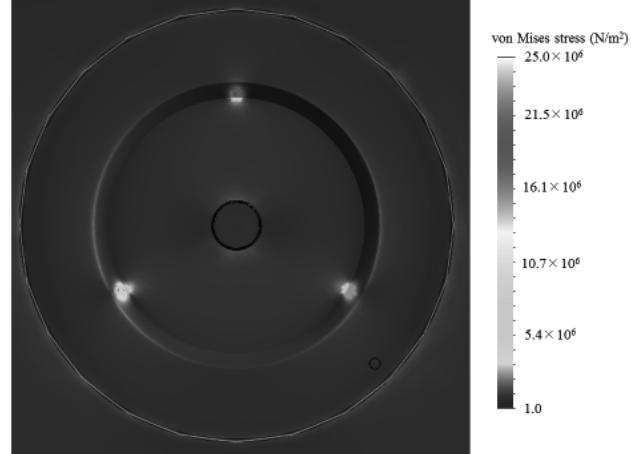


Fig. 26. von Mises stress contour of 3DOR on upper plate

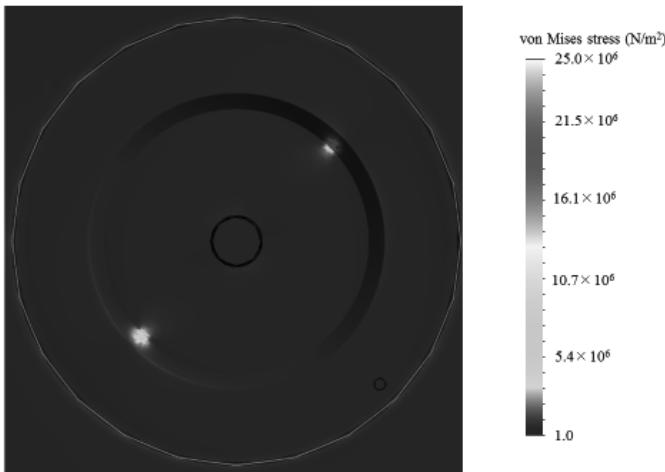


Fig. 24. von Mises stress contour of 2DOR on upper plate

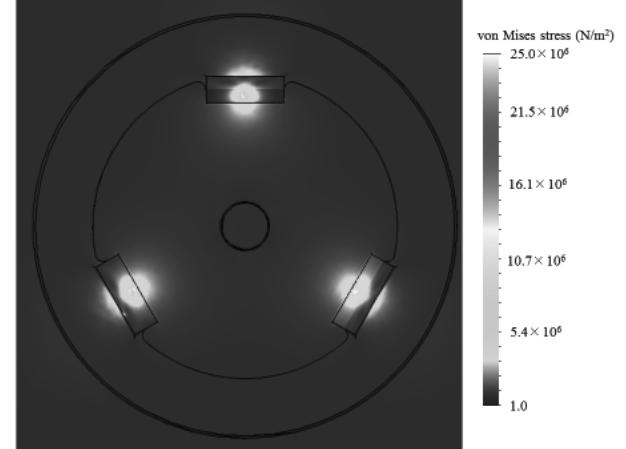


Fig. 27. von Mises stress contour of 3DOR on lower plate

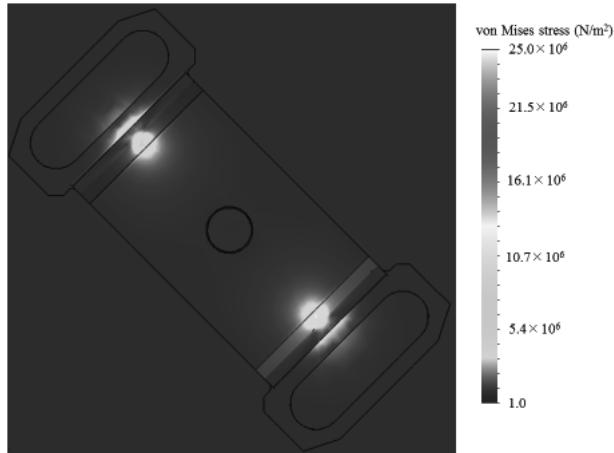


Fig. 25. von Mises stress contour of 2DOR on lower plate.

5.2 Results of partial contact state (condition 2)

The case with a given displacement between the upper and lower plates was also calculated. As shown in Fig. 12 (condition 2), the given displacement was set to 0.1 mm with respect to the x-axis.

Fig. 28 shows the displacement contour. The deformation scale factor was set to 5000. As shown in Fig. 20, the contour of the displacement became symmetrical about the left-right axis in the complete contact state. As shown in Fig. 28, the contour of the displacement becomes asymmetrical about the left-right axis under the partial contact state.

Fig. 29–35 show the von Mises stress contour. The partial contact state between the upper and lower plates caused the non-uniform stress distribution at 1DOR, 2DOR, and 3DOR. Additionally, Fig. 30 and Fig. 31 show the von Mises stress contour of 1DOR on the upper and lower plates, respectively, whereas Fig. 32 and Fig. 33 show the corresponding von Mises stress contour of 2DOR. In the partial contact state, the individual weight of the upper plate was supported by

2DOR. Fig. 34 and Fig. 35 show the von Mises stress contour of 3DOR on the upper and lower plates, respectively. In the partial contact state, the individual weight of the upper plate was supported by 3DOR.

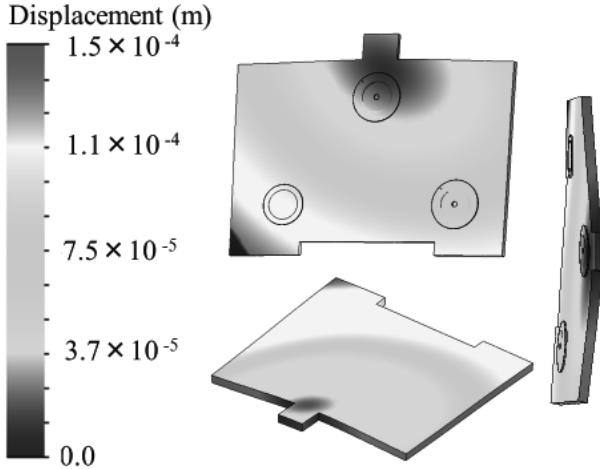


Fig. 28. Displacement contour of upper plate

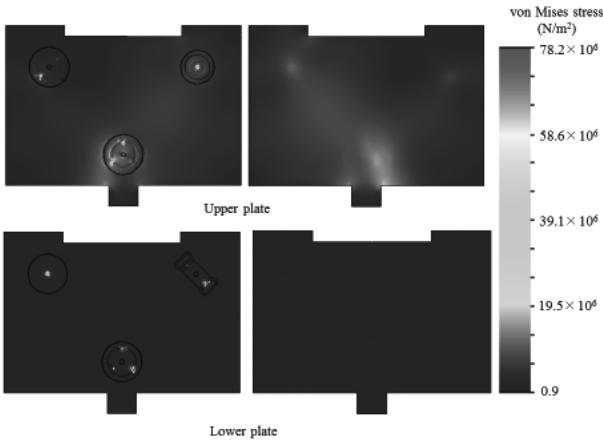


Fig. 29. von Mises stress contour

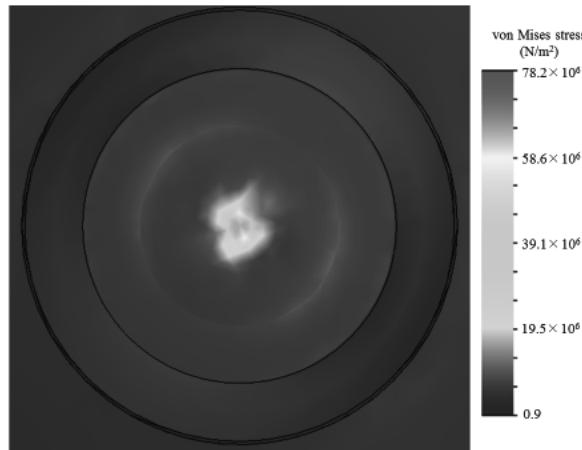


Fig. 30. von Mises stress contour of 1DOR on upper plate

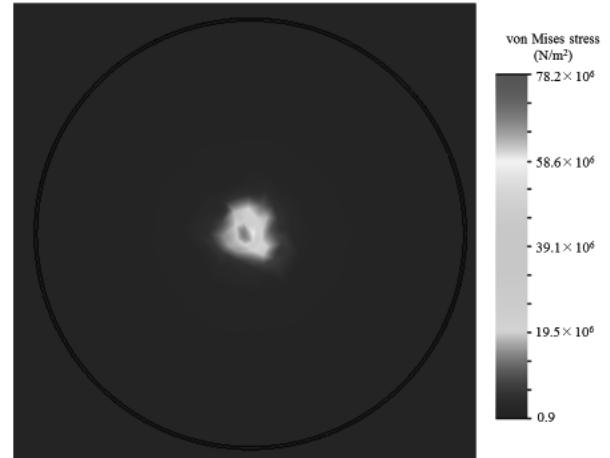


Fig. 31. von Mises stress contour of 1DOR on lower plate

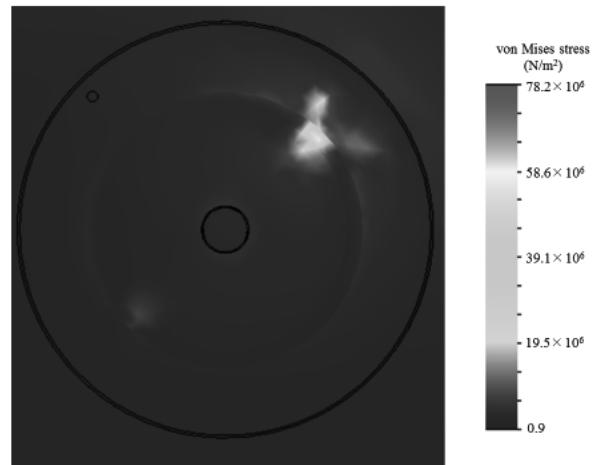


Fig. 32. von Mises stress contour of 2DOR on upper plate

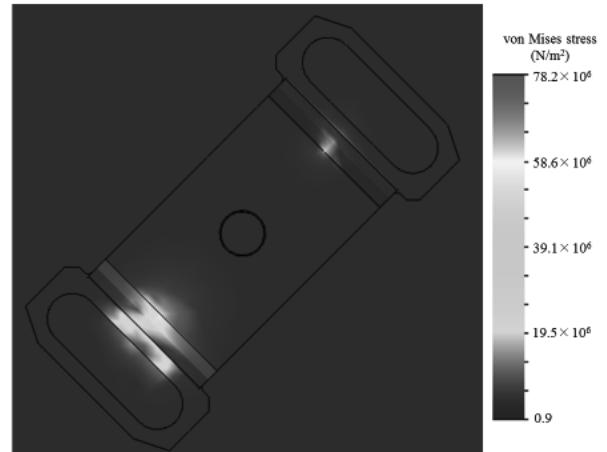


Fig. 33. von Mises stress contour of 2DOR on lower plate

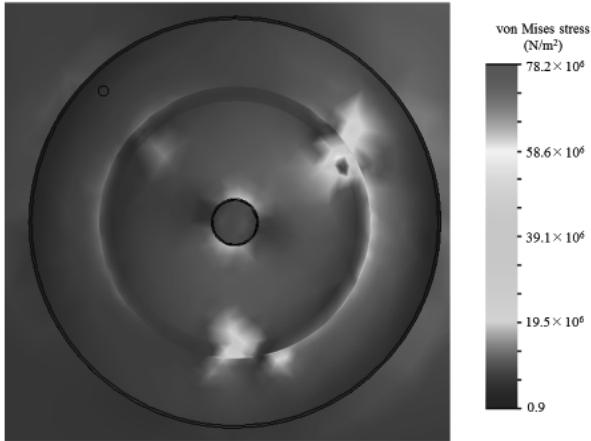


Fig. 34. von Mises stress contour of 3DOR on upper plate

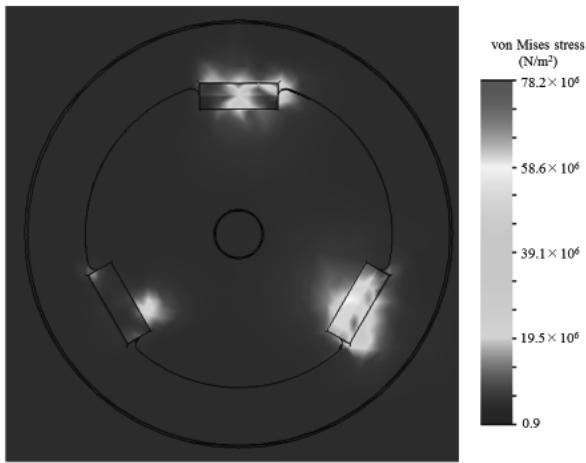


Fig. 35. von Mises stress contour of 3DOR on lower plate

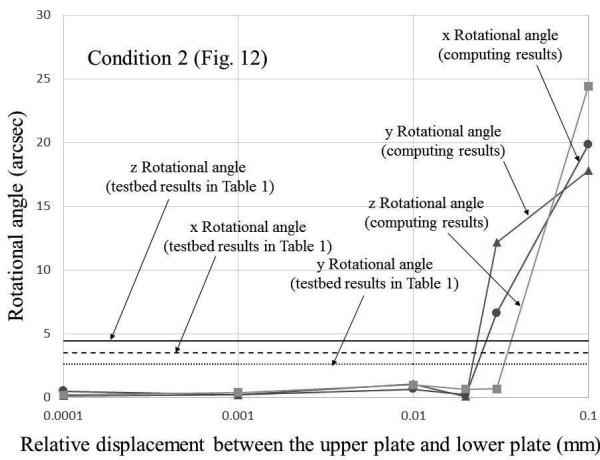


Fig. 36. Semi-log plot of the rotational angles of the upper plate along the direction as shown in Fig. 12

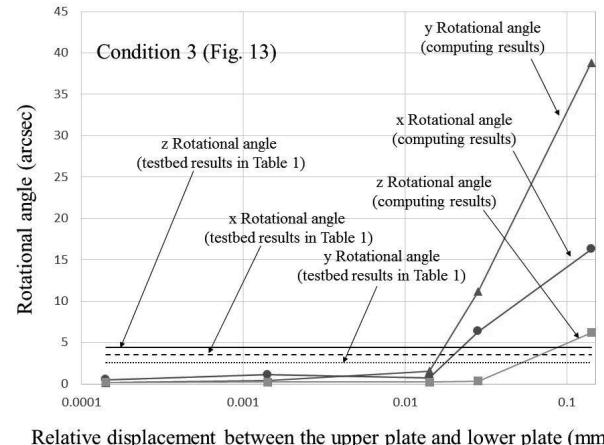


Fig. 37. Semi-log plot of the rotational angles of the upper plate along the direction shown in Fig. 13

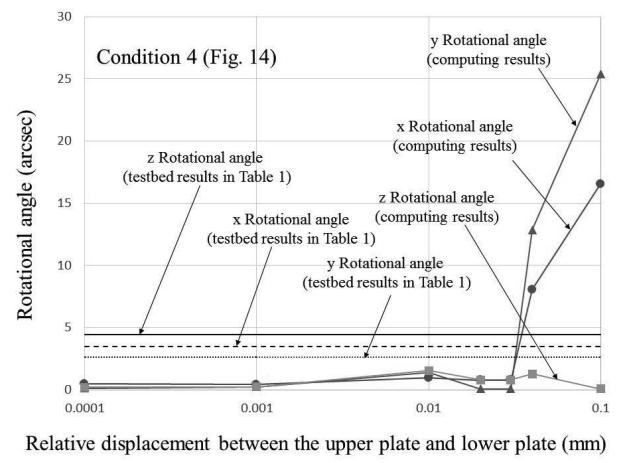


Fig. 38. Semi-log plot of the rotational angles of the upper plate along the direction as shown in Fig. 14

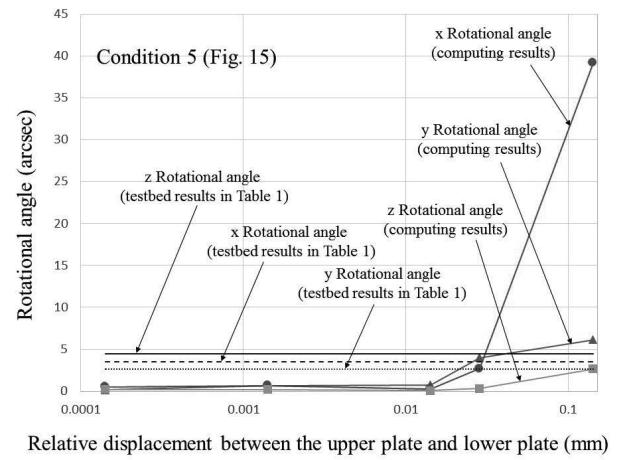


Fig. 39. Semi-log plot of the rotational angles of the upper plate along the direction as shown in Fig. 15

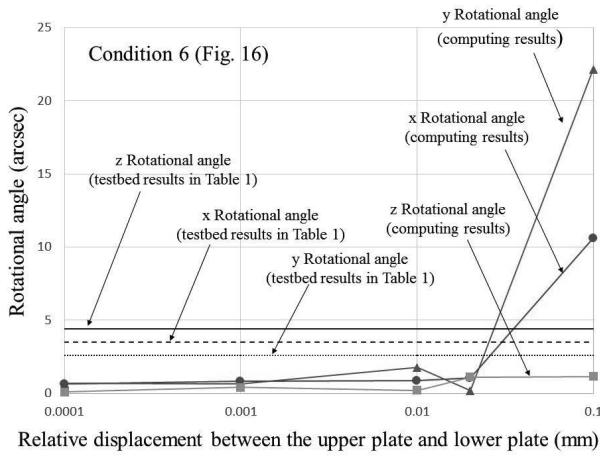


Fig. 40. Semi-log plot of the rotational angles of the upper plate along the direction as shown in Fig. 16

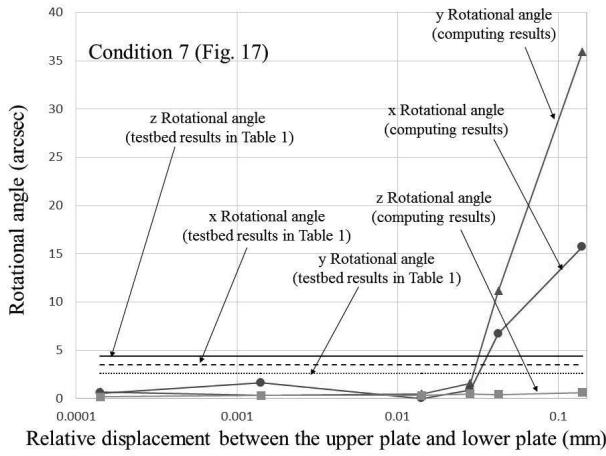


Fig. 41. Semi-log plot of the rotational angles of the upper plate along the direction as shown in Fig. 17

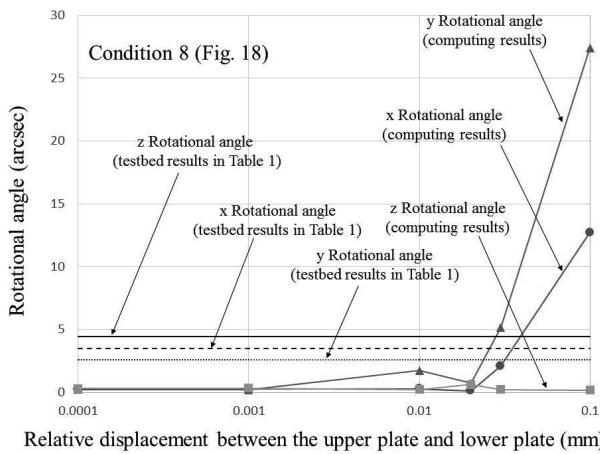


Fig. 42. Semi-log plot of the rotational angles of the upper plate along the direction as shown in Fig. 18

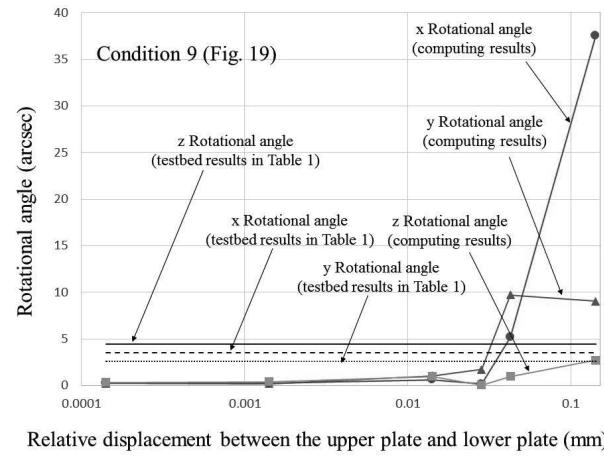


Fig. 43. Semi-log plot of the rotational angles of the upper plate along the direction as shown in Fig. 19

5.3 Comparison of computational and experimental results

Rotational angle data listed in Table 1 was obtained using the measurement equipment. The measurement equipment was placed at the original point in Fig. 8. Therefore, in the computational model shown in Fig. 10, the rotational angles were calculated by using the inclination of the convexity of domain A of the upper plate.

The rotational angles with respect to the relative displacement between the upper and the lower plates are shown in Fig. 36–43. The unit of the rotational angle is arcsec. In Fig. 36–43, Fig. 11–19 represent the direction of the relative displacement. The solid, the dotted thin, and the dotted bold lines in Fig. 36–43 represent rotational angles in Table 1. The filled \square , \circ and Δ symbols represent rotational angles with respect to the z-, x- and y-axes, respectively. Compared to the complete contact state, in the partial contact state case, contact points tend to be fewer. Therefore, differences in the rotational angles (which represent the relative displacement between the plates) occurred in the case of partial contact states.

For the testbed, the relative displacement between the upper and lower plates is described in the form of three rotational angles, as presented in Table 1. The three rotational angles decreased within the range of approximately 0.0–10.0. Similarly, as described in Fig. 36–43, with the exception of relative displacements of the order of 0.1 mm, these angles decreased within exactly the same range (approximately 0.0–10.0) in the case of contact state modeling. Therefore, the order of the rotational angles shown in Fig. 36–43 is almost in agreement with those listed in Table 1.

Based on the results of Fig. 36–43, the rotational angles are within a margin of approximately 1.0 arcsec with respect to every direction (Fig. 12–19), given that the relative displacement between the upper and the lower plates is within 0.01 mm. On the other hand, the rotational angle tends to increase irregularly, if the relative displacement becomes larger than 0.01 mm. Therefore, even if the upper and lower plates do not fit perfectly, the repeatability can be achieved when the relative displacements are within the 0.01 mm.

6. Conclusions

For the development of a latch deployable antenna structure with high precision, a technique to evaluate the displacement between two plates based on FEM was presented. The computational and experimental results were compared that lead to the following conclusions.

The rotational angle of the upper plate was measured as the difference between the initial and subsequent positions. A computational model based on FEM was created to obtain the calculated rotational angles between the initial and subsequent positions. The computational results agreed well with the test results.

Through the computational model, information on the

repeatability or the backlash mechanism can be obtained, using contact FEM. To quantitatively evaluate the repeatability of the latch structure, information related to repeatability is summarized in the form of rotational angles. Therefore, from an engineering viewpoint, important data can be obtained with sufficient accuracy.

In future research, we will examine optimal arrangements of the contact parts on the plate to minimize changes to the rotational angles.

References

- [1] Nakamura, K., Tsutsumi, Y., Tsujihata, A. and Meguro, A.: Large deployable reflector on ETS-VIII, *17th AIAA ICSS Conference*, AIAA-98-1229 (1998).
- [2] Reynolds, P., Atkinson, C. and Gliman, L.: Design and Development of the Primary and Secondary Mirror Deployment Systems for the Cryogenic JWST, *37th Aerosp. Mech. Symp.* (2004).
- [3] Heald, J. C. and Peterson, L. D.: Deployment Repeatability of a Space Telescope Reflector Petal, *J. Spacecraft and Rockets*, **39** (2002), pp. 771-779.
- [4] Ogi, Y., Ishimura, K., Shinohara, K., Matsumoto, K., Tanaka, H., Ito, T. and Kai, K.: Study of High-Precision Deployable Latch Mechanism Using Kinematic Coupling, *28th Symp. Aerosp. Struct. and Mater.* (2013) in Japanese.

Special function: Leaf function $r=sleaf_n(l)$ (First report)

Kazunori Shinohara*

Summary

Special function: The leaf function $sleaf_n(l)$, together with some of its features, is presented. A saw-tooth wave with periodicity can be defined as a continuous function $sleaf_n(l)$. The exponent m of the function $(sleaf_n(l))^m$ increases when differential operations are conducted. These leaf functions are closely related to trigonometric functions or the elliptic function. The inverse trigonometric and inverse elliptic functions are represented by $\int \frac{dt}{\sqrt{1-x^2}}$ and $\int \frac{dt}{\sqrt{1-x^4}}$, respectively. According to the Ref. [3], “mathematicians accepted the fact that $\int \frac{dt}{\sqrt{1-x^4}}$ is a new function, which is one of a family called the elliptic integrals”. On the other hand, we have not discussed the higher order of the variable x , such as the inverse functions: $\int \frac{dt}{\sqrt{1-x^6}}$, $\int \frac{dt}{\sqrt{1-x^8}}$, and $\int \frac{dt}{\sqrt{1-x^{100}}}$ etc.

This paper presents a new special function, the leaf function, based on these inverse integral functions. Compared to the waves or curves produced by both the trigonometric functions and the elliptic function, different waves or curves with periodicity can be produced by using the leaf function.

Keywords : Leaf function, Leaf curve, Jacobi elliptic functions, Elliptic integrals, Lemniscate, Ordinary differential equation, Square root of polynomial

1. Introduction

In this paper, variables are always real numbers. Complex numbers are not considered. We discuss the following ordinary differential equation (ODE):

$$\frac{d^2r(l)}{dl^2} = -n \cdot r(l)^{2n-1} \quad (1)$$

$$r(0) = 0 \quad (2)$$

$$\frac{dr(0)}{dl} = 1 \quad (3)$$

The variable $r(l)$ represents the function with respect to the variable l . Equations (2) and (3) represent the initial

conditions of the ODE. The number n represents a natural number ($n=1, 2, 3, \dots$). Ordinary differential equation (1) has interesting properties and can be solved by using numerical simulation techniques. In the graph, variables r and l are represented by the vertical and horizontal axes, respectively. With respect to any natural number n in Eq. (1), the graph shows various waves with periodicity.

In the case of $n=1$ in Eq.(1), we can obtain trigonometric functions (such as $r(l)=\sin(l)$ or $r(l)=\cos(l)$ etc.) as solutions of this equation. In the case of $n=2$ in Eq. (1), we can obtain the following:

*Department of Integrated Mechanical Engineering, Daido University

Address: 10-3 Takiharu-cho, Minami-ku, Nagoya, JAPAN

E-mail: shinohara@06.alumni.u-tokyo.ac.jp

$$\frac{d^2r}{dl^2} = -2r^3 \quad (4)$$

Differentiating the function r generally leads to a decrease in the index n of the function r . Therefore, it is difficult to describe the function r by using elementary functions. As described later, in the case of $n=2$, Eq. (1) is closely related with elliptic function and integration. In the case of $n=3$, to the best of our knowledge, the following equation has not been discussed [1]-[10]:

$$\frac{d^2r}{dl^2} = -3r^5 \quad (5)$$

Using the graph or numerical analysis, the relation between the geometry and equation (1) is described for Eq. (1). As an application, the present paper deals with $n=1,2,3,4,5$ and 100. The leaf function $sleaf_n(l)$ satisfied with Eq. (1) - (3) is presented.

2. Symbols

The symbols used in the paper are as follows:

n : Natural number ($n=1,2,3, \dots$). In the paper, it is named as basis.

r : Distance between the origin and the point on the curve

$$r = \sqrt{x^2 + y^2} \geq 0 \quad (6)$$

As described below, the negative variable r has to be defined in Eq. (1).

θ : The variable represents the angle. In this paper, the unit is radian. Counter-clockwise is positive. Clockwise is negative.

l : Arc length on a leaf curve

Numerical values are rounded off to five decimal places, and calculated with a precision of up to four digits.

3. Leaf function

3.1 Elliptic function [1]

The incomplete elliptic integral of the first kind l is defined as:

$$l = \int_0^r \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \quad -1 \leq r \leq 1 \quad (7)$$

where the parameter k is the modulus of the elliptic integral. The inverse elliptic function $arcsn(r,k)$ is defined as follows:

$$arcsn(r,k) = \int_0^r \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \quad -1 \leq r \leq 1 \quad (8)$$

Therefore, the following is obtained:

$$r = sn(l,k) \quad (9)$$

3.2 Leaf curve (x - y plane)

The leaf curve is defined as follows:

$$r^n = \sin n\theta \quad n = 1, 2, 3, \dots \quad (r \geq 0) \quad (10)$$

A point on the graph of Eq. (10) starts at the origin. As the angle θ increases, the point moves farther away from the origin. After reaching $r=1.0$ (the distance between the point and the origin), the point returns to the origin. In the graph, the horizontal axis and the vertical axis are set to represent x and y , respectively. These curves on the graph resemble a leaf shape. Therefore, these curves are defined as the leaf curve.

The leaf curve of $n=1$ is shown in Fig.1. In this case, the leaf curve represents a circle. In this paper, the curves are defined as one positive leaf curve. The reason as to why in one leaf curve is defined as positive, is described later. The leaf curve of $n=2$ is shown in Fig.2. This leaf curve represents the lemniscate with a slope of 45 degrees. The leaf curve ($sleaf_n(l)$) and the straight line ($y=\tan(\pi/4) \times x$) intersect at a point, which takes the maximum value $r = 1$.

The leaf curves of $n=3, 4, 5$, and 100 are shown in Figs. 3-6, respectively. The graphs of these curves are described as three positive leaf curve, four positive leaf curve, five positive leaf curve, and hundred positive leaf curve, respectively. The leaf curve and the straight line $y=\tan(\pi/2n) \times x$ intersect at a point, which takes the maximum value $r = 1$. The parameter n represents the natural number in Eq. (10). As the parameter n increases, the number of leaves increases in the graph.

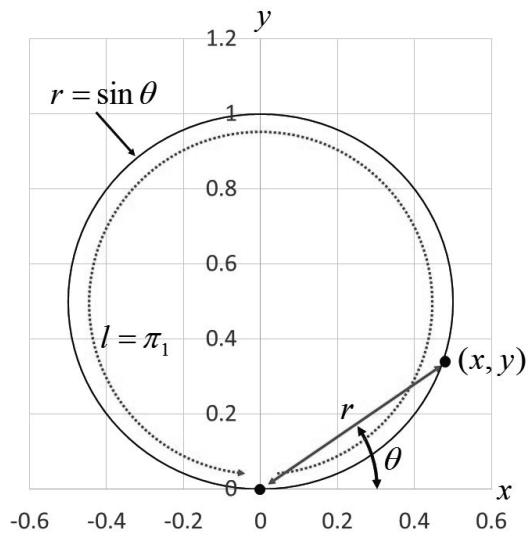


Fig. 1 One positive leaf curve
(Circle of center $(0, 0.5)$)

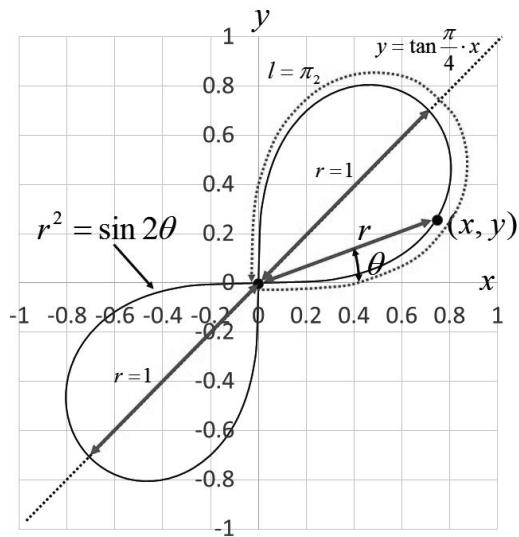


Fig. 2 Two positive leaf curve
(lemniscate with slope of 45 degrees)

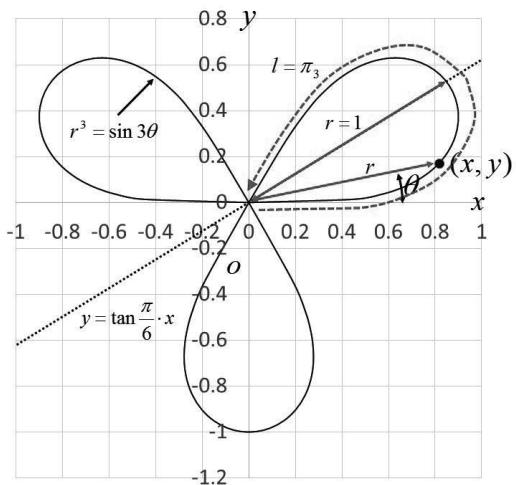


Fig. 3 Three positive leaf curve

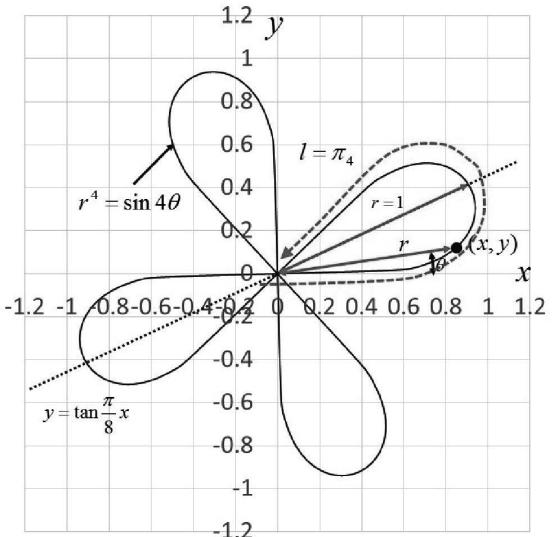


Fig. 4 Four positive leaf curve

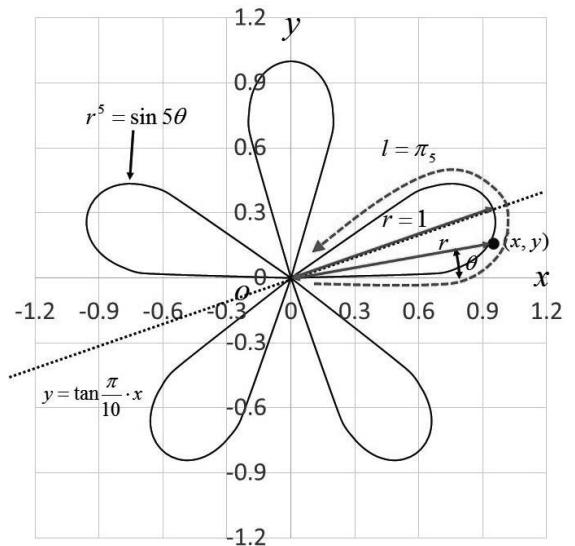


Fig. 5 Five positive leaf curve

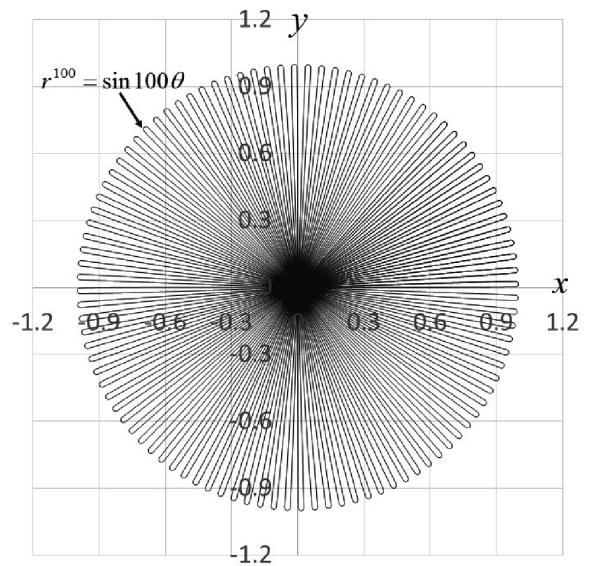


Fig. 6 Hundred positive leaf curve

3.3 Leaf function (r - l plane) (in first quadrant)

In this section, we discuss the ODE in Eq. (1). The parameter n represents a natural number. The variable l represents the length between the origin and the point on the leaf curve.

For example, the cases of $n=1,2,3,4,5$, and 100 in Eq.(1) are shown in Figs.7 - 18. The distance r is the function consisting of the length l .

$$\frac{d^2r(l)}{dl^2} = -n \cdot r(l)^{2n-1} \quad n = 1, 2, 3, \dots \quad (11)$$

The function $r(l)$ is abbreviated as r . By multiplying the derivative dr/dl , Eq. (12) is obtained as follows:

$$\frac{dr}{dl} \frac{d^2r}{dl^2} = -nr^{2n-1} \frac{dr}{dl} \quad n = 1, 2, 3, \dots \quad (12)$$

By integrating both sides in Eq. (12), the following equation is obtained:

$$\frac{1}{2} \left(\frac{dr}{dl} \right)^2 = -\frac{1}{2} r^{2n} + C_1 \quad n = 1, 2, 3, \dots \quad (13)$$

Using the initial condition in both Eq. (2) and Eq. (3), the constant C_1 is determined.

$$\frac{1}{2} \left(\frac{dr(0)}{dl} \right)^2 = -\frac{1}{2} r(0)^{2n} + C_1 \quad (14)$$

The following equation is obtained.

$$C_1 = \frac{1}{2} \quad (15)$$

By solving the derivative dr/dl in Eq. (13), the following equation is obtained.

$$\frac{dr}{dl} = \pm \sqrt{1 - r^{2n}} \quad (16)$$

In Fig.7, the arc length $l=0$ indicates the distance $r=0$. As the variable l increases within the first quadrant ($0 \leq l \leq \pi/2$) in Fig.7, the variable r increases. It is natural that the differential dr/dl is defined as positive. Therefore, it is

obtained as follows:

$$\frac{dr}{dl} = \sqrt{1 - r^{2n}} \quad (17)$$

In this section, notice that variables r and l only occur in the first quadrant. As described in section 5.2, with respect to the range of the variable l , it is necessary to decide the sign of the differential dr/dl . After separating the variables, Eq. (16) is integrated from 0 to r and is obtained as follows:

$$\int_0^r \frac{1}{\sqrt{1 - t^{2n}}} dt = l \quad -1 \leq r \leq 1 \quad (18)$$

The inverse function of Eq. (18) is defined as follows:

$$arcsleaf_n(r) = \int_0^r \frac{1}{\sqrt{1 - t^{2n}}} dt = l \quad (19)$$

The following equation is obtained.

$$r = sleaf_n(l) \quad (20)$$

In the case of $n=1$, the curve is shown in Fig. 7 and Fig. 8. The following equation is obtained.

$$sleaf_1(l) = \sin(l) \quad (21)$$

In the case of $n=1$, the arc length l is proportional to the radian angle.

$$l = \theta \quad (22)$$

Therefore, Eq.(20) is as follows:

$$sleaf_1(l) = \sin(\theta) \quad (23)$$

In the case of $n=2$, the curve is shown in Fig.9 and Fig.10 and the following equation is obtained.

$$sleaf_2(l) = sn(l, i) \quad (24)$$

The function sn represents Eq. (9). The variable i represents an imaginary number.

3.4 Relation between the geometry and the function: $sleaf_n(l)$

In this section, the relation between the geometry and the function $sleaf_n(l)$ is described. The coordinate system of the function $sleaf_n(l)$ is shown as polar coordinates.

$$x = r \cos(\theta) \quad (25)$$

$$y = r \sin(\theta) \quad (26)$$

The functions x and y consist of both the variables θ and r . Eq.(25) and Eq.(26) are differentiated with respect to the variable r to obtain the following equation.

$$\frac{dx}{dr} = \cos(\theta) - r \sin(\theta) \cdot \frac{d\theta}{dr} \quad (27)$$

$$\frac{dy}{dr} = \sin(\theta) + r \cos(\theta) \cdot \frac{d\theta}{dr} \quad (28)$$

In a small domain, approximation of the length Δl on the curve is shown as follows:

$$\Delta l = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{\left(\frac{\Delta x}{\Delta r}\right)^2 + \left(\frac{\Delta y}{\Delta r}\right)^2} \cdot \Delta r \quad (29)$$

If the variable Δl takes an infinitely small value, the following equation is obtained.

$$dl = \sqrt{\left(\frac{dx}{dr}\right)^2 + \left(\frac{dy}{dr}\right)^2} \cdot dr \quad (30)$$

By substituting Eq. (27) and (28) in Eq. (30), the following equation is obtained.

$$\begin{aligned} dl &= \sqrt{\left(\frac{dx}{dr}\right)^2 + \left(\frac{dy}{dr}\right)^2} \cdot dr \\ &= \sqrt{\left(\cos(\theta) - r \sin(\theta) \cdot \frac{d\theta}{dr}\right)^2 + \left(\sin(\theta) + r \cos(\theta) \cdot \frac{d\theta}{dr}\right)^2} \cdot dr \quad (31) \\ &= \sqrt{1 + r^2 \left(\frac{d\theta}{dr}\right)^2} \cdot dr \end{aligned}$$

By differentiating Eq. (10) with respect to the variable θ , the following equation is obtained.

$$nr^{n-1} \frac{dr}{d\theta} = n \cos(n\theta) \quad (32)$$

The above equation is as follows:

$$\frac{d\theta}{dr} = \frac{r^{n-1}}{\cos(n\theta)} \quad (33)$$

By substituting Eq. (33) in Eq. (31), the following equation is obtained.

$$\begin{aligned} dl &= \sqrt{1 + r^2 \left(\frac{d\theta}{dr}\right)^2} \cdot dr = \sqrt{1 + r^2 \left(\frac{r^{n-1}}{\cos(n\theta)}\right)^2} \cdot dr \\ &= \sqrt{1 + \frac{r^{2n}}{\cos^2(n\theta)}} \cdot dr = \sqrt{1 + \frac{r^{2n}}{1 - \sin^2(n\theta)}} \cdot dr \\ &= \sqrt{1 + \frac{r^{2n}}{1 - r^{2n}}} \cdot dr = \frac{1}{\sqrt{1 - r^{2n}}} \cdot dr \end{aligned} \quad (34)$$

By integrating $\frac{1}{\sqrt{1 - r^{2n}}}$ from 0 to r , the following equation is obtained.

$$l = \int_0^r \frac{1}{\sqrt{1 - t^{2n}}} dt \quad (35)$$

The above equation is the same as the inverse function defined by Eq. (17). The following equation is obtained.

$$l = \int_0^r \frac{1}{\sqrt{1 - t^{2n}}} dt = arcsleaf_n(r) \quad (36)$$

The following equation is obtained.

$$r = sleaf_n(l) \quad (37)$$

By differentiating Eq. (35) with respect to the variable r , the following equation is obtained.

$$\frac{dl}{dr} = \frac{1}{\sqrt{1 - r^{2n}}} \quad (38)$$

The above equation is obtained as follows:

$$\left(\frac{dr}{dl}\right)^2 = 1 - r^{2n} \quad (39)$$

By differentiating the above equation with respect to the variable l , the following equation is obtained.

$$2 \frac{dr}{dl} \frac{d^2r}{dl^2} = -2nr^{2n-1} \frac{dr}{dl} \quad (40)$$

By reason of the condition $dr/dl \neq 0$, the following equation is obtained.

$$\frac{d^2r}{dl^2} = -nr^{2n-1} \quad (41)$$

Using Eq. (36), the following equation is obtained.

$$\frac{d^2}{dl^2} sleaf_n(l) = -n \cdot (sleaf_n(l))^{2n-1} \quad (42)$$

Therefore, Eqs. (1)-(3) can be described by the leaf function.

4. Numerical examination of leaf function

In the case of $n=1, 2, 3, 4, 5$, and 100 in Eq.(10) and (37), the graph is plotted. In this section, the variables θ , x , and y are only in the first quadrant. Therefore these variables are satisfied as follows:

$$0 \leq \theta \leq \frac{\pi}{2} \quad (43)$$

$$0 \leq x \leq 1 \quad (44)$$

$$0 \leq y \leq 1 \quad (45)$$

In the case of $n=1$, the function is as follows:

$$r = \sin(\theta) \quad (46)$$

Using Eq. (6), Eq. (25), and Eq. (26), the relation between the variables r and θ can be described by the relation between the variables x and y . It is obtained as follows:

$$x^2 + y^2 = y \quad (47)$$

These graphs are shown in Fig.7 and Fig.8.

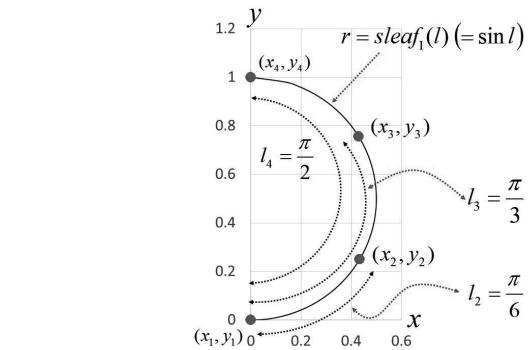
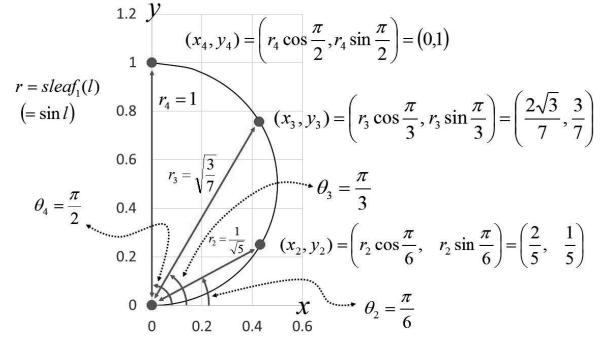



Fig.7 Leaf curve of $n=1$ ($0 \leq \theta \leq \pi/2$)

(Vertical and horizontal axes are set to x and y , respectively)

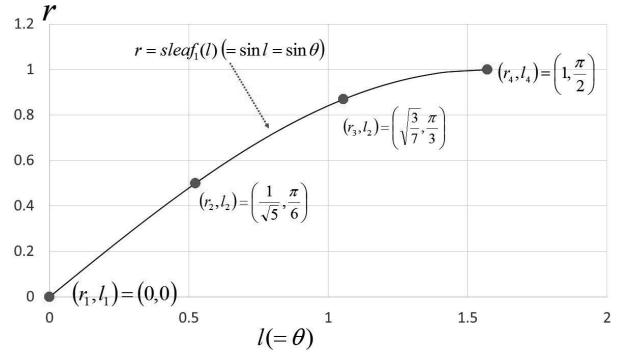


Fig.8 Leaf curve of $n=1$ ($0 \leq \theta \leq \pi/2$)

(Vertical and horizontal axes are set to r and l , respectively)

In the case of $n=2$, the function is as follows:

$$r^2 = \sin(2\theta) \quad (48)$$

Using Eq. (6), Eq. (25), and Eq. (26), the relation between the variables r and θ can be described by the relation between the variables x and y , which is obtained as follows:

$$(x^2 + y^2)^2 = 2xy \quad (49)$$

These graphs are shown in Fig.9 and Fig.10.

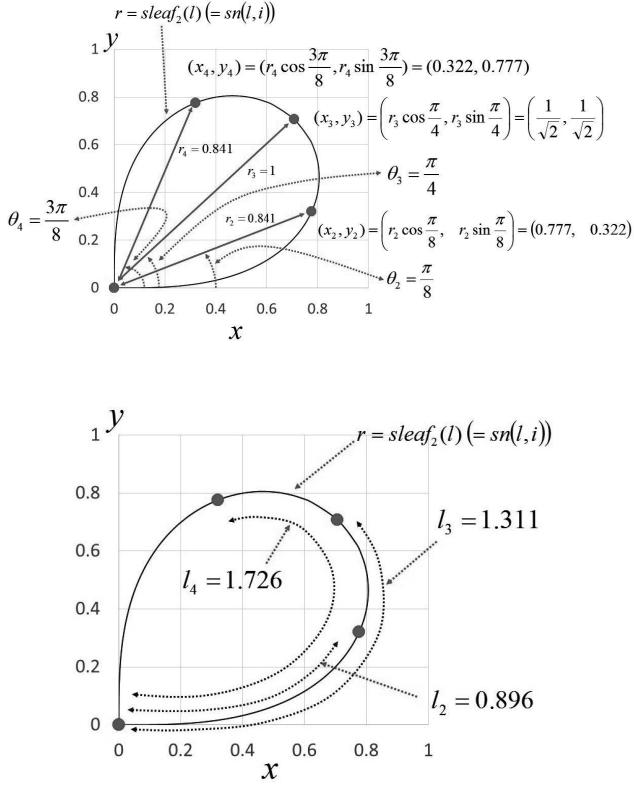


Fig.9 Leaf curve of $n=2$ ($0 \leq \theta \leq \pi/2$)

(Vertical and horizontal axes are set to y and x , respectively)

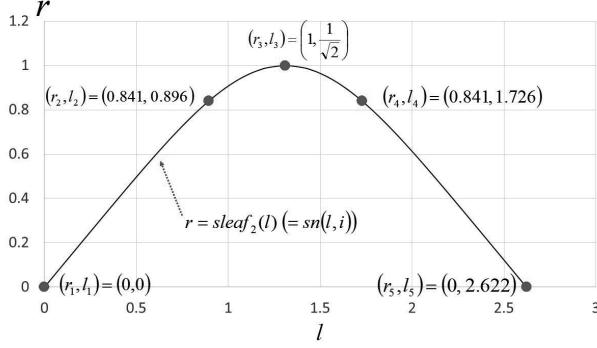


Fig.10 Leaf curve of $n=2$ ($0 \leq \theta \leq \pi/2$)

(Vertical and horizontal axes are set to r and l , respectively)

In the case of $n=3$, the function is as follows:

$$r^3 = \sin 3\theta \quad (50)$$

Using Eq. (6), Eq. (25), and Eq. (26), the relation between the variables r and θ can be described by the relation between the variables x and y , which is obtained as follows:

$$(x^2 + y^2)^3 = 3yx^2 - y^3 \quad (51)$$

These graphs are shown in Fig.11 and Fig.12.

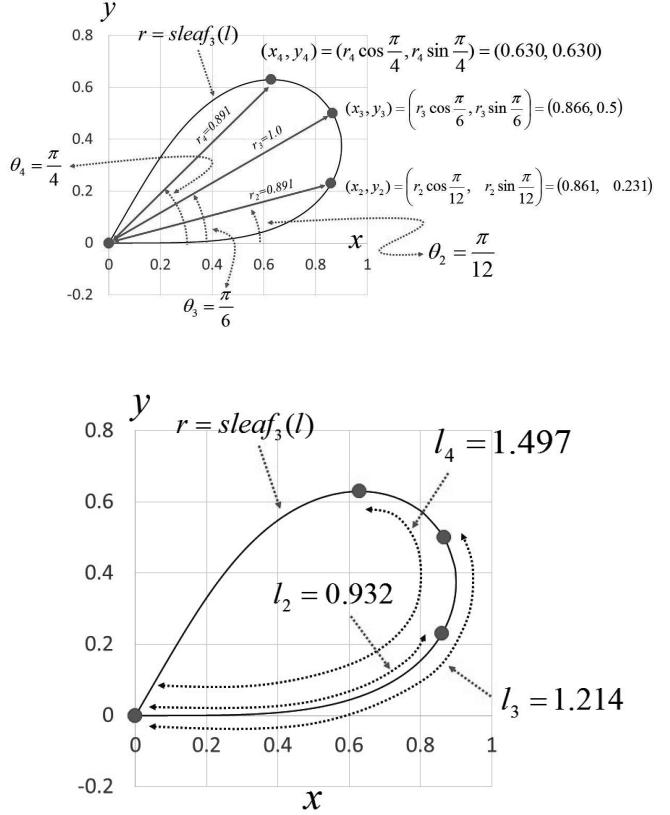


Fig.11 Leaf curve of $n=3$ ($0 \leq \theta \leq \pi/3$)

(Vertical and horizontal axes are set to y and x , respectively)

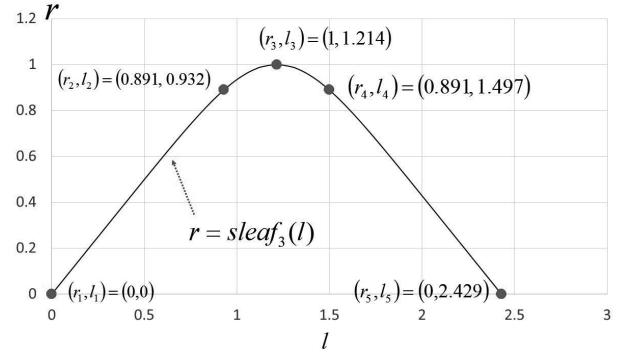


Fig.12 Leaf curve of $n=3$ ($0 \leq \theta \leq \pi/3$)

(Vertical and horizontal axes are set to r and l , respectively)

In the case of $n=4$, the function is as follows:

$$r^4 = \sin 4\theta \quad (52)$$

Using Eq. (6), Eq. (25), and Eq. (26), the relation between the variables r and θ can be described by the relation

between the variables x and y , which is obtained as follows:

$$(x^2 + y^2)^4 = 4yx^3 - 4y^3x \quad (53)$$

These graphs are shown in Fig.13 and Fig.14.

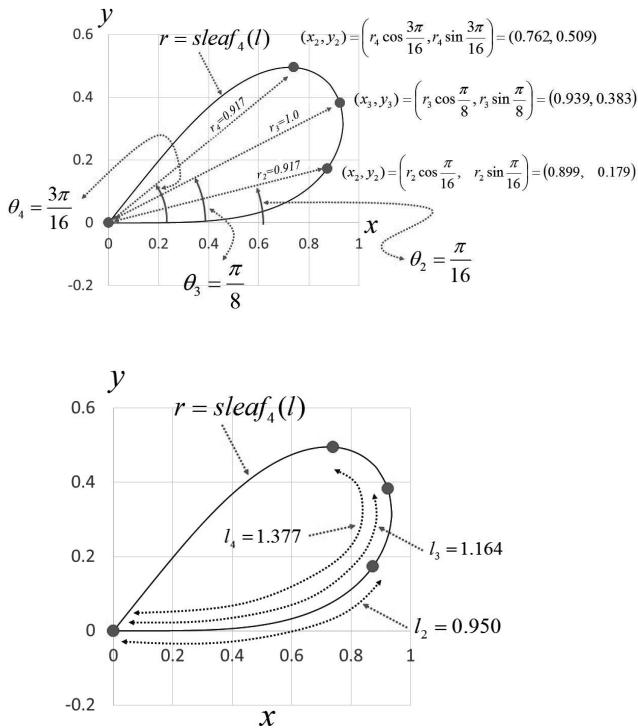


Fig.13 Leaf curve of $n=4$ ($0 \leq \theta \leq \pi/4$) (Vertical and horizontal axes are set to y and x , respectively)

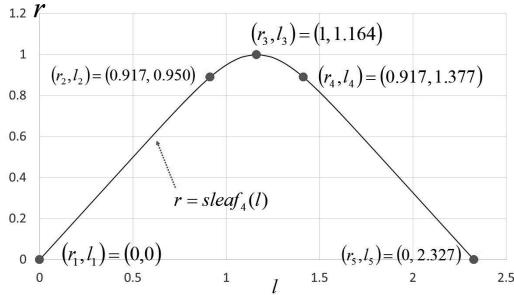


Fig.14 Leaf curve of $n=4$ ($0 \leq \theta \leq \pi/4$)

(Vertical and horizontal axes are set to r and l , respectively)

In the case of $n=5$, the function is as follows:

$$r^5 = \sin 5\theta \quad (54)$$

Using Eq. (6), Eq. (25), and Eq. (26), the relation between the variables r and θ can be described by the relation between the variables x and y , which is obtained as follows:

$$(x^2 + y^2)^5 = y^5 + 5yx^4 - 10y^3x^2 \quad (55)$$

These graphs are shown in Fig.15 and Fig.16.

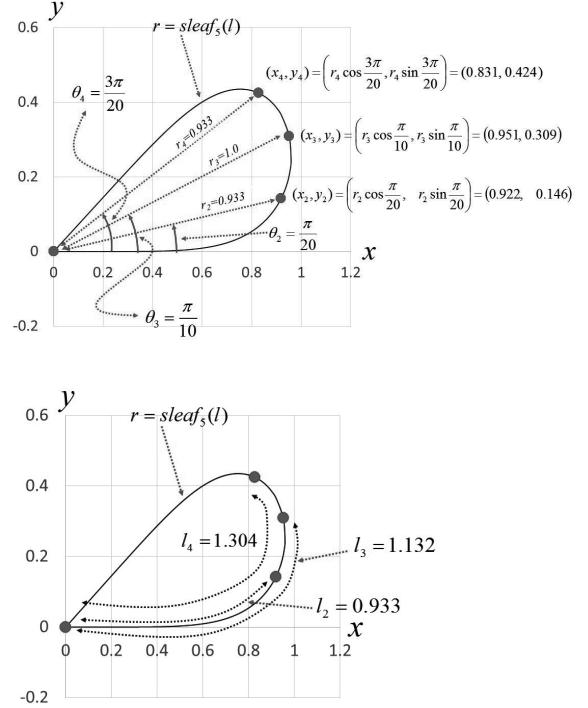


Fig.15 Leaf curve of $n=5$ ($0 \leq \theta \leq \pi/5$)
(Vertical and horizontal axes are set to y and x , respectively)

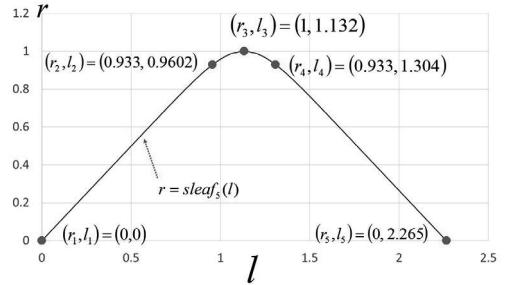


Fig.16 Leaf curve of $n=5$ ($0 \leq \theta \leq \pi/5$)
(Vertical and horizontal axes are set to r and l , respectively)

In the case of $n=100$, the function is as follows:

$$r^{100} = \sin(100\theta) \quad (56)$$

These graphs are shown in Fig.17 and Fig.18.

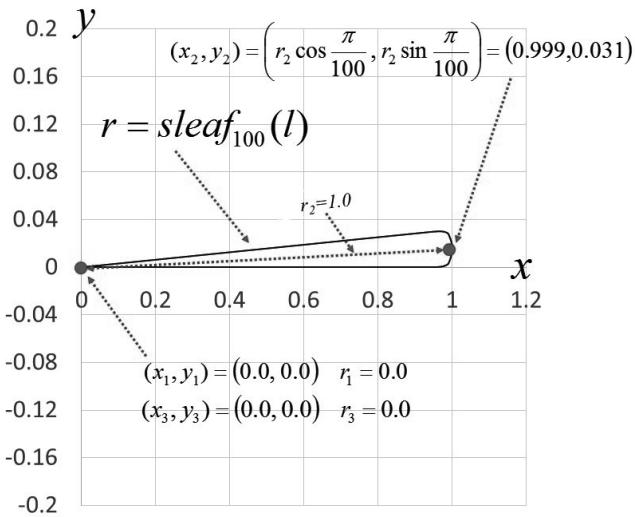


Fig.17 Leaf curve of $n=100$ ($0 \leq \theta \leq \pi/100$)

(Vertical and horizontal axes are set to y and x , respectively)

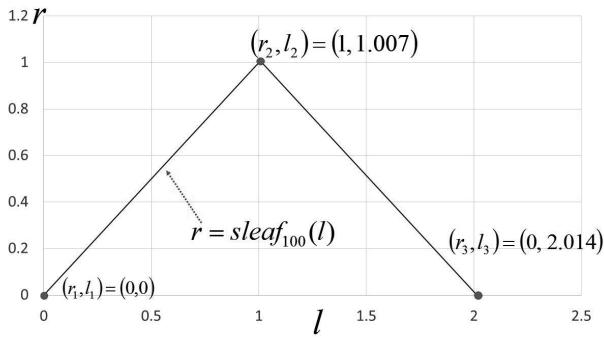


Fig.18 Leaf curve of $n=100$ ($0 \leq \theta \leq \pi/100$)

(Vertical and horizontal axes are set to r and l , respectively)

5. Re-examination of leaf function

5.1 Leaf curve ($x-y$ plane)

In earlier discussions, the leaf curve was described geometrically by assuming the variable r to have the range $r \geq 0$. Therefore, various problems occur in the leaf function. In the case of an odd number n in Eq. (1), the inequality $\sin(n\theta) < 0$ in Eq. (10) exist for an arbitrary variable θ . The distance r has a negative value, geometrically and a negative distance cannot be described using a graph, geometrically. On the other hand, a negative r occurs in Eq. (10).

In the case of an even number n , the right side r^n in Eq.(10) consistently becomes positive, even if the left side $\sin(n\theta)$ in Eq.(10) becomes negative. Therefore, for real numbers, Eq.(10) is not satisfied for an arbitrary variable θ . The function ($r-\theta$ function) is redefined as follows:

$$|r|^n = |\sin(n\theta)| \quad n=1,2,3,\dots \quad (57)$$

In the above equation, the parameter n is a natural number. The variable r includes both positive and negative numbers. By replacing r by $|r|$, and replacing $\sin(n\theta)$ by $|\sin(n\theta)|$, the leaf curve can be related geometrically.

In the case of $n=1$, the leaf curve is shown in Fig.19. Compared to Fig.1, an additional leaf is added in the range ($\pi \leq \theta \leq 2\pi$), which occurs in the third and fourth quadrants. In Fig.19, the leaf ($r \geq 0$) in the first and second quadrants is defined as the positive leaf. The leaf ($r < 0$) in the third and fourth quadrants is defined as the negative leaf. As shown in Fig.19, the leaf curve is defined as consisting of one positive and one negative leaf.

In the case of $n=2,3,4,5$, and 100 , the graphs on the $x-y$ plane are shown in Fig.20-24. In this paper, the number of leaves is even, with positive and negative leaves arranged in alternating in order. The polar coordinates in Eq. (25)-(26) are redefined as follows:

$$x = |r| \cos \theta \quad (58)$$

$$y = |r| \sin \theta \quad (59)$$

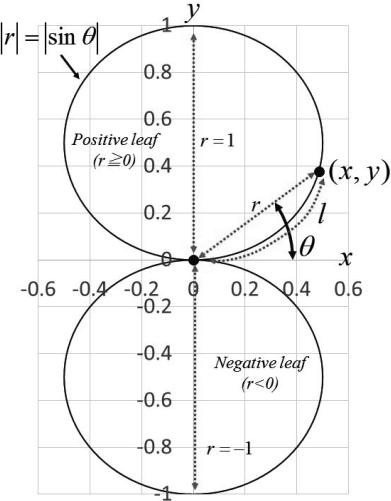


Fig.19 One positive - one negative leaf curve.

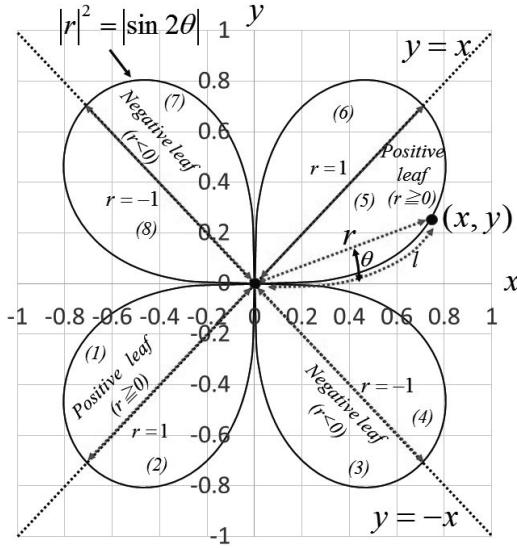


Fig. 20 Two positive - two negative leaf curve.

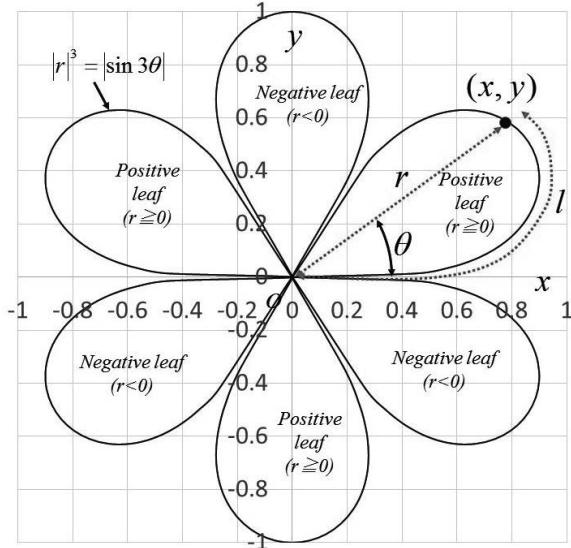


Fig. 21 Three positive - three negative leaf curve.

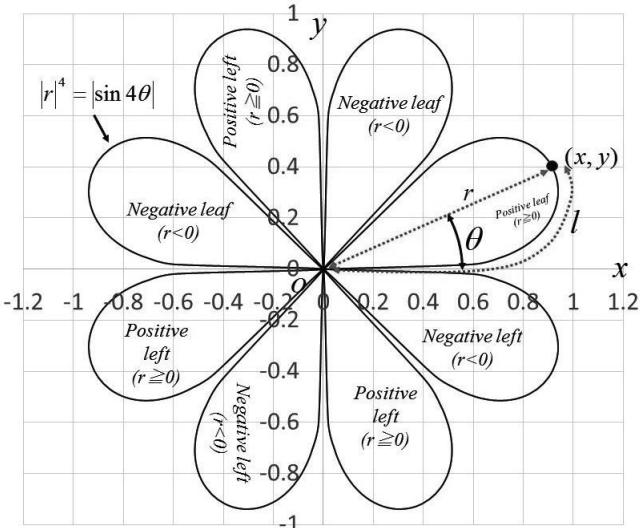


Fig. 22 Four positive - four negative leaf curve.

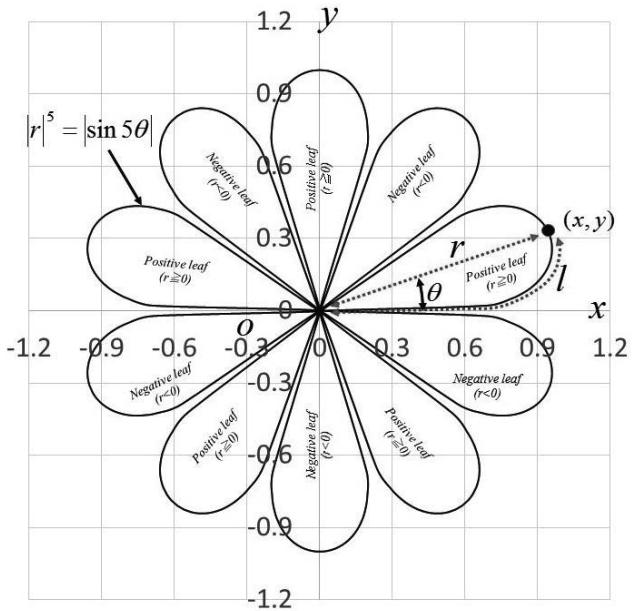


Fig. 23 Five positive - five negative leaf curve.

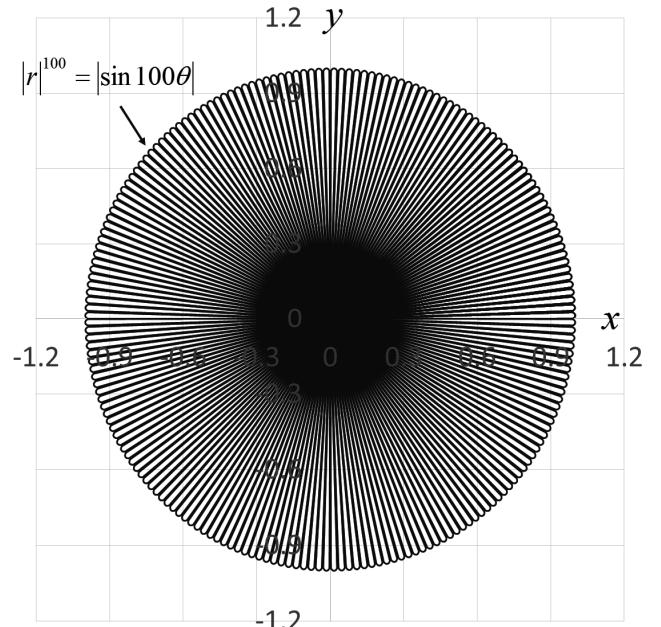


Fig. 24 Hundred positive - Hundred negative leaf curve.

5.2 Extended definition of leaf function

The constants $\pi_n/2$ are defined as follows:

$$l = \int_0^1 \frac{1}{\sqrt{1-t^{2n}}} dt = \frac{\pi_n}{2} \quad (n = 1, 2, 3, \dots) \quad (60)$$

In the case of $n=1$, the constant π_1 represents the circular constant π . The constants π_n with respect to $n=1, 2, 3, 4, 5$, and 100 are summarized in Table 1. Numerical values π_n are rounded off to five decimal places, and calculated with precision up to four digits.

Table 1 Values of constant π_n

n	π_n
1	$\pi_1=3.142$
2	$\pi_2=2.622$
3	$\pi_3=2.429$
4	$\pi_4=2.327$
5	$\pi_5=2.265$
100	$\pi_{100}=2.014$

As shown in Fig.1 - Fig.5, the constant π_n geometrically represents the circumference length of one leaf. The leaf function $sleaf_n(l)$ takes the constant $2 \times \pi_n$ with respect to one period. In the angle θ , the counter-clockwise direction is defined as positive. As the angle θ increases from 0 to $\pi_n/2$, the distance increases from 0 to 1. Using Eq. (18), one input of the arc length l is calculated with respect to one output of variable r . The leaf function $sleaf_n(l)$ is defined as a multivalued function, with one input associated with multiple outputs.

First, the parameter $n=2$ in Eq. (35) is discussed. In the range $0 \leq \theta < \pi/4$ (domain (5) in Table 2 and Fig.20), the variable l is calculated as follows:

$$l = \int_0^r \frac{1}{\sqrt{1-t^4}} dt \quad (0 \leq r \leq 1) \quad (61)$$

In the range $\pi/4 \leq \theta < \pi/2$ (domain (6) in Table 2 and Fig.20), using Eq. (16) with respect to r , the equation is obtained as follows:

$$\frac{dl}{dr} = \pm \frac{1}{\sqrt{1-r^{2n}}} \quad (62)$$

In the range of $\pi/4 \leq \theta < \pi/2$ in Eq. (10), the distance r varies from $r=1$ to $r=0$, with the variable r decreasing in the range. The sign of the variation dr is negative; thus, the sign of the above equation becomes negative.

$$\frac{dl}{dr} = - \frac{1}{\sqrt{1-r^4}} \quad \left(\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2} \right) \quad (63)$$

In the range $\pi/4 \leq \theta < \pi/2$, the arc length is as follows:

$$\begin{aligned} l &= \int_0^1 \frac{1}{\sqrt{1-t^4}} dt + \int_1^r \frac{-1}{\sqrt{1-t^4}} dt \\ &= \frac{\pi_2}{2} + \int_r^1 \frac{1}{\sqrt{1-t^4}} dt \quad (0 \leq r \leq 1) \end{aligned} \quad (64)$$

The constant π_2 is given in Table 1. In the range $\pi/2 \leq \theta < 3\pi/4$, the domain in the x - y graph is defined as the negative leaf. The sign of the variable r becomes negative. The variable r is increased with respect to the negative direction, and the sign of the variation dr becomes negative. On the other hand, the sign of the variation dl becomes positive by increasing the variable l . Therefore, the sign of Eq. (62) becomes negative.

$$\frac{dl}{dr} = - \frac{1}{\sqrt{1-r^4}} \quad \left(\frac{\pi}{2} \leq \theta \leq \frac{3\pi}{4} \right) \quad (65)$$

The length l is obtained as follows:

$$\begin{aligned} l &= \int_0^1 \frac{1}{\sqrt{1-t^4}} dt + \int_1^0 \frac{-1}{\sqrt{1-t^4}} dt + \int_0^r \frac{-1}{\sqrt{1-t^4}} dt \\ &= \pi_2 + \int_r^0 \frac{1}{\sqrt{1-t^4}} dt \quad (-1 \leq r \leq 0) \end{aligned} \quad (66)$$

In the range $3\pi/4 \leq \theta < \pi$ (domain (8) in Table 2 and Fig.20), the domain in the x - y graph is defined as the negative leaf. The sign of the variable r becomes negative. The variable r starts at $r=-1$ and finally reaches $r=0$. The variation dr becomes positive. On the other hand, the length l increases. The sign of the variation dl becomes positive. The sign of the variation dl/dr becomes positive.

$$\frac{dl}{dr} = \frac{1}{\sqrt{1-r^4}} \quad \left(\frac{3}{4}\pi \leq \theta \leq \pi \right) \quad (67)$$

The length l is obtained as follows:

$$\begin{aligned} l &= \int_0^1 \frac{1}{\sqrt{1-t^4}} dt + \int_1^0 \frac{-1}{\sqrt{1-t^4}} dt + \int_0^{-1} \frac{-1}{\sqrt{1-t^4}} dt \\ &+ \int_{-1}^r \frac{1}{\sqrt{1-t^4}} dt = \frac{3}{2}\pi_2 + \int_{-1}^r \frac{1}{\sqrt{1-t^4}} dt \quad (-1 \leq r \leq 0) \end{aligned} \quad (68)$$

In the negative case, the variable l should also be required to be defined. In this paper, the sign of the angle θ is defined as positive with respect to the counter-clockwise direction. Corresponding to the angle θ , the length l is defined as positive. On the other hand, the sign of the angle θ is defined as negative with respect to the clockwise direction. Corresponding to the angle θ , the length l is defined as negative.

In the range $-\pi/4 \leq \theta \leq 0$ (domain (4) in Table 2 and Fig.20),

the domain in the x - y graph is defined as the negative leaf. The sign of the variable r becomes negative. The variable r starts at $r=0$ and finally reaches $r=-1$. The sign of the variation dr becomes negative. On the other hand, the length l increases with respect to the negative direction. The sign of the variation dl becomes negative. The sign of the variation dl/dr becomes positive.

$$\frac{dl}{dr} = \frac{1}{\sqrt{1-r^{2n}}} \quad \left(-\frac{1}{4}\pi \leq \theta \leq 0 \right) \quad (69)$$

The length l is obtained as follows:

$$l = \int_0^r \frac{1}{\sqrt{1-t^4}} dt \quad (-1 \leq r \leq 0) \quad (70)$$

In the range $-\pi/2 \leq \theta \leq -\pi/4$ (domain (3) in Table 2 and Fig.20), the domain in the x - y graph is defined as the negative leaf. The sign of the variable r becomes negative. The variable r starts at $r=-1$ and finally reaches $r=0$. The sign of the variation dr becomes positive. On the other hand, the length l increases with respect to the negative direction. The sign of the variation dl becomes negative. The sign of the variation dl/dr becomes negative.

$$\frac{dl}{dr} = -\frac{1}{\sqrt{1-r^{2n}}} \quad \left(-\pi \leq \theta \leq -\frac{1}{2}\pi \right) \quad (71)$$

The length l is obtained as follows:

$$\begin{aligned} l &= \int_0^{-1} \frac{1}{\sqrt{1-t^4}} dt + \int_{-1}^r \frac{-1}{\sqrt{1-t^4}} dt \\ &= -\frac{\pi_2}{2} + \int_{-1}^r \frac{-1}{\sqrt{1-t^4}} dt \quad (-1 \leq r \leq 0) \end{aligned} \quad (72)$$

In the range $-3\pi/4 \leq \theta \leq -\pi/2$ (domain (2) in Table 2 and Fig.20), the domain in the x - y graph is defined as the positive leaf. The sign of the variable r becomes positive. The variable r starts at $r=0$ and finally reaches $r=1$. The sign of the variation dr becomes positive. On the other hand, the length l increases with respect to negative direction. The sign of the variation dl becomes negative. The sign of the variation dl/dr becomes negative.

$$\frac{dl}{dr} = -\frac{1}{\sqrt{1-r^{2n}}} \quad \left(-\frac{3}{2}\pi \leq \theta \leq -\pi \right) \quad (73)$$

The length l is obtained as follows:

$$\begin{aligned} l &= \int_0^{-1} \frac{1}{\sqrt{1-t^4}} dt + \int_{-1}^0 \frac{-1}{\sqrt{1-t^4}} dt + \int_0^r \frac{-1}{\sqrt{1-t^4}} dt \\ &= -\pi_2 + \int_0^r \frac{-1}{\sqrt{1-t^4}} dt \quad (0 \leq r \leq 1) \end{aligned} \quad (74)$$

In the range $-\pi \leq \theta \leq -3\pi/4$ (domain (1) in Table 2 and Fig.20), the domain in the x - y graph is defined as the positive leaf. The sign of the variable r becomes positive. The variable r starts at $r=1$ and finally reaches $r=0$. The sign of the variation dr becomes negative. On the other hand, the length l increases with respect to the negative direction. The sign of the variation dl becomes negative. The sign of the variation dl/dr becomes positive.

$$\frac{dl}{dr} = \frac{1}{\sqrt{1-r^{2n}}} \quad \left(-2\pi \leq \theta \leq -\frac{3}{2}\pi \right) \quad (75)$$

The length l is obtained as follows:

$$\begin{aligned} l &= \int_0^{-1} \frac{1}{\sqrt{1-t^4}} dt + \int_{-1}^0 \frac{-1}{\sqrt{1-t^4}} dt + \int_0^1 \frac{-1}{\sqrt{1-t^4}} dt \\ &+ \int_1^r \frac{1}{\sqrt{1-t^4}} dt = -\frac{3}{2}\pi_2 + \int_1^r \frac{1}{\sqrt{1-t^4}} dt \quad (0 \leq r \leq 1) \end{aligned} \quad (76)$$

In one period of both the positive and negative directions, the relation between the variables l and r is summarized in the case of $n=2$. For an arbitrary n , the same approach is applied. In the range $-2\pi_n \leq l \leq 2\pi_n$, the variables related to the function $sleaf_n(l)$ are summarized in Table 2 and Fig.25. With respect to the arbitrary n , the relation between the variables r and l is summarized in Table 3.

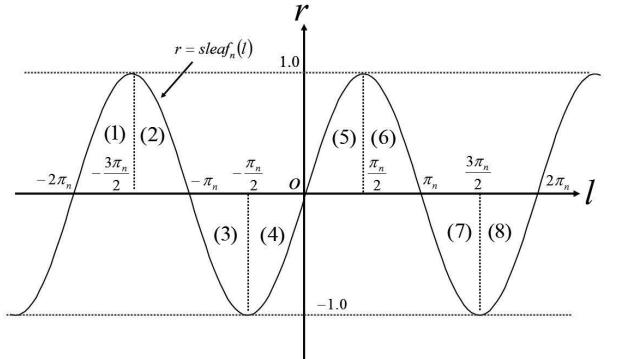


Fig. 25 Diagram of wave with respect to leaf function $sleaf_n(l)$ (In the figure, the numbers (1)-(8) represent the domain corresponding to Table 2 and Fig.20)

5.3 Waves of leaf function

Table 3 describes two types of graph. In the first type of graph, the vertical and horizontal axes are set to the variables r and l , respectively. In the second type of graph, the vertical and horizontal axes are set to the variables r and θ , respectively. The curves in both the x-y graph and the $r-l$ graph are described as follows:



Fig. 26 Wave of leaf function $r=sleaf_l(l)$ ($=\sin(l)$)
(1 period: $T=6.283(=2\pi_l)$)

Table 2 Relation between variables l and r for the leaf function $r=sleaf_n(l)$ with respect to one period in both the positive ($0 \leq l \leq 2\pi_n$) and negative directions ($-2\pi_n \leq l \leq 0$)

Domain	Range of angle θ	Range of length l	Length l	Range of variable r	Derivation dr/dl
(1)	$-2\pi \frac{1}{n} \leq \theta < -\frac{3}{2}\pi \frac{1}{n}$	$-2\pi_n \leq l < -\frac{3}{2}\pi_n$	$l = -\frac{3\pi_n}{2} - \int_r^1 \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$
(2)	$-\frac{3}{2}\pi \frac{1}{n} \leq \theta < -\pi \frac{1}{n}$	$-\frac{3}{2}\pi_n \leq l < -\pi_n$	$l = -\pi_n - \int_0^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
(3)	$-\pi \frac{1}{n} \leq \theta < -\frac{1}{2}\pi \frac{1}{n}$	$-\pi_n \leq l < -\frac{1}{2}\pi_n$	$l = -\frac{\pi_n}{2} - \int_{-1}^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
(4)	$-\frac{1}{2}\pi \frac{1}{n} \leq \theta < 0$	$-\frac{1}{2}\pi_n \leq l < 0$	$l = \int_0^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$
(5)	$0 \leq \theta < \frac{1}{2}\pi \frac{1}{n}$	$0 \leq l < \frac{1}{2}\pi_n$	$l = \int_0^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$
(6)	$\frac{1}{2}\pi \frac{1}{n} \leq \theta < \pi \frac{1}{n}$	$\frac{1}{2}\pi_n \leq l < \pi_n$	$l = \frac{\pi_n}{2} + \int_r^1 \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
(7)	$\pi \frac{1}{n} \leq \theta < \frac{3}{2}\pi \frac{1}{n}$	$\pi_n \leq l < \frac{3}{2}\pi_n$	$l = \pi_n + \int_r^0 \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
(8)	$\frac{3}{2}\pi \frac{1}{n} \leq \theta < 2\pi \frac{1}{n}$	$\frac{3}{2}\pi_n \leq l < 2\pi_n$	$l = \frac{3\pi_n}{2} + \int_{-1}^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$

(Note) • For domains (1)-(8), see Fig. 20 and Fig.25

• The derivation dr/dl represents the gradient of the function: $r=sleaf_n(l)$.

Table 3 Relation between the variables r and l of the leaf function $sleaf_n(l)$

Range of angle θ	Range of length l	Length l	Range of variable r	Derivation dr/dl
$(2m-2)\pi\frac{1}{n} \leq \theta < (2m-\frac{3}{2})\pi\frac{1}{n}$	$(2m-2)\pi_n \leq l < (2m-\frac{3}{2})\pi_n$	$l = (2m-2)\pi_n + \int_0^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$
$(2m-\frac{3}{2})\pi\frac{1}{n} \leq \theta < (2m-1)\pi\frac{1}{n}$	$(2m-\frac{3}{2})\pi_n \leq l < (2m-1)\pi_n$	$l = (2m-\frac{3}{2})\pi_n + \int_r^1 \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
$(2m-1)\pi\frac{1}{n} \leq \theta < (2m-\frac{1}{2})\pi\frac{1}{n}$	$(2m-1)\pi_n \leq l < (2m-\frac{1}{2})\pi_n$	$l = (2m-1)\pi_n + \int_r^0 \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
$(2m-\frac{1}{2})\pi\frac{1}{n} \leq \theta < 2m\pi\frac{1}{n}$	$(2m-\frac{1}{2})\pi_n \leq l < 2m\pi_n$	$l = (2m-\frac{1}{2})\pi_n + \int_{-1}^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$

(Note) The number m represents the integer ($m=0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \dots$)

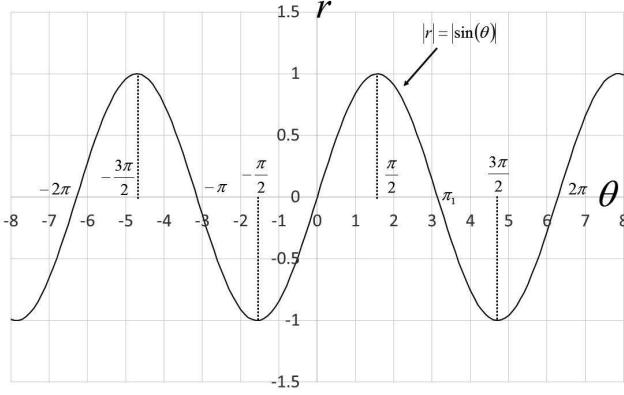


Fig. 27 Wave of leaf function $|r|=|\sin(\theta)|$
(1 period: $T=\pi \times 2$)

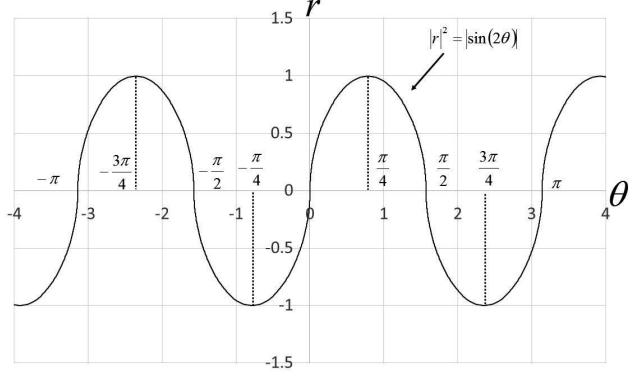


Fig. 29 Wave of leaf function $|r|^2=|\sin(2\theta)|$
(1 period: $T=\pi/2 \times 2$)

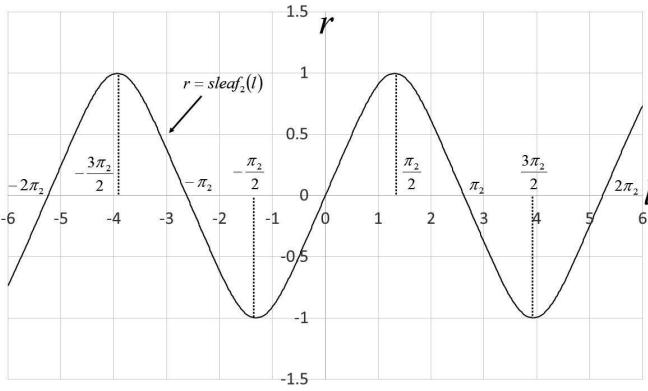


Fig. 28 Wave of leaf function $r=sleaf_2(l)$
(1 period: $T=5.244 (=2\pi_2)$)

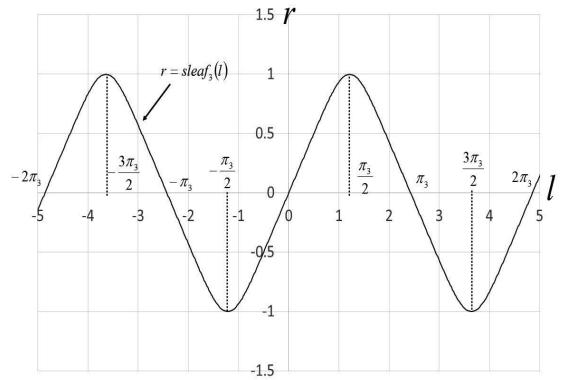


Fig. 30 Wave of leaf function $r=sleaf_3(l)$
(1 period: $T=4.857 (=2\pi_3)$)

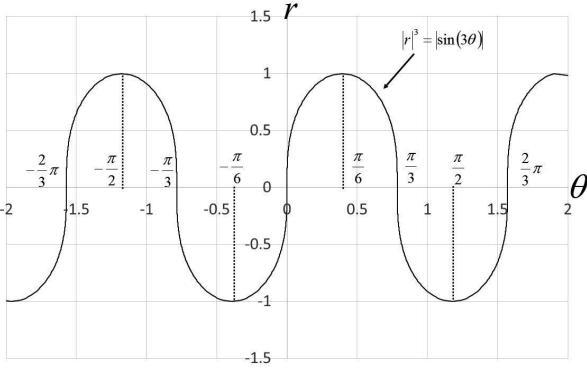


Fig. 31 Wave of leaf function $|r|^3 = |\sin(3\theta)|$
(1 period: $T = \pi/3 \times 2$)

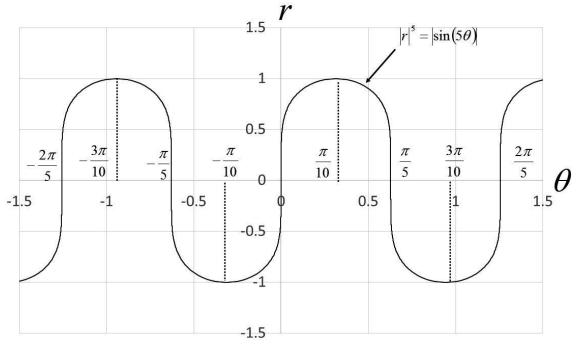


Fig. 35 Wave of leaf function $|r|^5 = |\sin(5\theta)|$
(1 period: $T = \pi/5 \times 2$)

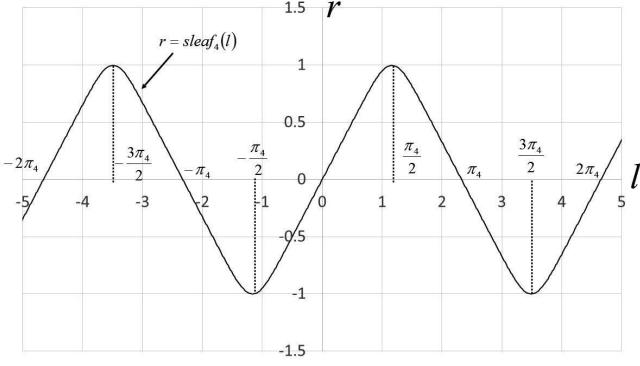


Fig. 32 Wave of leaf function $r = \text{sleaf}_4(l)$
(1 period: $T = 4.654 (= 2\pi/4)$)

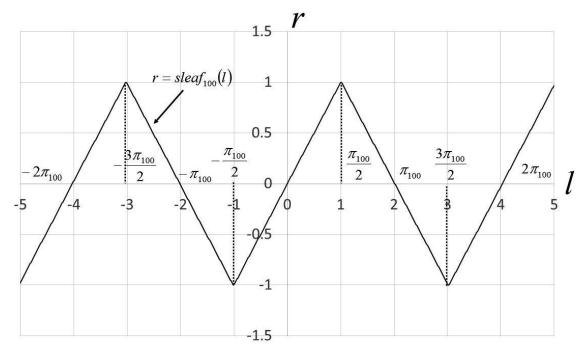


Fig. 36 Wave of leaf function $r = \text{sleaf}_{100}(l)$
(1 period: $T = 4.028 (= 2\pi/100)$)

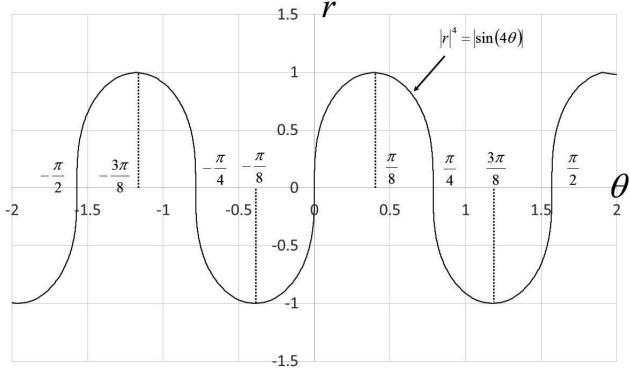


Fig. 33 Wave of leaf function $|r|^4 = |\sin(4\theta)|$
(1 period: $T = \pi/4 \times 2$)

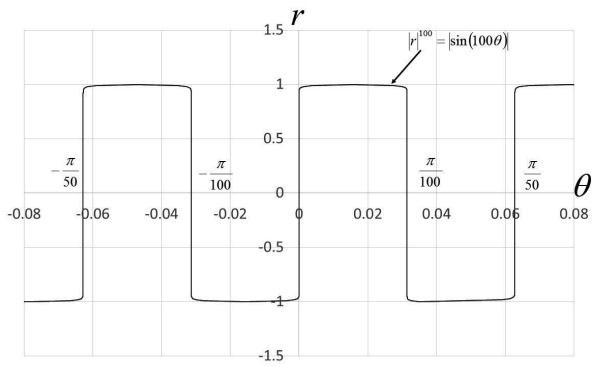


Fig. 37 Wave of leaf function $|r|^{100} = |\sin(100\theta)|$
(1 period: $T = \pi/100 \times 2$)

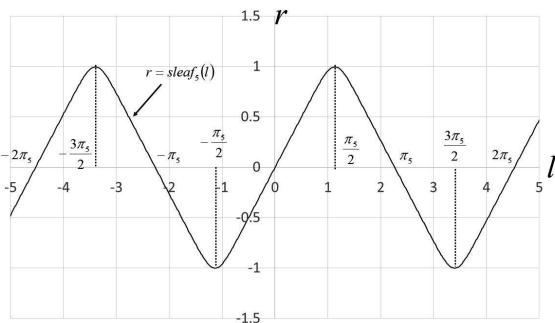


Fig. 34 Wave of leaf function $r = \text{sleaf}_5(l)$
(1 period: $T = 4.529 (= 2\pi/5)$)

6. Conclusion

The second derivative d^2r/dl^2 is equal to r^{2n-1} . This type of ODE has interesting features. Using numerical techniques, we can find that this ODE can produce a wave with periodicity. These waves are different from the waves obtained by trigonometric functions; therefore, a new function, the leaf function, is defined in this paper to

describe these waves. The variable of the function consists of the variables r and l , which represent the distance between the origin and the point on the leaf curve and the length of the leaf curve, respectively. The relation between the variables and the geometry is also described. In the case of $n=1$ in a leaf function, the leaf curve is geometrically related to a circle and the leaf function is the trigonometric function $\sin(\theta)$. In the case of $n=2$ in a leaf function, the function is the elliptical functions $sn(l,i)$ (i : *imaginary number*). As the parameter n increases, the waveform varies from a sine waveform to a saw-tooth waveform.

References

- [1] Paul F. Byrd and Morris D. Friedman: Handbook of Elliptic Integrals for Engineers and Scientists, Second ed., Springer-Verlag, New York, 1971.
- [2] Umberto Bottazzini and Jeremy Gray: Hidden Harmony - Geometric Fantasies, Springer, New York, 2013.
- [3] J. Stillwell: Mathematics and Its History, Springer-Verlag, New York, 1989.
- [4] A. C. Dixon: The Elementary Properties of the Elliptic Functions, with Examples, Macmillan, London, 1894.
- [5] A. G. Greenhill: The Applications of Elliptic Functions, Macmillan, London, 1892.
- [6] H. McKean and V. Moll: Elliptic Curves: Function Theory, Geometry and Arithmetic, Cambridge University, 1999.
- [7] James Booth: The Theory of Elliptic Integrals, Book on Demand Ltd., 2013.
- [8] P. Franklin, W. E. Byerly and I. Todhunter: Elliptic Integrals - A Selection of Classic Mathematical Articles Containing Examples and Exercises on the Subject of Calculus (Mathematics Series), Burrard Press, 2012.
- [9] N. I. Akhiezer: Elements of the Theory of Elliptic Functions (Translations of Mathematical Monographs), American Mathematical Society, 1990.
- [10] Derek F. Lawden, Elliptic Functions and Applications (Applied Mathematical Sciences), Springer, 1989.

Special function: Leaf function $r=cleaf_n(l)$ (Second report)

Kazunori Shinohara*

Summary

In the previous report, the special function: leaf function $r=sleaf_n(l)$ was presented. The distance $|r|^n$ between the origin and the point on the leaf curve is equal to $\sin(n\theta)$ (θ :angle, n :natural number). Using the equation $|r|^n=|\sin(n\theta)|$, the shape of the leaf is described on the x - y plane. In this paper, the special function: leaf function $cleaf_n(l)$ is presented. The relation between the function $cleaf_n(l)$ and the function $sleaf_n(l)$ is described.

Keywords : Leaf function, Leaf curve, Jacobi elliptic functions, Elliptic integrals, Lemniscate, Ordinary differential equation, Addition theorem, Square root of polynomial

1. Introduction

In this paper, variables are always real numbers. Complex numbers are not considered. We follow the ordinary differential equation (ODE):

$$\frac{d^2r(l)}{dl^2} = -n \cdot r(l)^{2n-1} \quad (1)$$

$$r(0) = 1 \quad (2)$$

$$\frac{dr(0)}{dl} = 0 \quad (3)$$

The variable $r(l)$ represents a function with respect to the variable l . Equations (2) and (3) represent the initial conditions of an ODE. The number n represents a natural number ($n=1,2,3,\dots$).

In the paper, a leaf function $cleaf_n(l)$ satisfying Eqs. (1)-(3) is presented. The relation between the leaf function and its geometry is described through numerical results by substituting $n=1,2,3,4,5$, and 100 in Eq. (1).

2. Symbols

The symbols used in this paper are as follows:

n : Natural number ($n=1,2,3,\dots$) In the paper, it is named as basis.

r : Distance between the origin and the point on the curve

$$r = \sqrt{x^2 + y^2} \geq 0 \quad (4)$$

As described below, the negative variable r has to be defined in Eq. (1).

θ : This variable represents the angle. In this paper, the unit is radian. Counter-clockwise is positive. Clockwise is negative.

l : Arc length on a leaf curve

Numerical values are rounded off to five decimal places, and calculated with a precision of up to four digits.

*Department of Integrated Mechanical Engineering, Daido University

Address: 10-3 Takiharu-cho, Minami-ku, Nagoya, JAPAN

E-mail: shinohara@06.alumni.u-tokyo.ac.jp

3. Leaf function

3.1 Elliptic function [1]

The inverse Jacobi elliptic function $arccd$ is defined as follows [1]:

$$l = arccd(r, k) = \int_r^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \quad (5)$$

$-1 \leq r \leq 1$

where parameter k is the modulus of the elliptic integral. The sign t represents a parameter. Therefore, Eq. (5) is as follows:

$$r = cd(l, k) \quad (6)$$

3.2 Leaf curve (x - y plane)

In the first report, as geometrical features of the leaf function: $sleaf_n(l)$, the leaf curve is defined as follows:

$$r^n = \sin(n\theta) \quad n = 1, 2, 3, \dots \quad (r \geq 0) \quad (7)$$

When the curve is described by a graph consisting of two axes (the x -axis (the horizontal axis) and the y -axis (the vertical axis)), the shape of the curve is similar to the shape of the leaf. Therefore, the curve is defined as the leaf curve. As a pair of Eq. (7), the leaf curve is defined as follows:

$$r^n = \cos(n\theta) \quad n = 1, 2, 3, \dots \quad (r \geq 0) \quad (8)$$

In the case of $n=1$, the graph of the equation $r=\cos(\theta)$ is shown in Fig. 1. When the angle θ increases, the point $(x, y) = (1, 0)$ is close to the origin along the circular arc. As shown in Fig. 1, the curve is described on a graph consisting of two axes, the x -axis (the horizontal axis) and the y -axis (the vertical axis). The curve in Fig. 1 represents the one right curve. In the case of $n=2$, the leaf curve is shown in Fig. 2. The leaf curve represents the lemniscate curve. In the case of $n=3, 4, 5$, and 100, these curves are shown in Fig. 2 - Fig. 6. These curves are defined as the two positive curves, the three positive curves, the four positive curves, the five positive curves, and the hundred positive curves. When the number n is increased in Eq. (1), the number of leaves in the figures increases.

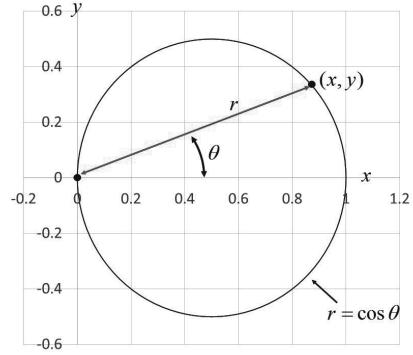


Fig. 1 One positive leaf curve
(Circle of center $(0.5, 0)$)

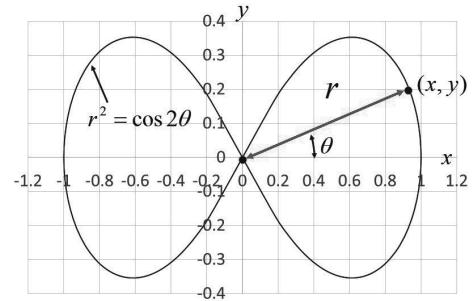


Fig. 2 Two positive leaf curve
(lemniscate)

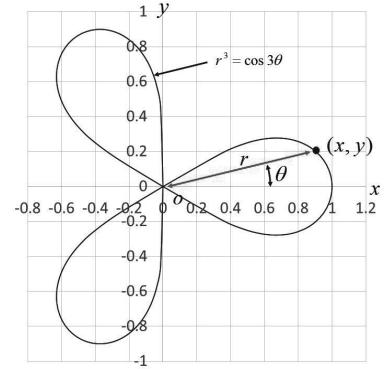


Fig. 3 Three positive leaf curve

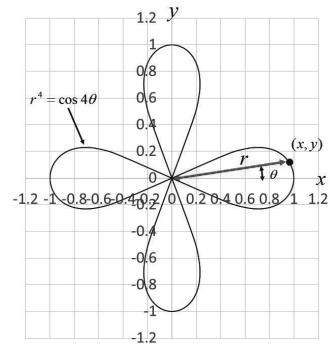


Fig. 4 Four positive leaf curve

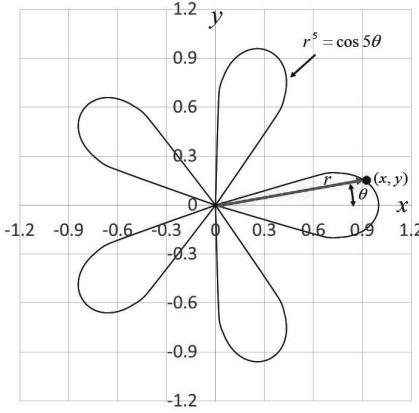


Fig. 5 Five positive leaf curve

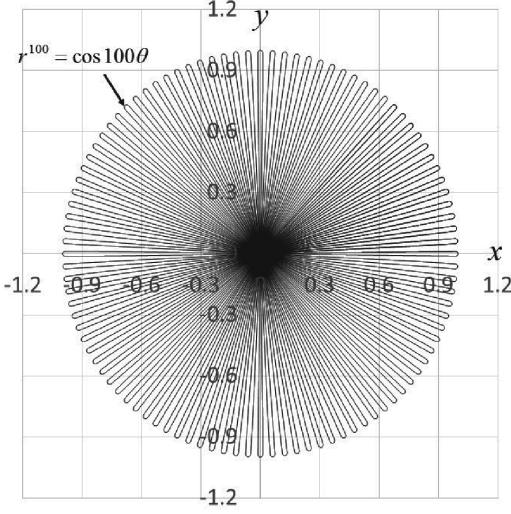


Fig. 6 Hundred positive leaf curve

3.3 Leaf function (r - l plane) (in first quadrant)

In this section, we discuss the ODE in Eq. (1). The parameter n represents a natural number. The variable l represents the length between the origin and the point on the leaf curve.

$$\frac{d^2r(l)}{dl^2} = -n \cdot r(l)^{2n-1} \quad n = 1, 2, 3, \dots \quad (9)$$

The function $r(l)$ is abbreviated as r . By multiplying the derivative dr/dl , the following equation is obtained:

$$\frac{dr}{dl} \frac{d^2r}{dl^2} = -nr^{2n-1} \frac{dr}{dl} \quad n = 1, 2, 3, \dots \quad (10)$$

By integrating the both sides of the above equation, the following equation is obtained:

$$\frac{1}{2} \left(\frac{dr}{dl} \right)^2 = -\frac{1}{2} r^{2n} + C_1 \quad n = 1, 2, 3, \dots \quad (11)$$

Using the initial conditions in both Eq. (2) and Eq. (3), the constant C_1 is determined.

$$\frac{1}{2} \left(\frac{dr(0)}{dl} \right)^2 = -\frac{1}{2} r(0)^{2n} + C_1 \quad (12)$$

The following equation is obtained.

$$C_1 = \frac{1}{2} \quad (13)$$

By solving the derivative dr/dl in Eq. (11), the following equation is obtained.

$$\frac{dr}{dl} = \pm \sqrt{1 - r^{2n}} \quad (14)$$

In the leaf function: $sleaf_n(l)$, within the length range: $0 \leq l \leq \pi_n/2$, the above equation (the derivative dr/dl) is defined as the positive sign. In the leaf function: $cleaf_n(l)$, the above equation (the derivative dr/dl) is defined as the negative sign. For example, as shown in Fig.14, the variable $l=0$ becomes the variable $r=1$. As the length l increases, the variable r decreases in Fig.14. Therefore, the derivative dr/dl takes the negative as follows:

$$\frac{dr}{dl} = -\sqrt{1 - r^{2n}} \quad (15)$$

After separating the variables, Eq.(15) is integrated from 1 to r as follows:

$$\int_1^r \frac{-1}{\sqrt{1-t^{2n}}} dt = l \quad (16)$$

The inverse function of Eq. (16) is defined as follows:

$$arc cleaf_n(r) = \int_r^1 \frac{1}{\sqrt{1-t^{2n}}} dt = l \quad (17)$$

The following equation is obtained.

$$r = cleaf_n(l) \quad (18)$$

In the case of $n=1$, the following equation is obtained.

$$cleaf_1(l) = \cos(l) \quad (19)$$

In the case of $n=1$, the angle θ is proportional to the arc length l .

$$l = \theta \quad (20)$$

Therefore, the equation can be described as follows:

$$cleaf_1(l) = \cos(\theta) \quad (21)$$

In the case of $n=2$, the following relation is obtained:

$$cleaf_2(l) = cd(l, i) \quad (22)$$

The elliptical function cd represents Eq. (6). The symbol i represents an imaginary number.

3.4 Relation between the geometry and the function: $cleaf_n(l)$

In this section, the relation between the geometry and the function $cleaf_n(l)$ is described. The coordinate system of the function $cleaf_n(l)$ is shown as polar coordinates.

$$x = r \cos \theta \quad (23)$$

$$y = r \sin \theta \quad (24)$$

The functions x and y contain both the variables θ and r . Eq. (23) and Eq. (24) are differentiated with respect to the variable r . The following equation is obtained.

$$\frac{dx}{dr} = \cos \theta - r \sin \theta \cdot \frac{d\theta}{dr} \quad (25)$$

$$\frac{dy}{dr} = \sin \theta + r \cos \theta \cdot \frac{d\theta}{dr} \quad (26)$$

In a small domain, the approximation of the length Δl on the curve is shown as follows:

$$\Delta l = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{\left(\frac{\Delta x}{\Delta r}\right)^2 + \left(\frac{\Delta y}{\Delta r}\right)^2} \cdot \Delta r \quad (27)$$

If the variable Δl takes an infinitely small value, the following equation is obtained.

$$dl = \sqrt{\left(\frac{dx}{dr}\right)^2 + \left(\frac{dy}{dr}\right)^2} \cdot dr \quad (28)$$

By substituting Eq. (25) and (26) in the above equation, the following equation is obtained.

$$\begin{aligned} dl &= \sqrt{\left(\frac{dx}{dr}\right)^2 + \left(\frac{dy}{dr}\right)^2} \cdot dr \\ &= \sqrt{\left(\cos \theta - r \sin \theta \cdot \frac{d\theta}{dr}\right)^2 + \left(\sin \theta + r \cos \theta \cdot \frac{d\theta}{dr}\right)^2} \cdot dr \\ &= \sqrt{1 + r^2 \left(\frac{d\theta}{dr}\right)^2} \cdot dr \end{aligned} \quad (29)$$

By differentiating Eq. (8) with respect to the variable θ , the following equation is obtained.

$$nr^{n-1} \frac{dr}{d\theta} = -n \sin n\theta \quad (30)$$

The following equation is obtained.

$$\frac{d\theta}{dr} = -\frac{r^{n-1}}{\sin n\theta} \quad (31)$$

By substituting the above equation in Eq. (29), the following equation is obtained.

$$\begin{aligned} dl &= \sqrt{1 + r^2 \left(\frac{d\theta}{dr}\right)^2} \cdot dr = \sqrt{1 + r^2 \left(-\frac{r^{n-1}}{\sin(n\theta)}\right)^2} \cdot dr \\ &= \sqrt{1 + \frac{r^{2n}}{(\sin(n\theta))^2}} \cdot dr = \sqrt{1 + \frac{r^{2n}}{1 - (\cos(n\theta))^2}} \cdot dr \\ &= \sqrt{1 + \frac{r^{2n}}{1 - r^{2n}}} \cdot dr = \frac{1}{\sqrt{1 - r^{2n}}} \cdot dr \end{aligned} \quad (32)$$

By integrating the above equation from l to r , the following equation is obtained.

$$l = \int_1^r \frac{-1}{\sqrt{1 - t^{2n}}} dt \quad (0 \leq r \leq 1) \quad (33)$$

The above equation is the same as the inverse function defined by Eq. (17). The following equation is obtained.

$$l = \int_r^1 \frac{1}{\sqrt{1-t^{2n}}} dt = \text{arcleaf}_n(r) \quad (34)$$

The following equation is obtained.

$$r = \text{leaf}_n(l) \quad (35)$$

By differentiating Eq. (34) with respect to the variable r , the following equation is obtained.

$$\frac{dl}{dr} = -\frac{1}{\sqrt{1-r^{2n}}} \quad (36)$$

The above equation is obtained as follows:

$$\left(\frac{dr}{dl} \right)^2 = 1 - r^{2n} \quad (37)$$

By differentiating the above equation with respect to the variable l , the following equation is obtained.

$$2 \frac{dr}{dl} \frac{d^2r}{dl^2} = -2nr^{2n-1} \frac{dr}{dl} \quad (38)$$

By reason of the condition $dr/dl \neq 0$, the following equation is obtained.

$$\frac{d^2r}{dl^2} = -nr^{2n-1} \quad (39)$$

Using Eq. (35), the following equation is obtained.

$$\frac{d^2}{dl^2} \text{leaf}_n(l) = -n \cdot (\text{leaf}_n(l))^{2n-1} \quad (40)$$

Therefore, equations (1)-(3) can be described by the leaf function: $\text{leaf}_n(l)$.

4. Numerical examination of leaf function

4.1 Leaf curve

In the previous section, we discussed the range: $r \geq 0$. The leaf function: $r = \text{leaf}_n(l)$ takes the range $r < 0$ (the reason for this is provided in the first report). The geometry and the leaf curve: $\text{leaf}_n(l)$ are related by redefining the leaf

function r consisting of the variable θ as follows:

$$|r|^n = |\cos n\theta| \quad n=1,2,3,\dots \quad (41)$$

Using the above equation of $n=1,2,3,4,5,\dots,100$, the leaf curve is shown in Fig. 7 – 12.

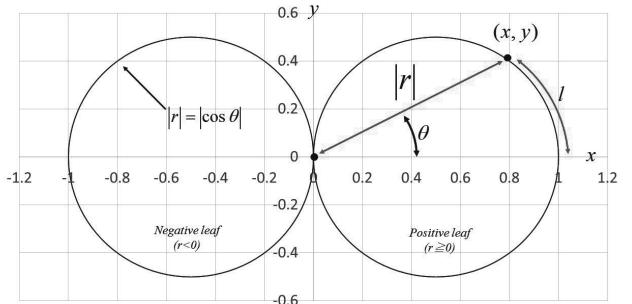


Fig. 7 One positive - one negative leaf curve.

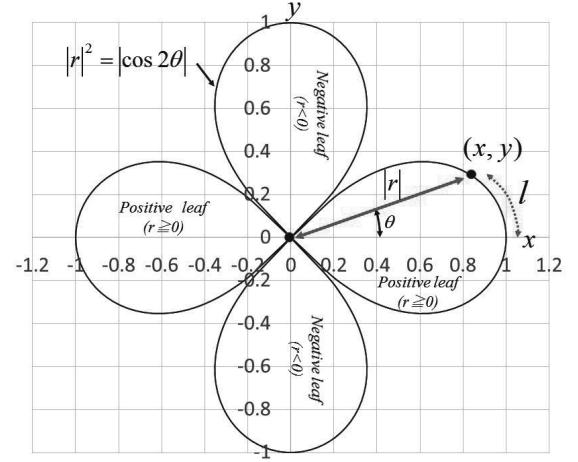


Fig. 8 Two positive - two negative leaf curve.

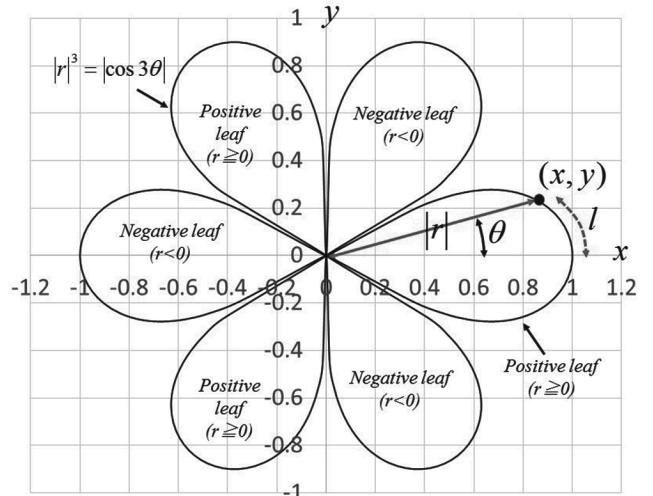


Fig. 9 Three positive - three negative leaf curve.

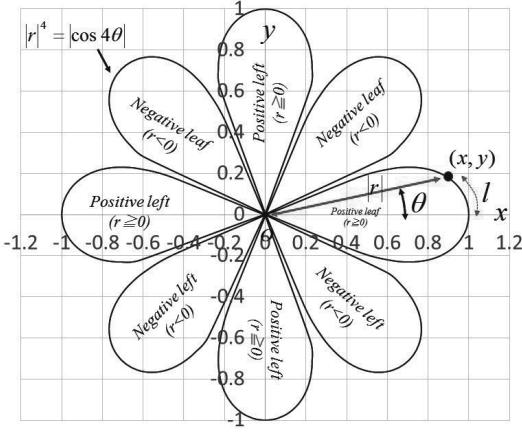


Fig. 10 Four positive - four negative leaf curve.

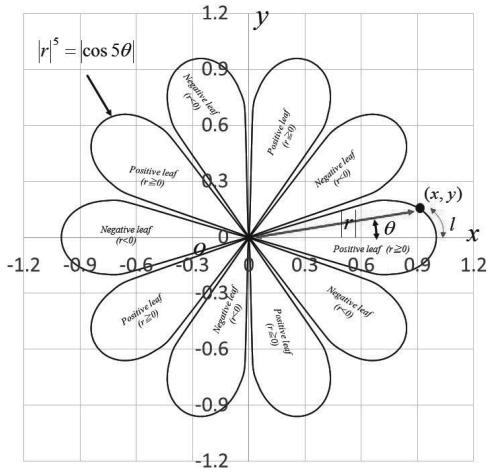


Fig. 11 Five positive - five negative leaf curve.

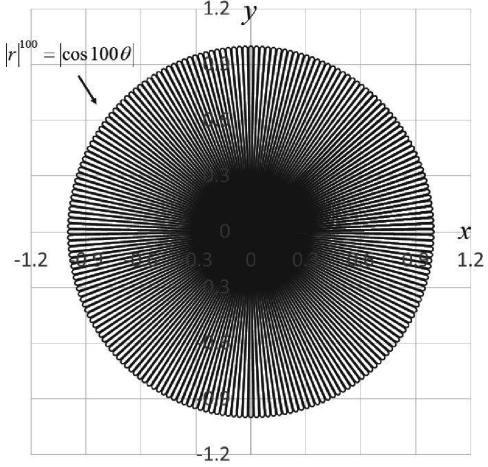


Fig. 12 Hundred positive - Hundred negative leaf curve.

4.2 Extended definition of leaf function

The constants $\pi_n/2$ are defined as follows:

$$\frac{\pi_n}{2} = \int_0^1 \frac{1}{\sqrt{1-t^{2n}}} dt \quad (n=1,2,3,\dots) \quad (42)$$

In the case of $n=1$, the constant π_1 represents the circular constant π . The constants π_n with respect to $n=1,2,3,4,5$, and 100 are summarized in Table 1. The numerical values π_n are rounded off to five decimal places, and calculated with a precision of up to four digits.

Table 1 Values of constant π_n

n	π_n
1	$\pi_1=3.142$
2	$\pi_2=2.622$
3	$\pi_3=2.429$
4	$\pi_4=2.327$
5	$\pi_5=2.265$
100	$\pi_{100}=2.014$

The leaf function $cleaf_n(l)$ takes the constant $2 \times \pi_n$ with respect to one period. For the angle θ , the counter-clockwise direction is defined as positive. As the angle θ increases from 0 to $\pi_n/2$, the distance decreases from 1 to 0. Using Eq. (33), one input of the arc length l is calculated with respect to one output of variable r . The leaf function $cleaf_n(l)$ is defined as a multivalued function, with one input associated with multiple outputs. First, we discuss the parameter $n=2$ in Eq. (34). In the range $0 \leq \theta < \pi/4$ (domain (5) in Table 2 and Fig. 13), the variable l is calculated as follows:

$$l = \int_r^1 \frac{1}{\sqrt{1-t^4}} dt \quad (0 \leq r \leq 1) \quad (43)$$

In the range $\pi/4 \leq \theta < \pi/2$ (domain (6) in Table 2 and Fig. 13), using Eq. (14) with respect to r , the equation is obtained as follows:

$$\frac{dl}{dr} = \pm \frac{1}{\sqrt{1-r^{2n}}} \quad (44)$$

In the range $\pi/4 \leq \theta < \pi/2$, the variable r becomes $r < 0$. The sign of the variation dr becomes negative as θ becomes increasingly negative. On the other hand, the length l increases in the positive direction. The sign of the variation dl becomes positive. Therefore, the sign of Eq. (44) becomes negative.

$$\frac{dl}{dr} = - \frac{1}{\sqrt{1-r^4}} \quad \left(\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2} \right) \quad (45)$$

In the range $\pi/4 \leq \theta < \pi/2$, the arc length l is as follows:

$$l = \int_0^1 \frac{1}{\sqrt{1-t^4}} dt + \int_0^r \frac{-1}{\sqrt{1-t^4}} dt = \frac{\pi_2}{2} + \int_r^0 \frac{1}{\sqrt{1-t^4}} dt \quad (46)$$

($-1 \leq r \leq 0$)

The constant π_2 is given in Table 1. In the range $\pi/2 \leq \theta < 3\pi/4$, the domain in the x - y graph is defined as a negative leaf. The sign of the variable r becomes negative. The variable r varies from $r=-1$ to $r=0$. The sign of the variation dr becomes positive. On the other hand, the length l increases. The sign of the variation dl becomes positive. The sign of the variation dl/dr becomes positive.

$$\frac{dl}{dr} = \frac{1}{\sqrt{1-r^4}} \quad \left(\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2} \right) \quad (47)$$

The length l is obtained as follows:

$$l = \int_0^1 \frac{1}{\sqrt{1-t^4}} dt + \int_0^{-1} \frac{-1}{\sqrt{1-t^4}} dt + \int_{-1}^r \frac{1}{\sqrt{1-t^4}} dt = \pi_2 + \int_{-1}^r \frac{1}{\sqrt{1-t^4}} dt \quad (48)$$

($-1 \leq r \leq 0$)

In the range $3\pi/4 \leq \theta < \pi$, the domain in the x - y graph is defined as the positive leaf. The sign of the variable r becomes positive. The variable r varies from $r=-1$ to $r=0$. The sign of the variation dr becomes positive. On the other hand, the length l increases. The sign of the variation dl becomes positive. The sign of the variation dl/dr becomes positive.

$$\frac{dl}{dr} = \frac{1}{\sqrt{1-r^4}} \quad \left(\frac{3\pi}{4} \leq \theta \leq \pi \right) \quad (49)$$

The length l is obtained as follows:

$$l = \int_0^1 \frac{1}{\sqrt{1-t^4}} dt + \int_1^0 \frac{-1}{\sqrt{1-t^4}} dt + \int_{-1}^0 \frac{1}{\sqrt{1-t^4}} dt + \int_0^r \frac{1}{\sqrt{1-t^4}} dt = \frac{3}{2}\pi_2 + \int_0^r \frac{1}{\sqrt{1-t^4}} dt \quad (0 \leq r \leq 1) \quad (50)$$

In one period of both the positive and negative direction, the relation between variable l and r is summarized in the case of $n=2$. For an arbitrary n , the same approach is applied. In the range of $-2\pi_n \leq l \leq 2\pi_n$, the variable related to the function $cleaf_n(l)$ is summarized in Table 2 and Fig. 13. With respect to the arbitrary n , the relation between variable l and r is summarized in Table 3.

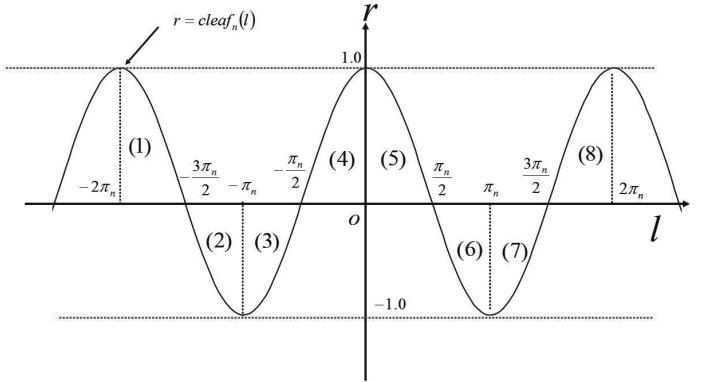


Fig. 13 Diagram of wave with respect to leaf function: $cleaf_n(l)$ (In the figure, the numbers (1) - (8) represent the domain corresponding to Table 2)

4.3 Waves of Leaf function

Two types of graph are shown in Figs. 14-25. In the first type of graph, the vertical and horizontal axes are set to variable r and l , respectively. In the second type of graph, the vertical and horizontal axes are set to variable r and θ , respectively. The curves of both the x - y graph and the r - l graph are described as follows:

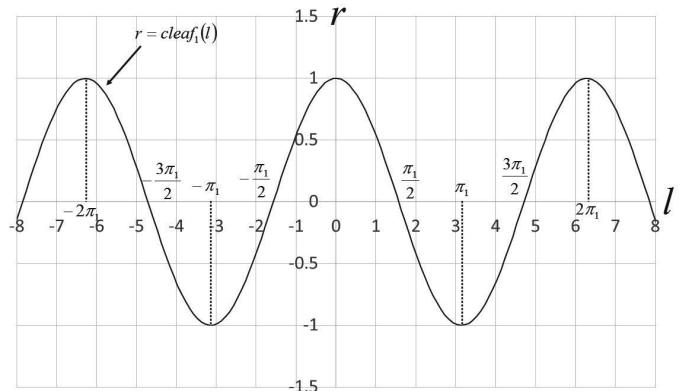


Fig. 14 Wave of leaf function $r=cleaf_l(l)$ ($=\cos(l)$)
(1 period: $T=6.283 (=2\pi_1)$)

Table 2 Relation between variables l and r for the leaf function: $r=cleaf_n(l)$ with respect to one period in both the positive ($0 \leq l \leq 2\pi_n$) and negative directions ($-2\pi_n \leq l \leq 0$)

Domain	Range of angle θ	Range of length l	Length l	Range of variable r	Derivation dr/dl
(1)	$-2\pi \frac{1}{n} \leq \theta < -\frac{3}{2}\pi \frac{1}{n}$	$-2\pi_n \leq l < -\frac{3}{2}\pi_n$	$l = -\frac{3\pi_n}{2} + \int_0^r \frac{-1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
(2)	$-\frac{3}{2}\pi \frac{1}{n} \leq \theta < -\pi \frac{1}{n}$	$-\frac{3}{2}\pi_n \leq l < -\pi_n$	$l = -\pi_n + \int_{-1}^r \frac{-1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
(3)	$-\pi \frac{1}{n} \leq \theta < -\frac{1}{2}\pi \frac{1}{n}$	$-\pi_n \leq l < -\frac{1}{2}\pi_n$	$l = -\frac{\pi_n}{2} + \int_0^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$
(4)	$-\frac{1}{2}\pi \frac{1}{n} \leq \theta < 0$	$-\frac{1}{2}\pi_n \leq l < 0$	$l = \int_1^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$
(5)	$0 \leq \theta < \frac{1}{2}\pi \frac{1}{n}$	$0 \leq l < \frac{1}{2}\pi_n$	$l = \int_1^r \frac{-1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
(6)	$\frac{1}{2}\pi \frac{1}{n} \leq \theta < \pi \frac{1}{n}$	$\frac{1}{2}\pi_n \leq l < \pi_n$	$l = \frac{\pi_n}{2} + \int_0^r \frac{-1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
(7)	$\pi \frac{1}{n} \leq \theta < \frac{3}{2}\pi \frac{1}{n}$	$\pi_n \leq l < \frac{3}{2}\pi_n$	$l = \pi_n + \int_{-1}^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$
(8)	$\frac{3}{2}\pi \frac{1}{n} \leq \theta < 2\pi \frac{1}{n}$	$\frac{3}{2}\pi_n \leq l < 2\pi_n$	$l = \frac{3\pi_n}{2} + \int_0^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$

Table 3 Relation between the variables r , l , and θ of the leaf function $cleaf_n(l)$

Range of angle θ	Range of length l	Length l	Range of variable r	Derivation dr/dl
$(2m-2)\pi \frac{1}{n} \leq \theta < \left(2m-\frac{3}{2}\right)\pi \frac{1}{n}$	$(2m-2)\pi_n \leq l < \left(2m-\frac{3}{2}\right)\pi_n$	$l = (2m-2)\pi_n + \int_1^r \frac{-1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
$\left(2m-\frac{3}{2}\right)\pi \frac{1}{n} \leq \theta < (2m-1)\pi \frac{1}{n}$	$\left(2m-\frac{3}{2}\right)\pi_n \leq l < (2m-1)\pi_n$	$l = \left(2m-\frac{3}{2}\right)\pi_n + \int_0^r \frac{-1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = -\sqrt{1-r^{2n}}$
$(2m-1)\pi \frac{1}{n} \leq \theta < \left(2m-\frac{1}{2}\right)\pi \frac{1}{n}$	$(2m-1)\pi_n \leq l < \left(2m-\frac{1}{2}\right)\pi_n$	$l = (2m-1)\pi_n + \int_{-1}^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$-1 \leq r \leq 0$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$
$\left(2m-\frac{1}{2}\right)\pi \frac{1}{n} \leq \theta < 2m\pi \frac{1}{n}$	$\left(2m-\frac{1}{2}\right)\pi_n \leq l < 2m\pi_n$	$l = \left(2m-\frac{1}{2}\right)\pi_n + \int_0^r \frac{1}{\sqrt{1-t^{2n}}} dt$	$0 \leq r \leq 1$	$\frac{dr}{dl} = \sqrt{1-r^{2n}}$

(Note) The number m represents the integer ($m=0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \dots$)

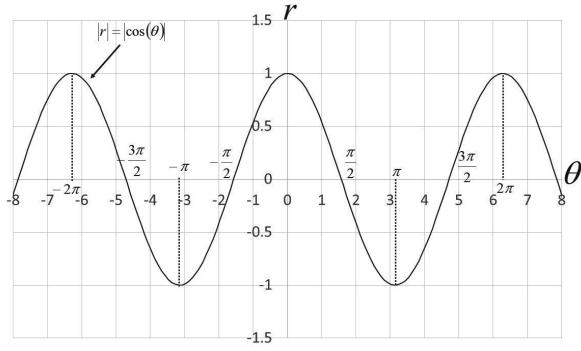


Fig. 15 Wave of leaf function $|r|=|\cos(\theta)|$
(1 period: $T=\pi \times 2$)

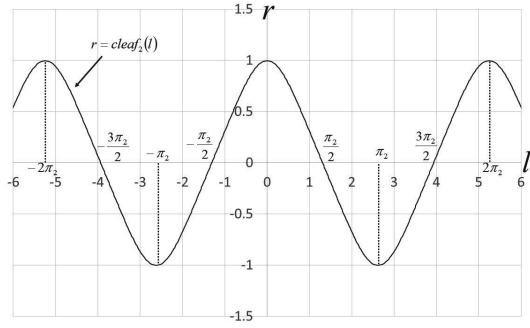


Fig. 16 Wave of leaf function $r=clearf_2(l)$
(1 period: $T=5.244(=2\pi_2)$)

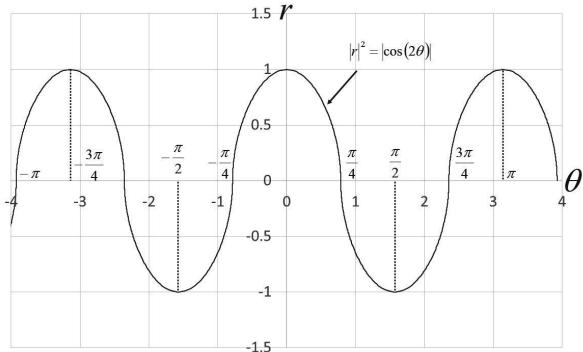


Fig. 17 Wave of leaf function $|r|^2=|\cos(2\theta)|$
(1 period: $T=\pi/2 \times 2$)

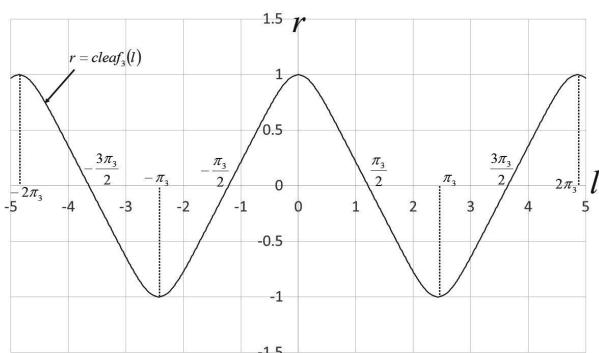


Fig. 18 Wave of leaf function $r=clearf_3(l)$
(1 period: $T=4.857(=2\pi_3)$)

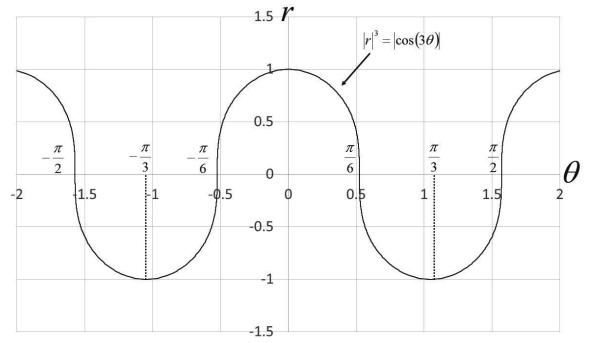


Fig. 19 Wave of leaf function $|r|^3=|\cos(3\theta)|$
(1 period: $T=\pi/3 \times 2$)

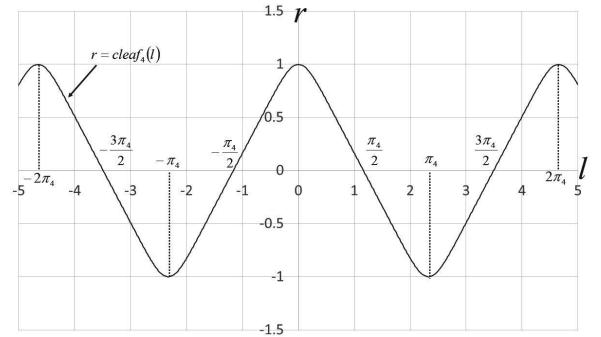


Fig. 20 Wave of leaf function $r=clearf_4(l)$
(1 period: $T=4.654(=2\pi_4)$)

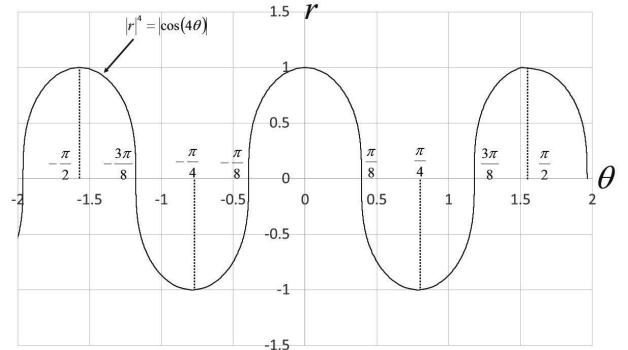


Fig. 21 Wave of leaf function $|r|^4=|\cos(4\theta)|$
(1 period: $T=\pi/4 \times 2$)

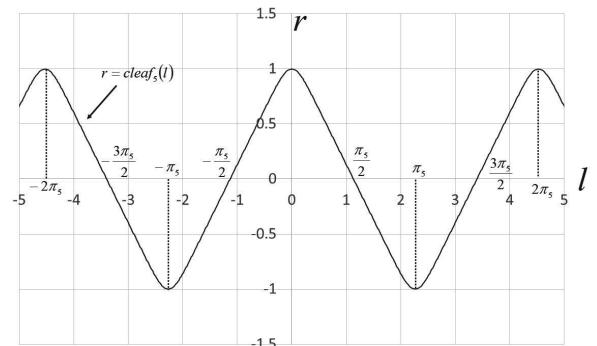


Fig. 22 Wave of leaf function $r=clearf_5(l)$
(1 period: $T=4.529(=2\pi_5)$)

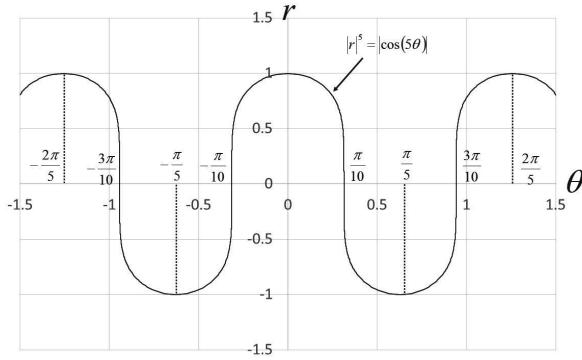


Fig. 23 Wave of leaf function $|r|^5 = |\cos(5\theta)|$
(1 period: $T=\pi/5 \times 2$)

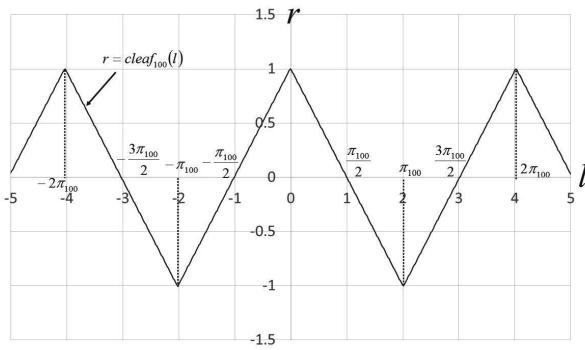


Fig. 24 Wave of leaf function $r = \text{cleaf}_{100}(l)$
(1 period: $T=4.028 (=2\pi/100)$)

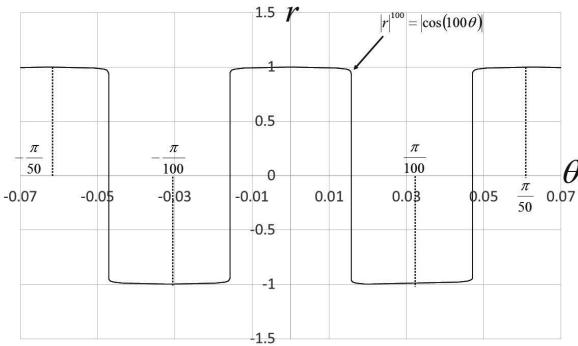


Fig. 25 Wave of leaf function $|r|^{100} = |\cos(100\theta)|$
(1 period: $T=\pi/100 \times 2$)

5. Relation between the function $\text{cleaf}_n(l)$ and the function $\text{sleaf}_n(l)$

Using Eq. (35) and Eq. (41), the leaf function: $\text{cleaf}_n(l)$ is obtained as follows:

$$|\cos n\theta| = |r|^n = |\text{cleaf}_n(l)|^n \quad (51)$$

The leaf function: $\text{sleaf}_n(l)$ is also obtained as follows:

$$|\sin n\theta| = |\bar{r}|^n = |\text{sleaf}_n(\bar{l})|^n \quad (52)$$

The variables \bar{r} and \bar{l} are described later. Using the trigonometric functions, the relation between $\sin(n\theta)$ and $\cos(n\theta)$ is obtained as follows:

$$(\sin n\theta)^2 + (\cos n\theta)^2 = 1 \quad (53)$$

Using the above equation, with Eq. (51) and Eq. (52), the following equation is obtained:

$$\begin{aligned} (\sin n\theta)^2 + (\cos n\theta)^2 &= (\pm |\text{sleaf}_n(\bar{l})|^n)^2 + (\pm |\text{cleaf}_n(l)|^n)^2 \\ &= (\text{cleaf}_n(l))^{2n} + (\text{sleaf}_n(\bar{l}))^{2n} = 1 \end{aligned} \quad (54)$$

As shown in Fig. 26, the variables l and \bar{l} represent the length at the angle θ . With respect to the angle θ in the x - y graph, the arc length l of the function: $\text{cleaf}_n(l)$ is different from the arc length \bar{l} of the function: $\text{sleaf}_n(\bar{l})$. The variable l in the leaf function $\text{cleaf}_n(l)$ takes the arc length between the coordinates $(x,y)=(1,0)$ and the point on the curve by the leaf function: $\text{cleaf}_n(l)$. On the other hand, the variable l in the leaf function $\text{sleaf}_n(l)$ takes the arc length between the coordinates $(x,y)=(0,0)$ and the point on the curve by the leaf function: $\text{sleaf}_n(l)$. For example, the case of $n=2$ (the lemniscate curve) is shown in Fig. 26. With respect to the angle $\theta=0$, the function $\text{sleaf}_n(\bar{l})$ takes $r=0$ at the point $(x,y)=(0,0)$. The function $\text{cleaf}_n(l)$ takes $r=1$ at the point $(x,y)=(1,0)$. When the angle θ increases, the arc length l increases. The ratio of increase in the leaf function $\text{sleaf}_n(\bar{l})$ is different from the ratio of increase in the leaf function $\text{cleaf}_n(l)$. Therefore, with respect to the arbitrary angle θ , the variables of the arc length l and \bar{l} are not constantly satisfied with the equation $l=\bar{l}$.

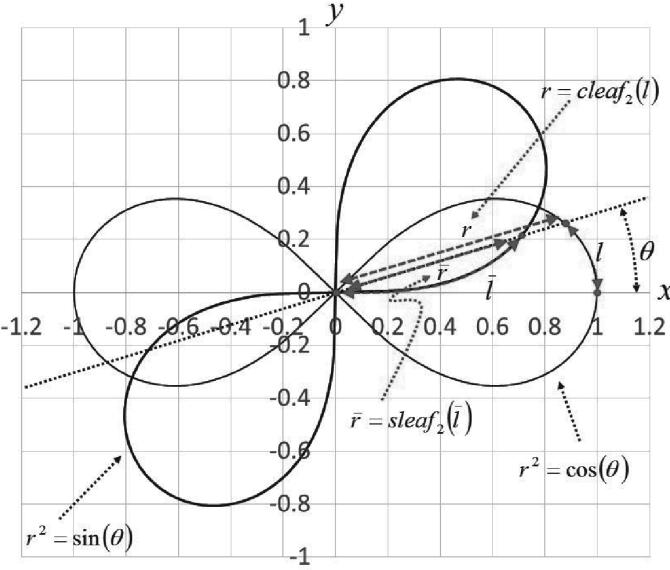


Fig. 26 Geometric relation between the leaf function: $cleaf_2(l)$ and the leaf function $sleaf_2(\bar{l})$

The variables in Eq. (54) consist of both the variables l and \bar{l} . We discuss the following equation.

$$\begin{aligned} & \frac{d}{dl} \arccos(cleaf_n(l))^n \\ &= -\frac{1}{\sqrt{1-(cleaf_n(l))^2}} n(cleaf_n(l))^{n-1} \left\{ -\sqrt{1-(cleaf_n(l))^{2n}} \right\} \\ &= n(cleaf_n(l))^{n-1} \end{aligned} \quad (55)$$

The above equation is integrated from 0 to the variable l .

$$[\arccos(cleaf_n(t))^n]_0^l = \int_0^l n(cleaf_n(t))^{n-1} dt \quad (56)$$

$$\begin{aligned} & [\arccos(cleaf_n(t))^n]_0^l = \arccos(cleaf_n(l))^n - \arccos(cleaf_n(0))^n \\ &= \arccos(cleaf_n(l))^n - \arccos(1) = \arccos(cleaf_n(l))^n \end{aligned} \quad (57)$$

Therefore, it is obtained as follows:

$$(cleaf_n(l))^n = \cos \left(n \int_0^l (cleaf_n(t))^{n-1} dt \right) \quad (58)$$

Using the Eq. (8), the above equation and $r = cleaf_n(l)$, the angle θ in Fig.26 can be described as follows:

$$\theta = \int_0^l (cleaf_n(t))^{n-1} dt \quad \left(= \frac{1}{n} \arccos(cleaf_n(l))^n \right) \quad (59)$$

Next, we discuss the following equation with respect to the variable \bar{l} .

$$\begin{aligned} & \frac{d}{d\bar{l}} \arcsin(sleaf_n(\bar{l}))^n \\ &= \frac{1}{\sqrt{1-(sleaf_n(\bar{l}))^{2n}}} n(sleaf_n(\bar{l}))^{n-1} \sqrt{1-(sleaf_n(\bar{l}))^{2n}} \\ &= n(sleaf_n(\bar{l}))^{n-1} \end{aligned} \quad (60)$$

The above equation is integrated from 0 to the variable \bar{l} .

$$[\arcsin(sleaf_n(t))^n]_0^{\bar{l}} = \int_0^{\bar{l}} n(sleaf_n(t))^{n-1} dt \quad (61)$$

$$\begin{aligned} & [\arcsin(sleaf_n(t))^n]_0^{\bar{l}} = \arcsin(sleaf_n(\bar{l}))^n - \arcsin(sleaf_n(0))^n \\ &= \arcsin(sleaf_n(\bar{l}))^n - \arcsin(0) = \arcsin(sleaf_n(\bar{l}))^n \end{aligned} \quad (62)$$

Therefore, it is obtained as follows:

$$(sleaf_n(\bar{l}))^n = \sin \left(n \int_0^{\bar{l}} (sleaf_n(t))^{n-1} dt \right) \quad (63)$$

Using the Eq. (7), the above equation and $\bar{r} = sleaf_n(\bar{l})$, the angle θ in Fig.26 also can be described as follows:

$$\theta = \int_0^{\bar{l}} (sleaf_n(t))^{n-1} dt \quad \left(= \frac{1}{n} \arcsin(sleaf_n(\bar{l}))^n \right) \quad (64)$$

However, Eq.(54) can be described by using only one variable l . In the case of $n=1$, the equation is obtained as follows:

$$(sleaf(l))^2 + (cleaf(l))^2 = 1 \quad (65)$$

The above equation is equal to the equation: $(\sin(l))^2 + (\cos(l))^2 = 1$. In the case of $n=2$, the arbitrary variable l is satisfied with the following equation:

$$(sleaf(l))^2 + (cleaf(l))^2 + (sleaf_2(l))^2 \cdot (cleaf_2(l))^2 = 1 \quad (66)$$

In the case of $n=3$, the arbitrary variable l is satisfied with the following equation:

$$(sleaf_3(l))^2 + (cleaf_3(l))^2 + 2 \cdot (sleaf_3(l))^2 \cdot (cleaf_3(l))^2 = 1 \quad (67)$$

(See proof in Appendix) Using the symmetry and the periodicity of waves in Figs. 14 - 25, the following equations are obtained:

$$sleaf_n(-l) = -sleaf_n(l) \quad (68)$$

$$cleaf_n(-l) = cleaf_n(l) \quad (69)$$

$$sleaf_n\left(\frac{\pi_n}{2} - l\right) = cleaf_n(l) \quad (70)$$

$$cleaf_n\left(\frac{\pi_n}{2} - l\right) = -sleaf_n(l) \quad (71)$$

$$sleaf_n(\pi_n - l) = -sleaf_n(l) \quad (72)$$

$$cleaf_n(\pi_n - l) = -cleaf_n(l) \quad (73)$$

$$sleaf_n\left(l + \frac{\pi_n}{2}\right) = cleaf_n(l) \quad (74)$$

$$cleaf_n\left(l + \frac{\pi_n}{2}\right) = -sleaf_n(l) \quad (75)$$

$$sleaf_n(l + \pi_n) = -sleaf_n(l) \quad (76)$$

$$cleaf_n(l + \pi_n) = -cleaf_n(l) \quad (77)$$

$$sleaf_n(l + 2\pi_n) = -sleaf_n(l) \quad (78)$$

$$cleaf_n(l + 2\pi_n) = cleaf_n(l) \quad (79)$$

The following equations are obtained:

$$sleaf_n(m\pi_n) = 0 \quad (m = 0, \pm 1, \pm 2, \pm 3, \dots) \quad (80)$$

$$sleaf_n\left(\frac{\pi_n}{2}(4m-3)\right) = 1 \quad (81)$$

$$(m = 0, \pm 1, \pm 2, \pm 3, \dots) \quad (82)$$

$$sleaf_n\left(\frac{\pi_n}{2}(4m-1)\right) = -1 \quad (83)$$

$$(m = 0, \pm 1, \pm 2, \pm 3, \dots) \quad (84)$$

$$cleaf_n\left(\frac{\pi_n}{2}(2m-1)\right) = 0 \quad (85)$$

$$(m = 0, \pm 1, \pm 2, \pm 3, \dots) \quad (86)$$

$$sleaf_n(\pi_n(2m-1)) = -1 \quad (87)$$

The constant π_n is obtained by Eq.(42).

6. Derivative of the leaf function

In this section, the derivative of the leaf function is described. As shown in Fig. 26, with respect to the angle θ , the length l and the length \bar{l} represents the arc length l of the function: $cleaf_n(l)$ and the arc length \bar{l} of the function: $sleaf_n(\bar{l})$. As shown in Fig. 26, the variable \bar{l} depends on the length l . Therefore, we can regard the variable \bar{l} as the function: $\bar{l}(l)$. The sign of the derivative of the leaf function depends on the range of the length l , and varies with respect to the range of the length l (See Table 2). We only discuss the range: $0 \leq l \leq \pi_n/2$. Using the formula of the chain rule of differentiation, the following equation is obtained by differentiating Eq. (54) with respect to the variable l .

$$2n \cdot sleaf_n^{2n-1}(\bar{l}) \cdot \sqrt{1 - sleaf_n^{2n}(\bar{l})} \cdot \frac{d\bar{l}}{dl} + 2n \cdot cleaf_n^{2n-1}(l) \cdot \left\{ -\sqrt{1 - cleaf_n^{2n}(l)} \right\} = 0 \quad (86)$$

Using Eq. (54), the above equation is as follows:

$$2n \cdot sleaf_n^{2n-1}(\bar{l}) \cdot cleaf_n^n(l) \cdot \frac{d\bar{l}}{dl} - 2n \cdot cleaf_n^{2n-1}(l) \cdot sleaf_n^n(\bar{l}) = 0 \quad (87)$$

The above equation is as follows:

$$\frac{d\bar{l}}{dl} = \frac{cleaf_n^{n-1}(l)}{sleaf_n^{n-1}(\bar{l})} \quad (88)$$

The derivative of the leaf function: $cleaf_n(l)$ is obtained as follows:

$$\frac{d}{dl} cleaf_n(l) = -\sqrt{1 - cleaf_n^{2n}(l)} = -sleaf_n^n(\bar{l}) \quad (89)$$

Eq. (54) is applied to the above equation. Note that the variable l is different from the variable \bar{l} . The second derivative of the leaf function: $cleaf_n(l)$ is obtained as follows:

$$\begin{aligned}
\frac{d^2}{dl^2} \text{cleaf}_n(l) &= -n \cdot \text{sleaf}_n^{n-1}(\bar{l}) \cdot \sqrt{1 - \text{sleaf}_n^{2n}(\bar{l})} \cdot \frac{d\bar{l}}{dl} \\
&= -n \cdot \text{cleaf}_n^{2n-1}(l) \\
&= -n \cdot \text{sleaf}_n^{n-1}(\bar{l}) \cdot \text{cleaf}_n^n(l) \cdot \frac{\text{cleaf}_n^{n-1}(l)}{\text{sleaf}_n^{n-1}(\bar{l})} \\
&= -n \cdot \text{cleaf}_n^{2n-1}(l)
\end{aligned} \tag{90}$$

The third derivative of the leaf function: $\text{cleaf}_n(l)$ is obtained as follows:

$$\begin{aligned}
\frac{d^3}{dl^3} \text{cleaf}_n(l) &= -n \cdot (2n-1) \cdot \text{cleaf}_n^{2n-2}(l) \cdot \left(-\sqrt{1 - \text{cleaf}_n^{2n}(l)} \right) \\
&= n \cdot (2n-1) \cdot \text{cleaf}_n^{2n-2}(l) \cdot \sqrt{1 - \text{cleaf}_n^{2n}(l)}
\end{aligned} \tag{91}$$

The fourth derivative of the leaf function: $\text{cleaf}_n(l)$ is obtained as follows:

$$\begin{aligned}
\frac{d^4}{dl^4} \text{cleaf}_n(l) &= -n \cdot (2n-1) \cdot (2n-2) \cdot \text{cleaf}_n^{2n-3}(l) \cdot \left(\sqrt{1 - \text{cleaf}_n^{2n}(l)} \right)^2 \\
&+ n \cdot (2n-1) \cdot \text{cleaf}_n^{2n-2}(l) \cdot \frac{-2n \cdot \text{cleaf}_n^{2n-1}(l)}{2\sqrt{1 - \text{cleaf}_n^{2n}(l)}} \sqrt{1 - \text{cleaf}_n^{2n}(l)}
\end{aligned} \tag{92}$$

The above equation is as follows:

$$\begin{aligned}
\frac{d^4}{dl^4} \text{cleaf}_n(l) &= n \cdot (2n-1) \cdot \text{cleaf}_n^{2n-3}(l) \cdot \{2 - 2n + (-2 + 3n) \cdot \text{cleaf}_n^{2n}(l)\}
\end{aligned} \tag{93}$$

Next, we discuss the derivative of the leaf function: $\text{sleaf}_n(\bar{l})$. By differentiating Eq.(54) with respect to the variable \bar{l} , the following is obtained:

$$\begin{aligned}
2n \cdot \text{sleaf}_n^{2n-1}(\bar{l}) \cdot \sqrt{1 - \text{sleaf}_n^{2n}(\bar{l})} \\
+ 2n \cdot \text{cleaf}_n^{2n-1}(l) \cdot \left\{ \sqrt{1 - \text{cleaf}_n^{2n}(l)} \right\} \cdot \frac{dl}{d\bar{l}} = 0
\end{aligned} \tag{94}$$

The above equation is as follows:

$$\frac{dl}{d\bar{l}} = \frac{\text{sleaf}_n^{n-1}(\bar{l})}{\text{cleaf}_n^{n-1}(l)} \tag{95}$$

The first derivative of the leaf function: $\text{sleaf}_n(\bar{l})$ is obtained as follows:

$$\frac{d}{d\bar{l}} \text{sleaf}_n(\bar{l}) = \sqrt{1 - \text{sleaf}_n^{2n}(\bar{l})} = \text{cleaf}_n^n(l) \tag{96}$$

Note that the above equation is differentiated with respect to the variable \bar{l} . The second derivative of the leaf function $\text{sleaf}_n(\bar{l})$ is obtained as follows:

$$\begin{aligned}
\frac{d^2}{d\bar{l}^2} \text{sleaf}_n(\bar{l}) &= n \cdot \text{cleaf}_n^{n-1}(l) \cdot \left(-\sqrt{1 - \text{cleaf}_n^{2n}(l)} \right) \cdot \frac{dl}{d\bar{l}} \\
&= n \cdot \text{cleaf}_n^{n-1}(l) \cdot \left(-\text{sleaf}_n^n(\bar{l}) \right) \cdot \frac{\text{sleaf}_n^{n-1}(\bar{l})}{\text{cleaf}_n^{n-1}(l)} \\
&= -n \cdot \text{sleaf}_n^{2n-1}(\bar{l})
\end{aligned} \tag{97}$$

The third derivative is obtained as follows:

$$\begin{aligned}
\frac{d^3}{d\bar{l}^3} \text{sleaf}_n(\bar{l}) &= -n \cdot (2n-1) \cdot \text{sleaf}_n^{2n-2}(\bar{l}) \cdot \sqrt{1 - \text{sleaf}_n^{2n}(\bar{l})}
\end{aligned} \tag{98}$$

The fourth derivative is obtained as follows:

$$\begin{aligned}
\frac{d^4}{d\bar{l}^4} \text{sleaf}_n(\bar{l}) &= -n \cdot (2n-1) \cdot (2n-2) \cdot \text{sleaf}_n^{2n-3}(\bar{l}) \cdot \left(\sqrt{1 - \text{sleaf}_n^{2n}(\bar{l})} \right)^2 \\
&- n \cdot (2n-1) \cdot \text{sleaf}_n^{2n-2}(\bar{l}) \cdot \frac{-2n \cdot \text{sleaf}_n^{2n-1}(\bar{l})}{2\sqrt{1 - \text{sleaf}_n^{2n}(\bar{l})}} \sqrt{1 - \text{sleaf}_n^{2n}(\bar{l})}
\end{aligned} \tag{99}$$

The above equation is as follows:

$$\begin{aligned}
\frac{d^4}{d\bar{l}^4} \text{sleaf}_n(\bar{l}) &= n \cdot (2n-1) \cdot \text{sleaf}_n^{2n-3}(\bar{l}) \cdot \{2 - 2n + (3n-2) \text{sleaf}_n^{2n}(\bar{l})\}
\end{aligned} \tag{100}$$

7. Addition theorem of leaf function

The addition theorem of leaf functions is described. In the case of $n=1$ in Eq. (1), the functions that are satisfied with an ODE are the trigonometric functions: $\sin(l)$ and $\cos(l)$. Using the leaf function, the addition theorem is described as follows:

$$sleaf_1(l_1 \pm l_2) = sleaf_1(l_1)cleaf_1(l_2) \pm sleaf_1(l_2)cleaf_1(l_1) \quad (101)$$

$$cleaf_1(l_1 \pm l_2) = cleaf_1(l_1)cleaf_1(l_2) \mp sleaf_1(l_1)sleaf_1(l_2) \quad (102)$$

In the case of $n=2$, the addition theorem of the leaf function is described based on the theorem of the elliptical function.

$$sleaf_2(l_1 \pm l_2) = \frac{sleaf_2(l_1)sleaf_2'(l_2) \pm sleaf_2'(l_1)sleaf_2(l_2)}{1 + (sleaf_2(l_1))^2(sleaf_2(l_2))^2}$$

$$= \frac{sleaf_2(l_1)\sqrt{1 - (sleaf_2(l_2))^4} \pm sleaf_2(l_2)\sqrt{1 - (sleaf_2(l_1))^4}}{1 + (sleaf_2(l_1))^2(sleaf_2(l_2))^2} \quad (103)$$

$$cleaf_2(l_1 \pm l_2) = \frac{cleaf_2(l_1)sleaf_2'(l_2) \pm cleaf_2'(l_1)sleaf_2(l_2)}{1 + (cleaf_2(l_1))^2(sleaf_2(l_2))^2}$$

$$= \frac{cleaf_2(l_1)\sqrt{1 - (sleaf_2(l_2))^4} \mp sleaf_2(l_2)\sqrt{1 - (cleaf_2(l_1))^4}}{1 + (cleaf_2(l_1))^2(sleaf_2(l_2))^2} \quad (104)$$

In the above equation, the superscript prime ' of the leaf function represents the derivative with respect to the variable l . The sign of the derivative of the leaf function varied according to the range of the arc length l . As the range is $0 \leq l \leq \pi/2$, we discuss the above equation. In the other range of the variable l , given in Table 2 and Table 3, note the sign of the derivative of the leaf function.

8. Conclusion

In the first report, the leaf function $sleaf_n(l)$ is defined. In this report, the leaf function $cleaf_n(l)$ is defined. The relation between the leaf function: $cleaf_n(l)$ and the function: $sleaf_n(l)$ is presented.

References

- [1] Paul F. Byrd and Morris D. Friedman: Handbook of Elliptic Integrals for Engineers and Scientists, Second ed., Springer-Verlag, New York, 1971.
- [2] Umberto Bottazzini and Jeremy Gray: Hidden Harmony - Geometric Fantasies. Springer, New York, 2013.
- [3] J. Stillwell: Mathematics and Its History, Springer-Verlag, New York, 1989.
- [4] A. C. Dixon: The Elementary Properties of the Elliptic

Functions, with Examples, Macmillan, London, 1894.

[5] A. G. Greenhill: The Applications of Elliptic Functions, Macmillan, London, 1892.

[6] H. McKean and V. Moll: Elliptic Curves: Function Theory, Geometry and Arithmetic. Cambridge University, 1999.

[7] James Booth: The Theory of Elliptic Integrals, Book on Demand Ltd. , 2013.

[8] P. Franklin, W. E. Byerly and I. Todhunter: Elliptic Integrals - A Selection of Classic Mathematical Articles Containing Examples and Exercises on the Subject of Calculus (Mathematics Series), Burrard Press, 2012.

[9] N. I. Akhiezer: Elements of the Theory of Elliptic Functions (Translations of Mathematical Monographs), American Mathematical Society, 1990.

[10] Derek F. Lawden: Elliptic Functions and Applications (Applied Mathematical Sciences), Springer, 1989.

Appendix A

In the case of $n=2$ and 3 in Eq.(1), the Taylor expansion of the leaf functions are described in the appendix. These Taylor expansions are satisfied with Eq. (1), Eq. (66), and Eq. (67). The Taylor expansion of the leaf function is created by deriving the leaf function. First, in the case of $n=2$, the first derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\frac{d}{dl} sleaf_2(l) = \sqrt{1 - sleaf_2^4(l)} \left(= cleaf_2^2(\bar{l}) = \frac{2cleaf_2(l)}{1 + cleaf_2^2(l)} \right) \quad (A1)$$

The second derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\frac{d^2}{dl^2} sleaf_2(l) = -2 \cdot sleaf_2^3(l) \quad (A2)$$

The third derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\frac{d^3}{dl^3} sleaf_2(l) = -6 \cdot sleaf_2^2(l) \cdot \sqrt{1 - sleaf_2^4(l)} \quad (A3)$$

The fourth derivative of the leaf function $sleaf_2(l)$ is obtained

as follows:

$$\frac{d^4}{dl^4} sleaf_2(l) = 12 \cdot sleaf_2(l) \cdot (-1 + 2sleaf_2^4(l)) \quad (A4)$$

The fifth derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\frac{d^5}{dl^5} sleaf_2(l) = 12 \cdot (-1 + 10 \cdot sleaf_2^4(l)) \sqrt{1 - sleaf_2^4(l)} \quad (A5)$$

The sixth derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\frac{d^6}{dl^6} sleaf_2(l) = 72sleaf_2^3(l)(7 - 10sleaf_2^4(l)) \quad (A6)$$

The seventh derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^7}{dl^7} sleaf_2(l) \\ = 504sleaf_2^2(l)(3 - 10sleaf_2^4(l)) \sqrt{1 - sleaf_2^4(l)} \end{aligned} \quad (A7)$$

The eighth derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^8}{dl^8} sleaf_2(l) \\ = 1008sleaf_2^2(l)(3 - 36sleaf_2^4(l) + 40sleaf_2^8(l)) \end{aligned} \quad (A8)$$

The ninth derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^9}{dl^9} sleaf_2(l) \\ = 3024(1 - 60sleaf_2^4(l) + 120sleaf_2^8(l)) \sqrt{1 - sleaf_2^4(l)} \end{aligned} \quad (A9)$$

The tenth derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{10}}{dl^{10}} sleaf_2(l) \\ = -6048sleaf_2^3(l)(121 - 660sleaf_2^4(l) + 600sleaf_2^8(l)) \end{aligned} \quad (A10)$$

The eleventh derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{11}}{dl^{11}} sleaf_2(l) \\ = -199584sleaf_2^2(l)(11 - 140sleaf_2^4(l) + 200sleaf_2^8(l)) \sqrt{1 - sleaf_2^4(l)} \end{aligned} \quad (A11)$$

The twelfth derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{12}}{dl^{12}} sleaf_2(l) \\ = 399168(-11sleaf_2(l) + 442sleaf_2^5(l) - 1560sleaf_2^9(l) + 1200sleaf_2^{13}(l)) \end{aligned} \quad (A12)$$

The thirteenth derivative of the leaf function $sleaf_2(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{13}}{dl^{13}} sleaf_2(l) \\ = 399168(-11 + 130sleaf_2^4(l)(17 - 108sleaf_2^4(l) + 120sleaf_2^8(l))) \sqrt{1 - sleaf_2^4(l)} \end{aligned} \quad (A13)$$

It continues in the same way below. The Taylor expansion is obtained as follows:

$$\begin{aligned} sleaf_2(l) &= sleaf_2(0) + \frac{1}{1!} \left(\frac{d}{dl} sleaf_2(0) \right) l \\ &+ \frac{1}{2!} \left(\frac{d^2}{dl^2} sleaf_2(0) \right) l^2 + \frac{1}{3!} \left(\frac{d^3}{dl^3} sleaf_2(0) \right) l^3 + \\ &\dots + \frac{1}{13!} \left(\frac{d^{13}}{dl^{13}} sleaf_2(0) \right) l^{13} + O(l^{17}) \\ &= \frac{1}{1!} l - \frac{12}{5!} l^5 + \frac{3024}{9!} l^9 - \frac{4390848}{13!} l^{13} + O(l^{17}) \\ &= l - \frac{1}{10} l^5 + \frac{1}{120} l^9 - \frac{11}{15600} l^{13} + O(l^{17}) \end{aligned} \quad (A14)$$

The symbol O represents the Landau symbol. The symbol $O(l^{17})$ represents the order of the error.

The difference: $sleaf_2(l) - \left(l - \frac{1}{10} l^5 + \frac{1}{120} l^9 - \frac{11}{15600} l^{13} \right)$ is

within $|l|^{17}$ when the variable l is sufficiently close to 0. The polynomial of Eq. (A14) is differentiated as follows:

$$\frac{d^2}{dl^2} sleaf_2(l) = -2l^3 + \frac{3}{5}l^7 - \frac{11}{100}l^{11} + O(l^{15}) \quad (A15)$$

Using Eq. (A14), the equation is obtained as follows:

$$\begin{aligned}
& -2 \cdot (sleaf_2(l))^3 \\
& = -2 \cdot \left(l - \frac{1}{10} l^5 + \frac{1}{120} l^9 - \frac{11}{15600} l^{13} + O(l^{17}) \right)^3 \\
& = -2l^3 + \frac{3}{5} l^7 - \frac{11}{100} l^{11} + O(l^{15})
\end{aligned} \tag{A16}$$

Through the results of both Eq. (A15) and Eq. (A16), the leaf function: $sleaf_2(l)$ is satisfied with Eq. (1). Next, the Taylor expansion is applied to the leaf function: $cleaf_2(l)$. The first derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\begin{aligned}
& \frac{d}{dl} cleaf_2(l) \\
& = -\sqrt{1 - cleaf_2^4(l)} \left(-sleaf_2^2(l) - \frac{2sleaf_2(l)}{1 + sleaf_2^2(l)} \right)
\end{aligned} \tag{A17}$$

The second derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\frac{d^2}{dl^2} cleaf_2(l) = -2 \cdot cleaf_2^3(l) \tag{A18}$$

The third derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\frac{d^3}{dl^3} cleaf_2(l) = 6 \cdot cleaf_2^2(l) \cdot \sqrt{1 - cleaf_2^4(l)} \tag{A19}$$

The fourth derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\frac{d^4}{dl^4} cleaf_2(l) = 12 \cdot cleaf_2(l) \cdot (-1 + 2cleaf_2^4(l)) \tag{A20}$$

The fifth derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\frac{d^5}{dl^5} cleaf_2(l) = 12(1 - 10cleaf_2^4(l))\sqrt{1 - cleaf_2^4(l)} \tag{A21}$$

The sixth derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\frac{d^6}{dl^6} cleaf_2(l) = 72 cleaf_2^3(l)(7 - 10 cleaf_2^4(l)) \tag{A22}$$

The seventh derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\begin{aligned}
& \frac{d^7}{dl^7} cleaf_2(l) \\
& = 504 cleaf_2^2(l)(-3 + 10 cleaf_2^4(l))\sqrt{1 - cleaf_2^4(l)}
\end{aligned} \tag{A23}$$

The eighth derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\begin{aligned}
& \frac{d^8}{dl^8} cleaf_2(l) = 1008 cleaf_2(l)(3 - 36 cleaf_2^4(l) + 40 cleaf_2^8(l))
\end{aligned} \tag{A24}$$

The ninth derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\begin{aligned}
& \frac{d^9}{dl^9} cleaf_2(l) \\
& = -3024 \sqrt{1 - cleaf_2^4(l)}(1 - 60 cleaf_2^4(l) + 120 cleaf_2^8(l))
\end{aligned} \tag{A25}$$

The tenth derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\begin{aligned}
& \frac{d^{10}}{dl^{10}} cleaf_2(l) \\
& = -6048 cleaf_2^3(l)(121 - 660 cleaf_2^4(l) + 600 cleaf_2^8(l))
\end{aligned} \tag{A26}$$

The eleventh derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\begin{aligned}
& \frac{d^{11}}{dl^{11}} cleaf_2(l) \\
& = 199584 cleaf_2^2(l)(11 - 140 cleaf_2^4(l) + 200 cleaf_2^8(l))\sqrt{1 - cleaf_2^4(l)}
\end{aligned} \tag{A27}$$

The twelfth derivative of the leaf function $cleaf_2(l)$ is obtained as follows:

$$\begin{aligned}
& \frac{d^{12}}{dl^{12}} cleaf_2(l) \\
& = 399168 cleaf_2(l)(-11 + 2 cleaf_2^4(l)(221 - 780 cleaf_2^4(l) + 600 cleaf_2^8(l)))
\end{aligned} \tag{A28}$$

It continues in the same way below. The Taylor expansion is obtained as follows:

$$\begin{aligned}
\text{cleaf}_2(l) &= \text{cleaf}_2(0) + \frac{1}{1!} \left(\frac{d}{dl} \text{cleaf}_2(0) \right) l \\
&+ \frac{1}{2!} \left(\frac{d^2}{dl^2} \text{cleaf}_2(0) \right) l^2 + \frac{1}{3!} \left(\frac{d^3}{dl^3} \text{cleaf}_2(0) \right) l^3 + \\
&\dots + \frac{1}{12!} \left(\frac{d^{12}}{dl^{12}} \text{cleaf}_2(0) \right) l^{12} + O(l^{14}) \\
&= 1 - \frac{2}{2!} l^2 + \frac{12}{4!} l^4 - \frac{216}{6!} l^6 + \frac{7056}{8!} l^8 \\
&- \frac{368928}{10!} l^{10} + \frac{28340928}{12!} l^{12} + O(l^{14}) \\
&= 1 - l^2 + \frac{1}{2} l^4 - \frac{3}{10} l^6 + \frac{7}{40} l^8 \\
&- \frac{61}{600} l^{10} + \frac{71}{1200} l^{12} + O(l^{14})
\end{aligned} \tag{A29}$$

Using the above polynomial, the following equation is obtained:

$$\begin{aligned}
\frac{d^2}{dl^2} \text{cleaf}_2(l) &= -2 + 6l^2 - 9l^4 + \frac{49}{5} l^6 \\
&- \frac{183}{20} l^8 + \frac{781}{100} l^{10} - \frac{1253}{200} l^{12} + O(l^{14})
\end{aligned} \tag{A30}$$

The following equation is obtained by Eq. (A29).

$$\begin{aligned}
&-2 \cdot (\text{cleaf}_2(l))^3 \\
&= -2 \cdot \left(1 - l^2 + \frac{1}{2} l^4 - \frac{3}{10} l^6 + \frac{7}{40} l^8 - \frac{61}{600} l^{10} + \frac{71}{1200} l^{12} + O(l^{14}) \right)^3 \\
&= -2 + 6l^2 - 9l^4 + \frac{49}{5} l^6 - \frac{183}{20} l^8 + \frac{781}{100} l^{10} - \frac{1253}{200} l^{12} + O(l^{14})
\end{aligned} \tag{A31}$$

By both Eq. (A30) and Eq. (A31), we find that the Taylor expansion of the leaf function: $\text{cleaf}_2(l)$ is satisfied with Eq.(1). On the other hand, by substituting Eqs. (A32)-(A34) to Eq. (66), all terms are cancelled except for “ 1 ”.

$$\begin{aligned}
&(\text{cleaf}_2(l))^2 \\
&= \left(1 - l^2 + \frac{1}{2} l^4 - \frac{3}{10} l^6 + \frac{7}{40} l^8 - \frac{61}{600} l^{10} + \frac{71}{1200} l^{12} + O(l^{14}) \right)^2 \\
&= 1 - 2l^2 + 2l^4 - \frac{8}{5} l^6 + \frac{6}{5} l^8 - \frac{64}{75} l^{10} + \frac{44}{75} l^{12} + O(l^{14})
\end{aligned} \tag{A32}$$

$$\begin{aligned}
(\text{sleaf}_2(l))^2 &= \left(l - \frac{1}{10} l^5 + \frac{1}{120} l^9 - \frac{11}{15600} l^{13} + O(l^{15}) \right)^2 \\
&= l^2 - \frac{1}{5} l^6 + \frac{2}{75} l^{10} - \frac{1}{325} l^{14} + O(l^{18})
\end{aligned} \tag{A33}$$

$$\begin{aligned}
&(\text{sleaf}_2(l))^2 \cdot (\text{cleaf}_2(l))^2 \\
&= l^2 - 2l^4 + \frac{9}{5} l^6 - \frac{6}{5} l^8 + \frac{62}{75} l^{10} - \frac{44}{75} l^{12} + O(l^{14})
\end{aligned} \tag{A34}$$

Therefore, a Taylor expansion can be used to satisfy these equations with Eq. (66).

Next, in the case of $n=3$, the Taylor expansion is applied to the leaf function. The first derivative of the leaf function $\text{sleaf}_3(l)$ is obtained as follows:

$$\frac{d}{dl} \text{sleaf}_3(l) = \sqrt{1 - \text{sleaf}_3^6(l)} \tag{A35}$$

The second derivative of the leaf function $\text{sleaf}_3(l)$ is obtained as follows:

$$\frac{d^2}{dl^2} \text{sleaf}_3(l) = -3 \cdot \text{sleaf}_3^5(l) \tag{A36}$$

The third derivative of the leaf function $\text{sleaf}_3(l)$ is obtained as follows:

$$\frac{d^3}{dl^3} \text{sleaf}_3(l) = -15 \cdot \text{sleaf}_3^4(l) \cdot \sqrt{1 - \text{sleaf}_3^6(l)} \tag{A37}$$

The fourth derivative of the leaf function $\text{sleaf}_3(l)$ is obtained as follows:

$$\frac{d^4}{dl^4} \text{sleaf}_3(l) = 15 \cdot \text{sleaf}_3^3(l) \cdot (-4 + 7 \text{sleaf}_3^6(l)) \tag{A38}$$

The fifth derivative of the leaf function $\text{sleaf}_3(l)$ is obtained as follows:

$$\frac{d^5}{dl^5} \text{sleaf}_3(l) = 45 \text{sleaf}_3^2(l) (-4 + 21 \text{sleaf}_3^6(l)) \sqrt{1 - \text{sleaf}_3^6(l)} \tag{A39}$$

The sixth derivative of the leaf function $\text{sleaf}_3(l)$ is obtained as follows:

$$\frac{d^6}{dl^6} sleaf_3(l) = -45 sleaf_3(l) (8 - 188 sleaf_3^6(l) + 231 sleaf_3^{12}(l)) \quad (A40)$$

The seventh derivative of the leaf function $sleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^7}{dl^7} sleaf_3(l) \\ &= -45 \{8 + 7 sleaf_3^6(l) (-188 + 429 sleaf_3^6(l))\} \sqrt{1 - sleaf_3^6(l)} \end{aligned} \quad (A41)$$

The eighth derivative of the leaf function $sleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^8}{dl^8} sleaf_3(l) \\ &= 2025 sleaf_3^5(l) \{176 + 7 sleaf_3^6(l) (-152 + 143 sleaf_3^6(l))\} \end{aligned} \quad (A42)$$

The ninth derivative of the leaf function $sleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^9}{dl^9} sleaf_3(l) \\ &= 22275 sleaf_3^4(l) \{80 + 7 sleaf_3^6(l) (-152 + 221 sleaf_3^6(l))\} \sqrt{1 - sleaf_3^6(l)} \end{aligned} \quad (A43)$$

The tenth derivative of the leaf function $sleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{10}}{dl^{10}} sleaf_3(l) \\ &= -22275 sleaf_3^3(l) \{-320 + 7 sleaf_3^6(l) (1600 - 5512 sleaf_3^6(l) + 4199 sleaf_3^{12}(l))\} \end{aligned} \quad (A44)$$

The eleventh derivative of the leaf function $sleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{11}}{dl^{11}} sleaf_3(l) = -66825 sleaf_3^2(l) \sqrt{1 - sleaf_3^6(l)} \\ & \times \{-320 + 7 sleaf_2^6(l) (4800 - 27560 sleaf_2^6(l) + 29393 sleaf_2^{12}(l))\} \end{aligned} \quad (A45)$$

The twelfth derivative of the leaf function $sleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{12}}{dl^{12}} sleaf_3(l) \\ &= 42768000 sleaf_3(l) - 1806948000 0 sleaf_3^7(l) \\ &+ 2051848260 00 sleaf_3^{13}(l) - 4941481545 00 sleaf_3^{19}(l) \\ &+ 3162341432 25 sleaf_3^{25}(l) \end{aligned} \quad (A46)$$

The thirteenth derivative of the leaf function $sleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{13}}{dl^{13}} sleaf_3(l) = 334125 \sqrt{1 - sleaf_3^6(l)} \\ & \times (128 - 378560 sleaf_3^6(l) + 7983248 sleaf_3^{12}(l) \\ & - 28099708 sleaf_3^{18}(l) + 23661365 sleaf_3^{24}(l)) \end{aligned} \quad (A47)$$

It continues in the same way below. Using the Taylor expansion, the polynomial is obtained as follows:

$$\begin{aligned} sleaf_3(l) &= \frac{1}{1!} l - \frac{360}{7!} l^7 + \frac{42768000}{13!} l^{13} \\ & - \frac{9108557568 0000}{19!} l^{19} + O(l^{25}) \\ &= l - \frac{1}{14} l^7 + \frac{5}{728} l^{13} - \frac{145}{193648} l^{19} \\ & + \frac{4663}{54221440} l^{25} - \frac{3111273}{3059173644 80} l^{31} \\ & + \frac{77686677}{6338607792 0256} l^{37} + O(l^{43}) \end{aligned} \quad (A48)$$

Using the above polynomial, the following equation is obtained as follows:

$$\frac{d^2}{dl^2} sleaf_3(l) = -3l^5 + \frac{15}{14} l^7 - \frac{1305}{5096} l^{17} + O(l^{23}) \quad (A49)$$

Using Eq.(A48), the following equation is obtained:

$$\begin{aligned} & -3 \cdot (sleaf_3(l))^5 \\ &= -3 \cdot \left(l - \frac{1}{14} l^7 + \frac{5}{728} l^{13} - \frac{145}{193648} l^{19} + O(l^{25}) \right)^5 \\ &= -3l^5 + \frac{15}{14} l^7 - \frac{1305}{5096} l^{17} + O(l^{23}) \end{aligned} \quad (A50)$$

Next, the Taylor expansion is applied to the leaf function: $cleaf_3(l)$. The first derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\frac{d}{dl} cleaf_3(l) = -\sqrt{1 - cleaf_3^6(l)} \quad (A51)$$

The second derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\frac{d^2}{dl^2} cleaf_3(l) = -3 \cdot cleaf_3^5(l) \quad (A52)$$

The third derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\frac{d^3}{dl^3} cleaf_3(l) = 15 \cdot cleaf_3^4(l) \cdot \sqrt{1 - cleaf_3^6(l)} \quad (A53)$$

The fourth derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\frac{d^4}{dl^4} cleaf_3(l) = 15 \cdot cleaf_3^3(l) \cdot (-4 + 7 cleaf_3^6(l)) \quad (A54)$$

The fifth derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^5}{dl^5} cleaf_3(l) \\ &= 45 cleaf_3^2(l) (4 - 21 cleaf_3^6(l)) \sqrt{1 - cleaf_3^6(l)} \end{aligned} \quad (A55)$$

The sixth derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^6}{dl^6} cleaf_3(l) \\ &= -45 cleaf_3(l) (8 - 188 cleaf_3^6(l) + 231 cleaf_3^{12}(l)) \end{aligned} \quad (A56)$$

The seventh derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^7}{dl^7} cleaf_3(l) \\ &= 45 sleaf_3^3(l) (8 + 7 cleaf_3^6(l) (-188 + 429 cleaf_3^6(l))) \end{aligned} \quad (A57)$$

The eighth derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^8}{dl^8} cleaf_3(l) \\ &= 2025 cleaf_3^5(l) \{ 76 + 7 cleaf_3^6(l) (-152 + 143 cleaf_3^6(l)) \} \end{aligned} \quad (A58)$$

The ninth derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^9}{dl^9} cleaf_3(l) \\ &= -22275 cleaf_3^4(l) \{ 80 + 7 cleaf_3^6(l) (-152 + 221 cleaf_3^6(l)) \} \sqrt{1 - cleaf_3^6(l)} \end{aligned} \quad (A59)$$

The tenth derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{10}}{dl^{10}} cleaf_3(l) = -22275 cleaf_3^3(l) \\ & \cdot \{ -320 + 7 cleaf_3^6(l) (1600 - 5512 cleaf_3^6(l) + 4199 cleaf_3^{12}(l)) \} \end{aligned} \quad (A60)$$

The eleventh derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{11}}{dl^{11}} cleaf_3(l) = 66825 cleaf_3^2(l) \sqrt{1 - cleaf_3^6(l)} \\ & \cdot \{ -320 + 7 cleaf_3^6(l) (4800 - 27560 cleaf_3^6(l) + 29393 cleaf_3^{12}(l)) \} \end{aligned} \quad (A61)$$

The twelfth derivative of the leaf function $cleaf_3(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{12}}{dl^{12}} cleaf_3(l) = 42768000 cleaf_3(l) \\ & - 1806948000 0 cleaf_3^7(l) + 2051848260 00 cleaf_3^{13}(l) \\ & - 4941481545 00 cleaf_3^{19}(l) + 3162341432 25 cleaf_3^{25}(l) \end{aligned} \quad (A62)$$

It continues in the same way below. Using the Taylor expansion, the polynomial is obtained as follows:

$$\begin{aligned}
\text{cleaf}_3(l) &= 1 - \frac{3}{2!}l^2 + \frac{45}{4!}l^4 - \frac{2295}{6!}l^6 \\
&+ \frac{228825}{8!}l^8 - \frac{37622475}{10!}l^{10} + \frac{9244102725}{12!}l^{12} \\
&- \frac{3173993373}{14!}l^{14} + O(l^{16}) \tag{A63} \\
&= 1 - \frac{3}{2}l^2 + \frac{15}{8}l^4 - \frac{51}{16}l^6 \\
&+ \frac{5085}{896}l^8 - \frac{18579}{1792}l^{10} + \frac{138333}{7168}l^{12} \\
&- \frac{47497095}{1304576}l^{14} + O(l^{16})
\end{aligned}$$

Using Eq. (A63), the following equation is obtained:

$$\begin{aligned}
\frac{d^2}{dl^2} \text{cleaf}_3(l) &= -3 + \frac{45}{2}l^2 - \frac{765}{8}l^4 + \frac{5085}{16}l^6 \\
&- \frac{836055}{896}l^8 + \frac{4564989}{1792}l^{10} + O(l^{12}) \tag{A64}
\end{aligned}$$

Using Eq. (A63), the following equation is obtained:

$$\begin{aligned}
&-3 \cdot (\text{cleaf}_3(l))^5 \\
&= -3 \cdot \left(1 - \frac{3}{2}l^2 + \frac{15}{8}l^4 - \frac{51}{16}l^6 + \frac{5085}{896}l^8 - \frac{18579}{1792}l^{10} + O(l^{12}) \right)^5 \\
&= -3 + \frac{45}{2}l^2 - \frac{765}{8}l^4 + \frac{5085}{16}l^6 \\
&- \frac{836055}{896}l^8 + \frac{4564989}{1792}l^{10} + O(l^{12}) \tag{A65}
\end{aligned}$$

By Eq.(A64) and Eq. (A65), the polynomial of the leaf function by Taylor is satisfied with Eq. (1). The following equation is obtained by substituting the polynomial in Eq. (67).

$$\begin{aligned}
&(\text{cleaf}_3(l))^2 \\
&= \left(1 - \frac{3}{2}l^2 + \frac{15}{8}l^4 - \frac{51}{16}l^6 + \frac{5085}{896}l^8 - \frac{18579}{1792}l^{10} + \frac{138333}{7168}l^{12} + O(l^{14}) \right)^2 \\
&= 1 - 3l^2 + 6l^4 - 12l^6 + \frac{171}{7}l^8 - \frac{348}{7}l^{10} + \frac{708}{7}l^{12} + O(l^{14}) \tag{A66}
\end{aligned}$$

$$\begin{aligned}
&(\text{sleaf}_3(l))^2 = \left(l - \frac{1}{14}l^7 + \frac{5}{728}l^{13} - \frac{145}{193648}l^{19} + O(l^{25}) \right)^2 \\
&= l^2 - \frac{1}{7}l^8 + \frac{12}{637}l^{14} - \frac{30}{12103}l^{20} + \frac{10865}{70487872}l^{26} + O(l^{32}) \tag{A67}
\end{aligned}$$

$$\begin{aligned}
&2(\text{sleaf}_3(l))^2 \cdot (\text{cleaf}_3(l))^2 \\
&= 2l^2 - 6l^4 + 12l^6 - \frac{170}{7}l^8 + \frac{348}{7}l^{10} - \frac{708}{7}l^{12} + O(l^{14}) \tag{A68}
\end{aligned}$$

By substituting Eqs. (A66)-(A68) in Eq. (67), all terms are cancelled except for “ 1 ”. Therefore, a Taylor expansion can be used to satisfy these equations with Eq. (67).

Next, in the case of $n=4$, the Taylor expansion is applied to the leaf function. The first derivative of the leaf function $\text{sleaf}_4(l)$ is obtained as follows:

$$\frac{d}{dl} \text{sleaf}_4(l) = \sqrt{1 - \text{sleaf}_4^8(l)} = \text{cleaf}_4^4(l) \tag{A69}$$

The second derivative of the leaf function $\text{sleaf}_4(l)$ is obtained as follows:

$$\frac{d^2}{dl^2} \text{sleaf}_4(l) = -4 \cdot \text{sleaf}_4^7(l) \tag{A70}$$

The third derivative of the leaf function $\text{sleaf}_4(l)$ is obtained as follows:

$$\frac{d^3}{dl^3} \text{sleaf}_4(l) = -28 \cdot \text{sleaf}_4^6(l) \cdot \sqrt{1 - \text{sleaf}_4^8(l)} \tag{A71}$$

The fourth derivative of the leaf function $\text{sleaf}_4(l)$ is obtained as follows:

$$\frac{d^4}{dl^4} \text{sleaf}_4(l) = 56 \cdot \text{sleaf}_4^5(l) \cdot (-3 + 5\text{sleaf}_4^8(l)) \tag{A72}$$

The fifth derivative of the leaf function $\text{sleaf}_4(l)$ is obtained as follows:

$$\frac{d^5}{dl^5} \text{sleaf}_4(l) = 280 \text{sleaf}_4^4(l) (-3 + 13\text{sleaf}_4^8(l)) \sqrt{1 - \text{sleaf}_4^8(l)} \tag{A73}$$

The sixth derivative of the leaf function $\text{sleaf}_4(l)$ is obtained as follows:

$$\frac{d^6}{dl^6} \text{sleaf}_4(l) = -1120 \text{sleaf}_4^3(l) (3 - 45\text{sleaf}_4^8(l) + 52\text{sleaf}_4^{16}(l)) \tag{A74}$$

The seventh derivative of the leaf function $\text{sleaf}_4(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^7}{dl^7} sleaf_4(l) &= -1120 sleaf_4^2(l) \sqrt{1 - sleaf_4^8(l)} \\ &\cdot (9 - 495 sleaf_4^8(l) + 988 sleaf_4^{16}(l)) \end{aligned} \quad (A75)$$

The eighth derivative of the leaf function $sleaf_4(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^8}{dl^8} sleaf_4(l) &= 2240 sleaf_4(l) \\ &\cdot (-9 + 2502 sleaf_4^8(l) - 12357 sleaf_4^{16}(l) + 10868 sleaf_4^{24}(l)) \end{aligned} \quad (A76)$$

The ninth derivative of the leaf function $sleaf_4(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^9}{dl^9} sleaf_4(l) &= 2240 \sqrt{1 - sleaf_4^8(l)} \\ &\cdot (-9 + 22518 sleaf_4^8(l) - 210069 sleaf_4^{16}(l) + 271700 sleaf_4^{24}(l)) \end{aligned} \quad (A77)$$

The tenth derivative of the leaf function $sleaf_4(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{10}}{dl^{10}} sleaf_4(l) &= -313600 sleaf_4^7(l) \\ &\cdot (-1287 + 25938 sleaf_4^8(l) - 76587 sleaf_4^{16}(l) + 54340 sleaf_4^{24}(l)) \end{aligned} \quad (A78)$$

The eleventh derivative of the leaf function $sleaf_4(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{11}}{dl^{11}} sleaf_4(l) &= -313600 sleaf_4^6(l) \sqrt{1 - sleaf_4^8(l)} \\ &\cdot (-9009 + 389070 sleaf_4^8(l) - 1761501 sleaf_4^{16}(l) + 1684540 sleaf_4^{24}(l)) \end{aligned} \quad (A79)$$

The twelfth derivative of the leaf function $sleaf_4(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{12}}{dl^{12}} sleaf_4(l) &= 627200 sleaf_4^5(l) \\ &\cdot [27027 + 17 sleaf_4^8(l) (-162855 + 13 sleaf_4^8(l) (103521 - 217953 sleaf_4^8(l) + 129580 sleaf_4^{16}(l)))] \end{aligned} \quad (A80)$$

The thirteenth derivative of the leaf function $sleaf_4(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{13}}{dl^{13}} sleaf_4(l) &= 8153600 sleaf_4^4(l) \sqrt{1 - sleaf_4^8(l)} \\ &\cdot [10395 + 17 sleaf_4^8(l) (-162855 + 2173941 sleaf_4^8(l) - 6320637 sleaf_4^{16}(l) + 4794460 sleaf_4^{24}(l))] \end{aligned} \quad (A81)$$

It continues in the same way below. Using the Taylor expansion, the polynomial is obtained as follows:

$$sleaf_4(l) = l - \frac{1}{18} l^9 + \frac{7}{1224} l^{17} - \frac{77}{110160} l^{25} + O(l^{33}) \quad (A82)$$

Using the above polynomial, the following equation is obtained:

$$\frac{d^2}{dl^2} sleaf_4(l) = -4l^7 + \frac{14}{9} l^{15} - \frac{385}{918} l^{23} + O(l^{31}) \quad (A83)$$

Using Eq. (A82), the following equation is obtained:

$$\begin{aligned} &-4 \cdot (sleaf_4(l))^7 \\ &= -4 \cdot \left(l - \frac{1}{18} l^9 + \frac{7}{1224} l^{17} - \frac{77}{110160} l^{25} + O(l^{33}) \right)^7 \\ &= -4l^7 + \frac{14}{9} l^{15} - \frac{385}{918} l^{23} + O(l^{31}) \end{aligned} \quad (A84)$$

We can find that the leaf function $sleaf_4(l)$ is satisfied with Eq. (1).

Next, the Taylor expansion is applied to the leaf function: $cleaf_4(l)$. The first derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\frac{d}{dl} cleaf_4(l) = -\sqrt{1 - cleaf_4^8(l)} \quad (A85)$$

The second derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\frac{d^2}{dl^2} cleaf_4(l) = -4 \cdot cleaf_4^7(l) \quad (A86)$$

The third derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\frac{d^3}{dl^3} cleaf_4(l) = 28 \cdot cleaf_4^6(l) \cdot \sqrt{1 - cleaf_4^8(l)} \quad (A87)$$

The fourth derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\frac{d^4}{dl^4} cleaf_4(l) = 56 \cdot cleaf_4^5(l) \cdot (-3 + 5 cleaf_4^8(l)) \quad (\text{A88})$$

The fifth derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^5}{dl^5} cleaf_4(l) \\ &= 280 cleaf_4^4(l) (3 - 13 cleaf_4^8(l)) \sqrt{1 - cleaf_4^8(l)} \end{aligned} \quad (\text{A89})$$

The sixth derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^6}{dl^6} cleaf_4(l) \\ &= -1120 cleaf_4^3(l) (3 - 45 cleaf_4^8(l) + 52 cleaf_4^{16}(l)) \end{aligned} \quad (\text{A90})$$

The seventh derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^7}{dl^7} cleaf_4(l) = 1120 cleaf_4^2(l) \sqrt{1 - cleaf_4^8(l)} \\ & \cdot (9 - 495 cleaf_4^8(l) + 988 cleaf_4^{16}(l)) \end{aligned} \quad (\text{A91})$$

The eighth derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^8}{dl^8} cleaf_4(l) = 2240 cleaf_4(l) \\ & \cdot (-9 + 2502 cleaf_4^8(l) - 12357 cleaf_4^{16}(l) + 10868 cleaf_4^{24}(l)) \end{aligned} \quad (\text{A92})$$

The ninth derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^9}{dl^9} cleaf_4(l) = -2240 \sqrt{1 - cleaf_4^8(l)} \\ & \cdot (-9 + 22518 cleaf_4^8(l) - 210069 cleaf_4^{16}(l) + 271700 cleaf_4^{24}(l)) \end{aligned} \quad (\text{A93})$$

The tenth derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{10}}{dl^{10}} cleaf_4(l) = -313600 cleaf_4^7(l) \\ & \cdot (-1287 + 25938 cleaf_4^8(l) - 76587 cleaf_4^{16}(l) + 54340 cleaf_4^{24}(l)) \end{aligned} \quad (\text{A94})$$

The eleventh derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{11}}{dl^{11}} cleaf_4(l) = 313600 cleaf_4^6(l) \sqrt{1 - cleaf_4^8(l)} \\ & \cdot (-9009 + 389070 cleaf_4^8(l) - 1761501 cleaf_4^{16}(l) + 1684540 cleaf_4^{24}(l)) \end{aligned} \quad (\text{A95})$$

The twelfth derivative of the leaf function $cleaf_4(l)$ is obtained as follows:

$$\begin{aligned} & \frac{d^{12}}{dl^{12}} cleaf_4(l) = 627200 cleaf_4^5(l) \\ & \cdot [27027 + 17 cleaf_4^8(l) (-162855 + 13 cleaf_4^8(l) (103521 - 217953 cleaf_4^8(l) + 129580 cleaf_4^{16}(l)))] \end{aligned} \quad (\text{A96})$$

It continues in the same way below. Using the Taylor expansion, the polynomial is obtained as follows:

$$\begin{aligned} cleaf_4(l) &= 1 - \frac{4}{2!} l^2 + \frac{112}{4!} l^4 - \frac{11200}{6!} l^6 + \frac{2248960}{8!} l^8 \\ & - \frac{753894400}{10!} l^{10} + \frac{3802086400}{12!} l^{12} + O(l^{14}) \\ &= 1 - 2l^2 + \frac{14}{3} l^4 - \frac{140}{9} l^6 + \frac{502}{9} l^8 \\ & - \frac{16828}{81} l^{10} + \frac{2121700}{2673} l^{12} + O(l^{14}) \end{aligned} \quad (\text{A97})$$

Using the above polynomial, the following equation is obtained:

$$\begin{aligned} & \frac{d^2}{dl^2} cleaf_4(l) = -4 + 56l^2 - \frac{1400}{3} l^4 + \frac{28112}{9} l^6 \\ & - \frac{168280}{9} l^8 + \frac{8486800}{81} l^{10} + O(l^{12}) \end{aligned} \quad (\text{A98})$$

Using Eq. (A97), the following equation is obtained:

$$\begin{aligned} & -4 \cdot (cleaf_4(l))^7 \\ & = -3 \cdot \left(1 - 2l^2 + \frac{14}{3} l^4 - \frac{140}{9} l^6 + \frac{502}{9} l^8 - \frac{16828}{81} l^{10} + \frac{2121700}{2673} l^{12} + O(l^{14}) \right)^7 \\ & = -3 + \frac{45}{2} l^2 - \frac{765}{8} l^4 + \frac{5085}{16} l^6 - \frac{836055}{896} l^8 + \frac{4564989}{1792} l^{10} + O(l^{12}) \end{aligned} \quad (\text{A99})$$

We can find that the leaf function $cleaf_5(l)$ is satisfied with Eq. (1).

Next, in the case of $n=5$, the Taylor expansion is applied to the leaf function. The first derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\frac{d}{dl} sleaf_5(l) = \sqrt{1 - sleaf_5^{10}(l)} = cleaf_5^5(l) \quad (A100)$$

The second derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\frac{d^2}{dl^2} sleaf_5(l) = -5 \cdot sleaf_5^9(l) \quad (A101)$$

The third derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\frac{d^3}{dl^3} sleaf_5(l) = -45 \cdot sleaf_5^8(l) \cdot \sqrt{1 - sleaf_5^{10}(l)} \quad (A102)$$

The fourth derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\frac{d^4}{dl^4} sleaf_5(l) = 45 \cdot sleaf_5^7(l) \cdot (-8 + 13sleaf_5^{10}(l)) \quad (A103)$$

The fifth derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\frac{d^5}{dl^5} sleaf_5(l) = 45sleaf_5^6(l)(-56 + 221sleaf_5^{10}(l))\sqrt{1 - sleaf_5^{10}(l)} \quad (A104)$$

The sixth derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^6}{dl^6} sleaf_5(l) \\ = -135sleaf_5^5(l)(112 - 1384sleaf_5^{10}(l) + 1547sleaf_5^{20}(l)) \end{aligned} \quad (A105)$$

The seventh derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^7}{dl^7} sleaf_5(l) = -675sleaf_5^4(l)\sqrt{1 - sleaf_5^{10}(l)} \\ \cdot (112 - 4152sleaf_5^{10}(l) + 7735sleaf_5^{20}(l)) \end{aligned} \quad (A106)$$

The eighth derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^8}{dl^8} sleaf_5(l) = 675sleaf_5^3(l) \\ \cdot (-448 + 59136sleaf_5^{10}(l) - 264528sleaf_5^{20}(l) + 224315sleaf_5^{30}(l)) \end{aligned} \quad (A107)$$

The ninth derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^9}{dl^9} sleaf_5(l) = 2025sleaf_5^2(l)\sqrt{1 - sleaf_5^{10}(l)} \\ \cdot (-448 + 256256sleaf_5^{10}(l) - 2028048sleaf_5^{20}(l) + 2467465sleaf_5^{30}(l)) \end{aligned} \quad (A108)$$

The tenth derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{10}}{dl^{10}} sleaf_5(l) = -2025sleaf_5(l)(896 - 3078208sleaf_5^{10}(l) \\ + 48973408sleaf_5^{20}(l) - 133716176sleaf_5^{30}(l) + 91296205sleaf_5^{40}(l)) \end{aligned} \quad (A109)$$

The eleventh derivative of the leaf function $sleaf_5(l)$ is obtained as follows:

$$\begin{aligned} \frac{d^{11}}{dl^{11}} sleaf_5(l) = -2025\sqrt{1 - sleaf_5^{10}(l)} \\ \cdot (896 + 11sleaf_5^{10}(l)(-3078208 + 93494688sleaf_5^{10}(l) - 376836496sleaf_5^{20}(l) + 340285855sleaf_5^{30}(l))) \end{aligned} \quad (A110)$$

It continues in the same way below. Using the Taylor expansion, the polynomial is obtained as follows:

$$\begin{aligned} sleaf_5(l) = l - \frac{1}{22}l^{11} + \frac{3}{616}l^{21} - \frac{267}{420112}l^{31} \\ + \frac{136545}{1515764096}l^{41} + O(l^{51}) \end{aligned} \quad (A111)$$

Using the above polynomial, the following equation is obtained:

$$\begin{aligned} \frac{d^2}{dl^2} sleaf_5(l) &= -5l^9 + \frac{45}{22}l^{19} - \frac{4005}{6776}l^{29} \\ &+ \frac{682725}{4621232}l^{39} + O(l^{49}) \end{aligned} \quad (\text{A112})$$

Using Eq. (A111), the following equation is obtained:

$$\begin{aligned} &-5 \cdot (sleaf_5(l))^9 \\ &= -5 \cdot \left(l - \frac{1}{22}l^{11} + \frac{3}{616}l^{21} - \frac{267}{420112}l^{31} + \frac{136545}{1515764096}l^{41} + O(l^{51}) \right)^9 \\ &= -5l^9 + \frac{45}{22}l^{19} - \frac{4005}{6776}l^{29} + \frac{682725}{4621232}l^{39} + O(l^{49}) \end{aligned} \quad (\text{A113})$$

We can find that the leaf function $sleaf_5(l)$ is satisfied with Eq. (1).

Next, the Taylor expansion is applied to the leaf function: $cleaf_5(l)$. The first derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\frac{d}{dl} cleaf_5(l) = -\sqrt{1 - cleaf_5^{10}(l)} \quad (\text{A114})$$

The second derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\frac{d^2}{dl^2} cleaf_5(l) = -5 \cdot cleaf_5^9(l) \quad (\text{A115})$$

The third derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\frac{d^3}{dl^3} cleaf_5(l) = 45 \cdot cleaf_5^{10}(l) \cdot \sqrt{1 - cleaf_5^{10}(l)} \quad (\text{A116})$$

The fourth derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\frac{d^4}{dl^4} cleaf_5(l) = 45 \cdot cleaf_5^7(l) \cdot (-8 + 13 cleaf_5^{10}(l)) \quad (\text{A117})$$

The fifth derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\begin{aligned} &\frac{d^5}{dl^5} cleaf_5(l) \\ &= 45 cleaf_5^6(l) (56 - 221 cleaf_5^{10}(l)) \sqrt{1 - cleaf_5^{10}(l)} \end{aligned} \quad (\text{A118})$$

The sixth derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\begin{aligned} &\frac{d^6}{dl^6} cleaf_5(l) \\ &= -135 cleaf_5^5(l) (112 - 1384 cleaf_5^{10}(l) + 1547 cleaf_5^{20}(l)) \end{aligned} \quad (\text{A119})$$

The seventh derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\begin{aligned} &\frac{d^7}{dl^7} cleaf_5(l) = 675 cleaf_5^4(l) \sqrt{1 - cleaf_5^{10}(l)} \\ &\cdot (112 - 4152 cleaf_5^{10}(l) + 7735 cleaf_5^{20}(l)) \end{aligned} \quad (\text{A120})$$

The eighth derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\begin{aligned} &\frac{d^8}{dl^8} cleaf_5(l) = 675 cleaf_5^3(l) \\ &\cdot (-448 + 59136 cleaf_5^{10}(l) - 264528 cleaf_5^{20}(l) + 224315 cleaf_5^{30}(l)) \end{aligned} \quad (\text{A121})$$

The ninth derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\begin{aligned} &\frac{d^9}{dl^9} cleaf_5(l) = -2025 cleaf_5^2(l) \sqrt{1 - cleaf_5^{10}(l)} \\ &\cdot (-448 + 256256 cleaf_5^{10}(l) - 2028048 cleaf_5^{20}(l) + 2467465 cleaf_5^{30}(l)) \end{aligned} \quad (\text{A122})$$

The tenth derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\begin{aligned} &\frac{d^{10}}{dl^{10}} cleaf_5(l) = -2025 sleaf_5(l) \cdot (896 - 3078208 cleaf_5^{10}(l) \\ &+ 48973408 cleaf_5^{20}(l) - 133716176 cleaf_5^{30}(l) + 91296205 cleaf_5^{40}(l)) \end{aligned} \quad (\text{A123})$$

The eleventh derivative of the leaf function $cleaf_5(l)$ is obtained as follows:

$$\begin{aligned} &\frac{d^{11}}{dl^{11}} cleaf_5(l) = 2025 \sqrt{1 - cleaf_5^{10}(l)} \\ &\cdot (896 + 11 cleaf_5^{10}(l) (-3078208 + 93494688 cleaf_5^{10}(l) - 376836496 cleaf_5^{20}(l) + 340285855 cleaf_5^{30}(l))) \end{aligned} \quad (\text{A124})$$

It continues in the same way below. Using the Taylor expansion, the polynomial is obtained as follows:

$$\begin{aligned} \text{cleaf}_5(l) = & 1 - \frac{5}{2}l^2 + \frac{75}{8}l^4 - \frac{825}{16}l^6 \\ & + \frac{277125}{896}l^8 - \frac{3476125}{1792}l^{10} + O(l^{12}) \end{aligned} \quad (\text{A125})$$

Using the above polynomial, the following equation is obtained:

$$\begin{aligned} \frac{d^2}{dl^2} \text{cleaf}_5(l) = & -5 + \frac{225}{2}l^2 - \frac{12375}{8}l^4 \\ & + \frac{277125}{16}l^6 - \frac{156425625}{896}l^8 + O(l^{10}) \end{aligned} \quad (\text{A126})$$

Using Eq.(A125), the following equation is obtained:

$$\begin{aligned} & -5 \cdot (\text{cleaf}_5(l))^9 \\ = & -5 \cdot \left(1 - \frac{5}{2}l^2 + \frac{75}{8}l^4 - \frac{825}{16}l^6 + \frac{277125}{896}l^8 - \frac{3476125}{1792}l^{10} + O(l^{12}) \right)^9 \\ = & -5 + \frac{225}{2}l^2 - \frac{12375}{8}l^4 + \frac{277125}{16}l^6 - \frac{156425625}{896}l^8 + O(l^{10}) \end{aligned} \quad (\text{A127})$$

We can find that the leaf function $\text{cleaf}_5(l)$ is satisfied with Eq. (1).

Appendix B

We prove that Eq. (67) is satisfied with respect to the arbitrary variable l . The following equation is considered.

$$x^2 + y^2 + 2 \cdot x^2 \cdot y^2 = 1 \quad (\text{B1})$$

By solving the above equation with respect to the variable y , the following equation is obtained:

$$y = \sqrt{\frac{1-x^2}{1+2x^2}} \quad (\text{B2})$$

The above equation is differentiated with respect to the variable x .

$$\frac{dy}{dx} = -\frac{3x}{(1+2x^2)^{\frac{3}{2}} \sqrt{1-x^2}} \quad (\text{B3})$$

By multiplying $\sqrt{1+x^2+x^4}$ in both the numerator and denominator, the following equation is obtained.

$$\begin{aligned} \frac{dy}{dx} = & -\frac{3x\sqrt{1+x^2+x^4}}{(1+2x^2)^{\frac{3}{2}}\sqrt{1-x^2}\sqrt{1+x^2+x^4}} \\ = & -\frac{3x\sqrt{1+x^2+x^4}}{(1+2x^2)^{\frac{3}{2}}\sqrt{1-x^6}} \end{aligned} \quad (\text{B4})$$

Using Eq. (B2), the following equation is obtained.

$$\frac{1}{\sqrt{1-y^6}} = \frac{1}{\sqrt{1-\left(\sqrt{\frac{1-x^2}{1+2x^2}}\right)^6}} = \frac{(1+2x^2)^{\frac{3}{2}}}{3x\sqrt{1+x^2+x^4}} \quad (\text{B5})$$

By Eq.(B4) and Eq.(B5), the ODE is obtained as follows:

$$\frac{dy}{\sqrt{1-y^6}} + \frac{dx}{\sqrt{1-x^6}} = 0 \quad (\text{B6})$$

The following equation is defined.

$$x = \text{cleaf}_3(l) \quad (\text{B7})$$

$$y = \text{sleaf}_3(l) \quad (\text{B8})$$

Eq. (B7) is differentiated with respect to the variable l .

$$\frac{dx}{dl} = -\sqrt{1-\text{cleaf}_3^6(l)} = -\sqrt{1-x^6} \quad (\text{B9})$$

Eq. (B8) is differentiated with respect to the variable l .

$$\frac{dy}{dl} = \sqrt{1-\text{sleaf}_3^6(l)} = \sqrt{1-y^6} \quad (\text{B10})$$

By substituting both Eq. (B9) and Eq. (B10) in Eq. (B6), the following equation is obtained.

$$\begin{aligned} \frac{dy}{\sqrt{1-y^6}} + \frac{dx}{\sqrt{1-x^6}} &= \frac{1}{\sqrt{1-y^6}} \frac{dy}{dl} dl + \frac{1}{\sqrt{1-x^6}} \frac{dx}{dl} dl \quad (B11) \\ &= \frac{\sqrt{1-y^6} \cdot dl}{\sqrt{1-y^6}} - \frac{\sqrt{1-x^6} \cdot dl}{\sqrt{1-x^6}} = 0 \end{aligned}$$

By satisfying Eq.(B6), the Eq.(B7) and Eq.(B8) are satisfied with Eq. (B1).

$$\begin{aligned} x^2 + y^2 + 2 \cdot x^2 \cdot y^2 \\ = (cleaf_3(l))^2 + (sleaf_3(l))^2 + 2 \cdot (cleaf_3(l))^2 \cdot (sleaf_3(l))^2 \\ = 1 \end{aligned} \quad (B12)$$

Appendix C

The Euler's formula is as follows:

$$e^{i\theta} = \cos(\theta) + i \sin(\theta) \quad (C1)$$

Using the Euler's formula, we can obtain the relation between the complex exponential function and the leaf function.

$$\begin{aligned} e^{i n \int_0^l (cleaf_n(t))^{n-1} dt} &= \cos\left(n \int_0^l (cleaf_n(t))^{n-1} dt\right) \\ &+ i \sin\left(n \int_0^l (cleaf_n(t))^{n-1} dt\right) \quad (C2) \\ &= \cos\left(n \int_0^l (cleaf_n(t))^{n-1} dt\right) \\ &\pm i \sqrt{1 - \left\{ \cos\left(n \int_0^l (cleaf_n(t))^{n-1} dt\right) \right\}^2} \end{aligned}$$

Using the Eq. (58), the above equation is as follows:

$$e^{i n \int_0^l (cleaf_n(t))^{n-1} dt} = (cleaf_n(l))^n \pm i \sqrt{1 - (cleaf_n(l))^{2n}} \quad (C3)$$

By taking the \log_e of both sides of the above equation, we can make another equation:

$$\int_0^l (cleaf_n(t))^{n-1} dt = -\frac{i}{n} \log_e \left\{ (cleaf_n(l))^n \pm i \sqrt{1 - (cleaf_n(l))^{2n}} \right\} \quad (C4)$$

In the same way, the relation between the leaf function: $sleaf_n(l)$ and the complex exponential function can be derived:

$$e^{i n \int_0^l (sleaf_n(t))^{n-1} dt} = \pm \sqrt{1 - (sleaf_n(l))^{2n}} + i (sleaf_n(l))^n \quad (C5)$$

By taking the \log_e of both sides of the above equation, we can make another equation:

$$\int_0^l (sleaf_n(t))^{n-1} dt = -\frac{i}{n} \log_e \left\{ \pm \sqrt{1 - (sleaf_n(l))^{2n}} + i (sleaf_n(l))^n \right\} \quad (C6)$$

Appendix D

In the leaf functions $sleaf_n(l)$ and $cleaf_n(l)$ ($n=1,2,3,4,5,100$), the numerical data with respect to variables l is summarized in Table 4-7.

Table 4 Numerical data of leaf function: $sleaf_n(l)$ with respect to variables l

l	$r (=sleaf_n(l))$					
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=100$
0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.1	0.099833	0.099999	0.099999	0.099999	0.100000	0.100000
0.2	0.198669	0.199968	0.199999	0.199999	0.200000	0.200000
0.3	0.295520	0.299757	0.299984	0.299998	0.300000	0.300000
0.4	0.389418	0.398978	0.399883	0.399985	0.399999	0.400000
0.5	0.479425	0.496891	0.499442	0.499891	0.499978	0.500000
0.6	0.564642	0.592307	0.598009	0.599441	0.599836	0.600000
0.7	0.644217	0.683522	0.694183	0.697771	0.699104	0.700000
0.8	0.717356	0.768313	0.785387	0.792669	0.796140	0.800000
0.9	0.783326	0.844009	0.867486	0.879382	0.886246	0.900000
1.0	0.841470	0.907683	0.934767	0.949545	0.958859	0.997779
1.1	0.891207	0.956432	0.980707	0.991987	0.997401	0.913828
1.2	0.932039	0.987748	0.999692	0.997357	0.988736	0.813828
1.3	0.963558	0.999878	0.989089	0.964307	0.936130	0.713828
1.4	0.985449	0.992115	0.950392	0.900534	0.855664	0.613828
1.5	0.997494	0.964914	0.888559	0.817333	0.762260	0.513828
1.6	0.999573	0.919815	0.810063	0.724051	0.664110	0.413828
1.7	0.991664	0.859192	0.720971	0.626352	0.564532	0.313828
1.8	0.973847	0.785891	0.625895	0.527010	0.464607	0.213828
1.9	0.946300	0.702864	0.527828	0.427158	0.364616	0.113828
2.0	0.909297	0.612857	0.428460	0.327182	0.264617	0.013828
2.1	0.863209	0.518203	0.328621	0.227185	0.164617	-0.086172
2.2	0.808496	0.420721	0.228648	0.127185	0.064617	-0.186172
2.3	0.745705	0.321711	0.128650	0.027185	-0.035383	-0.286172
2.4	0.675463	0.222003	0.028650	-0.072814	-0.135383	-0.386172
2.5	0.598472	0.122054	-0.071349	-0.172814	-0.235383	-0.486172
2.6	0.515501	0.022057	-0.171349	-0.272814	-0.335383	-0.586172
2.7	0.427379	-0.077942	-0.271341	-0.3728071	-0.435378	-0.686172
2.8	0.334988	-0.177924	-0.371279	-0.4727492	-0.535336	-0.786172
2.9	0.239249	-0.277776	-0.470980	-0.5724464	-0.635074	-0.886172
3.0	0.141120	-0.377172	-0.569934	-0.6712520	-0.733845	-0.986021
3.1	0.041580	-0.475459	-0.666997	-0.7674226	-0.829207	-0.927657
3.2	-0.058374	-0.571553	-0.759974	-0.8570272	-0.914706	-0.827657

Table 5 Numerical data of leaf function: $sleaf_n(l)$ with respect to variables l

l	$r (=sleaf_n(l))$					
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=100$
3.3	-0.157745	-0.663869	-0.845202	-0.932725	-0.977301	-0.727657
3.4	-0.255541	-0.750293	-0.917385	-0.983827	-0.999976	-0.627657
3.5	-0.350783	-0.828242	-0.970094	-0.999829	-0.974439	-0.527657
3.6	-0.442520	-0.894823	-0.997235	-0.976779	-0.909941	-0.427657
3.7	-0.529836	-0.947099	-0.995142	-0.920265	-0.823533	-0.327657
3.8	-0.611857	-0.982443	-0.964109	-0.841275	-0.727831	-0.227657
3.9	-0.687766	-0.998905	-0.908268	-0.750021	-0.628956	-0.127657
4	-0.756802	-0.995532	-0.833879	-0.653152	-0.529193	-0.027657
4.1	-0.818277	-0.972521	-0.747279	-0.554095	-0.42923	0.072343
4.2	-0.871575	-0.931190	-0.653544	-0.454324	-0.329234	0.172343
4.3	-0.916165	-0.873757	-0.556112	-0.354365	-0.229234	0.272343
4.4	-0.951602	-0.802997	-0.457002	-0.254370	-0.129234	0.372343
4.5	-0.977530	-0.721869	-0.357248	-0.154370	-0.029234	0.472343
4.6	-0.993691	-0.633184	-0.257295	-0.054370	0.070766	0.572343
4.7	-0.999923	-0.539380	-0.157301	0.045629	0.170766	0.672343
4.8	-0.996164	-0.442392	-0.057301	0.145629	0.270766	0.772343
4.9	-0.982452	-0.343633	0.042698	0.245629	0.370765	0.872343
5	-0.958924	-0.244028	0.142698	0.345625	0.470754	0.972334
5.1	-0.925814	-0.144108	0.242695	0.445591	0.570671	0.941486
5.2	-0.883454	-0.044115	0.342659	0.545391	0.670205	0.841486
5.3	-0.832267	0.055884	0.442460	0.644550	0.768194	0.741486
5.4	-0.772764	0.155875	0.541710	0.741710	0.861104	0.641486
5.5	-0.705540	0.255775	0.639485	0.833665	0.940351	0.541486
5.6	-0.631266	0.355314	0.733936	0.914090	0.990663	0.441486
5.7	-0.550685	0.453922	0.821856	0.973033	0.996323	0.341486
5.8	-0.464602	0.550618	0.898403	0.999355	0.955193	0.241486
5.9	-0.373876	0.643931	0.957365	0.986746	0.881066	0.141486
6	-0.279415	0.731861	0.992353	0.938343	0.790303	0.041486
6.1	-0.182162	0.811921	0.998793	0.864333	0.693038	-0.0585140
6.2	-0.083089	0.881266	0.975775	0.775596	0.593705	-0.158514
6.3	0.016813	0.936940	0.926454	0.679800	0.493832	-0.258514

Table 6 Numerical data of leaf function: $cleaf_n(l)$ with respect to variables l

l	$r (=cleaf_n(l))$					
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=100$
0.0	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
0.1	0.995004	0.990049	0.985184	0.980451	0.975888	0.906914
0.2	0.980066	0.960781	0.942809	0.926595	0.912333	0.806914
0.3	0.955336	0.913842	0.878183	0.849205	0.826374	0.706914
0.4	0.921060	0.851676	0.797825	0.758746	0.730839	0.606914
0.5	0.877582	0.777159	0.707632	0.662211	0.632015	0.506914
0.6	0.825335	0.693234	0.611978	0.563274	0.532264	0.406914
0.7	0.764842	0.602609	0.513646	0.463537	0.432304	0.306914
0.8	0.696706	0.507563	0.414175	0.363586	0.332308	0.206914
0.9	0.621609	0.409858	0.314303	0.263592	0.232308	0.106914
1.0	0.540302	0.310737	0.214323	0.163592	0.132308	0.006914
1.1	0.453596	0.210986	0.114325	0.063592	0.032308	-0.093086
1.2	0.362357	0.111027	0.014325	-0.036407	-0.067692	-0.193086
1.3	0.267498	0.011028	-0.085674	-0.136407	-0.167692	-0.293086
1.4	0.169967	-0.088970	-0.185674	-0.236407	-0.267692	-0.393086
1.5	0.070737	-0.188947	-0.285663	-0.336404	-0.367691	-0.493086
1.6	-0.029199	-0.288769	-0.385584	-0.436375	-0.467681	-0.593086
1.7	-0.128844	-0.388082	-0.485219	-0.536203	-0.567602	-0.693086
1.8	-0.227202	-0.486189	-0.583992	-0.635458	-0.667158	-0.793086
1.9	-0.323289	-0.581954	-0.680635	-0.732900	-0.765230	-0.893086
2.0	-0.416146	-0.673733	-0.772765	-0.825544	-0.858391	-0.992488
2.1	-0.504846	-0.759356	-0.856486	-0.907398	-0.938254	-0.920743
2.2	-0.588501	-0.836197	-0.926286	-0.968806	-0.989722	-0.820743
2.3	-0.666276	-0.901342	-0.975673	-0.998524	-0.996884	-0.720743
2.4	-0.737393	-0.951871	-0.998769	-0.989524	-0.957042	-0.620743
2.5	-0.801143	-0.985211	-0.992412	-0.944057	-0.883663	-0.520743
2.6	-0.856888	-0.999513	-0.957498	-0.871923	-0.793224	-0.420743
2.7	-0.904072	-0.993943	-0.898594	-0.784163	-0.696072	-0.320743
2.8	-0.942222	-0.968828	-0.822087	-0.688798	-0.596770	-0.220743
2.9	-0.970958	-0.925599	-0.734190	-0.590291	-0.496905	-0.120743
3.0	-0.989992	-0.866554	-0.639752	-0.490685	-0.396924	-0.020743
3.1	-0.999135	-0.794505	-0.541984	-0.390765	-0.296926	0.079257
3.2	-0.998294	-0.712411	-0.442737	-0.290776	-0.196926	0.179257

Table 7 Numerical data of leaf function: $cleaf_n(l)$ with respect to variables l

l	$r (=cleaf_n(l))$					
	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=100$
3.3	-0.987479	-0.623050	-0.342936	-0.190777	-0.096926	0.279257
3.4	-0.966798	-0.528809	-0.242972	-0.090777	0.003074	0.379257
3.5	-0.936456	-0.431567	-0.142975	0.009222	0.103074	0.479257
3.6	-0.896758	-0.332676	-0.042975	0.109222	0.203074	0.579257
3.7	-0.848100	-0.233017	0.057024	0.209222	0.303074	0.679257
3.8	-0.790967	-0.133082	0.157023	0.309220	0.403072	0.779257
3.9	-0.725932	-0.033086	0.257018	0.409204	0.503051	0.879257
4	-0.653643	0.066913	0.356971	0.509094	0.602900	0.979220
4.1	-0.574823	0.166900	0.456726	0.608581	0.702134	0.934572
4.2	-0.490260	0.266778	0.555838	0.706716	0.799050	0.834572
4.3	-0.400799	0.366249	0.653277	0.801108	0.888812	0.734572
4.4	-0.307332	0.464703	0.747027	0.886703	0.960643	0.634572
4.5	-0.210795	0.561107	0.833653	0.954795	0.997871	0.534572
4.6	-0.112152	0.653934	0.908084	0.994128	0.987709	0.434572
4.7	-0.012388	0.741126	0.963986	0.995855	0.933980	0.334572
4.8	0.087498	0.820148	0.995094	0.959545	0.852927	0.234572
4.9	0.186512	0.888129	0.997271	0.893507	0.759288	0.134572
5	0.283662	0.942122	0.970207	0.809040	0.661061	0.034572
5.1	0.377977	0.979443	0.917561	0.715167	0.561463	-0.065428
5.2	0.468516	0.998055	0.845423	0.617234	0.461534	-0.165428
5.3	0.554374	0.996881	0.760223	0.517813	0.361542	-0.265428
5.4	0.634692	0.975990	0.667261	0.417941	0.261543	-0.365428
5.5	0.708669	0.936585	0.570206	0.317961	0.161543	-0.465428
5.6	0.775565	0.880799	0.471256	0.217962	0.061543	-0.565428
5.7	0.834712	0.811364	0.371556	0.117962	-0.038457	-0.665428
5.8	0.885519	0.731235	0.271618	0.017962	-0.138457	-0.765428
5.9	0.927478	0.643256	0.171626	-0.082037	-0.238457	-0.865428
6	0.960170	0.549912	0.071626	-0.182037	-0.338457	-0.965426
6.1	0.983268	0.453197	-0.028373	-0.282036	-0.438452	-0.948401
6.2	0.996542	0.354579	-0.128373	-0.382027	-0.538407	-0.848401
6.3	0.999858	0.255035	-0.228371	-0.481959	-0.638131	-0.748401

液相合成法によるダイヤモンド様炭素膜の作製

Deposition of diamond-like carbon film by chemical solution process

橋本 雄一*

Yuichi Hashimoto

Summary

Diamond-like carbon (DLC) films were deposited by the chemical solution process using negative bias on three substrates (cobalt, silicon, Indium Tin Oxide (ITO)). In the cobalt and ITO substrates, a solution of methanol at 60 degrees was employed as the electrolyte. In the silicon substrate, the electrolyte consisted of methanol and methanol-ammonia solutions at 60 degrees. From the results of Raman spectra and X-ray photoelectron spectroscopy, it was confirmed that: (I) the film on cobalt substrate was amorphous containing small amounts of diamond component, (II) the film on silicon substrate was composed of DLC structure and nitrogen atoms were doped in the film, (III) the Raman spectrum of film on ITO substrate showed lines at 1130 cm^{-1} , 1300 cm^{-1} , 1460 cm^{-1} , inherent those of polyacetylene component.

キーワード：液相合成、炭素、ダイヤモンドライクカーボン、メタノール

Keywords : solution growth, carbon, diamond-like carbon, methanol

1. はじめに

近年、ダイヤモンドとグラファイトの骨格構造を有するダイヤモンド様炭素膜（DLC : Diamond-Like Carbon）膜は、高硬度・低摩擦係数・高耐摩耗性・高生体親和性・高ガスバリア性などの性質を持つため、工具や PET ボトルの内壁膜、自動車部品のほか、シリコンに替る新しい半導体用基板や電子放出材料として注目されている¹⁾。

従来、DLC 膜の作製には、主に気相法が用いられており、例えば熱フィラメント化学気相蒸着 (CVD) 法、高周波プラズマ CVD 法、マイクロ波プラズマ CVD 法などの低圧気相法が盛んに研究されている^{2~5)}。これらの製膜法では、真空装置や高周波電源、原料として高純度のメタン等の高圧ガスを用いるため高額な設備が必要である。また真空に要する時間や手間、膜を成長

させる基板温度（数百°C）の制御などプロセスが複雑であると共に高コストである。

本研究では、これまで殆ど検討がなされていない新たな DLC 製膜法の試みとして、液相合成法（電気分解法）^{6~8)}により、メタノール (MeOH)、メタノール溶液中にアンモニア (NH₃) を添加した溶媒 (MeOH- NH₃) を用いて DLC 膜の作製実験を行った。アンモニアを添加する目的は、溶媒の導電率を向上させて製膜における印加電圧の低減及び膜への窒素ドーピングを行うためである。本研究は、得られた薄膜の膜物性と構造分析を評価した結果について報告するものである。

2. 実験方法

図 1 に DLC 作製のための装置図を示す。実験に用いた溶媒は、①MeOH 溶液、②アンモニアガスを 3 リッ

* 大同大学 工学部 電気電子工学科

トル/分の流量で 3 分間バブリングした MeOH 溶液 (MeOH-NH₃) の 2 種類である。また、陽極として炭素板を、陰極は Co (コバルト) 基板、Si (シリコン) 基板、ITO (Indium Tin Oxide) 基板の 3 種類を用意した。

Co 基板は、表面をバフ研磨した後、10%水酸化ナトリウム溶液中で洗浄したものを用いた。Si 基板は、5% フッ酸水溶液中に 10 分間浸漬し、酸化膜を除去したものを用いた。ITO 基板は、エタノール溶液中で 30 分間超音波洗浄し、ウォーターマークが残らないよう、ドライヤーで乾燥させた。

その後、上記各電極を溶媒中に電極間距離 2mm で固定し、溶媒温度 60°C、電流密度 0.29~4 mA/cm²、製膜時間 8 時間で各基板上に薄膜を堆積させた。

得られた薄膜の膜物性 (仕事関数) は接触電違法 (FAC-1, 理研計器) を用いて測定し、表面形状は原子間力顕微鏡 (AFM; SPI-3800, SII ナノテクノロジー) により観察した。また、膜の構造分析をラマン分光法 (NRS-1000, 日本分光) と XPS (ESCA 5400MC, Physical Electronics) により評価した。

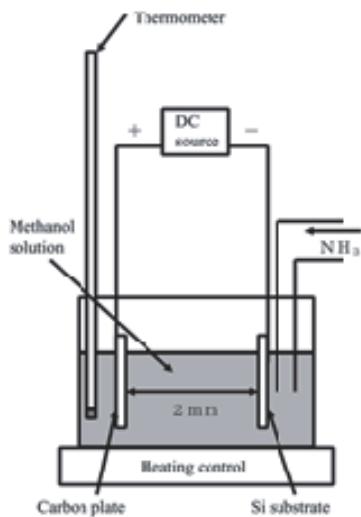


Fig.1. Schematic diagram of deposition system

3. 実験結果および考察

3.1 Co 基板上への DLC 薄膜作製

図 2 は、MeOH 溶媒中で Co 基板上に電流密度 4 mA/cm²、溶媒温度 60°C で 8 時間製膜した薄膜のラマンスペクトルである。蛍光成分に伴う信号が多く含まれるが、1600 cm⁻¹ 近傍に非晶質炭素に由来するブロードなピークと 1400 cm⁻¹ 近傍にダイヤモンド構造に由来するブロードなピークが観測された。得られたスペクトルは、Novikov 等⁸⁾が Co 基板上に液体アンモニアとアセチレンガスを用いて作製した膜を評価したラマンスペクトルに非常に類似しており、MeOH 溶媒を用いた

作製法においても DLC 膜の作製が可能であることを示唆している。

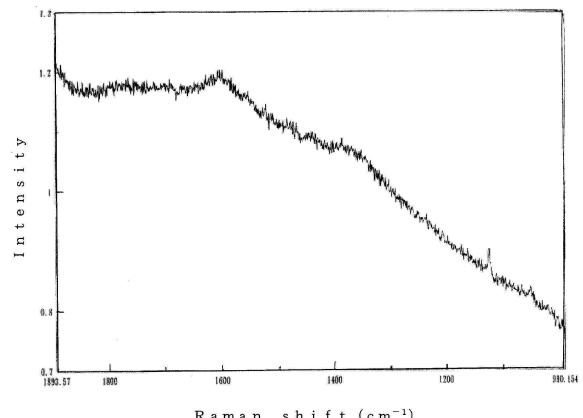
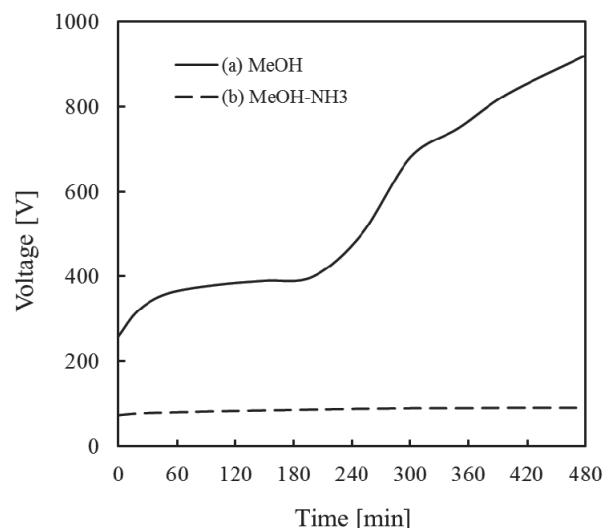


Fig.2. Raman spectrum of film on Co substrate

3.2 Si 基板上への DLC 薄膜作製

図 3 は、MeOH 溶液及び MeOH-NH₃ 溶媒で炭素板と n-Si 基板間に 4 mA/cm² の定電流を流し、薄膜を作製した際の時間-電圧特性である。NH₃を添加した場合、MeOH 溶液単独に比べて、一定電流を流す場合に必要な印加電圧値は、製膜開始直後で約 200 V、8 時間後で 800 V 低下した。NH₃は、MeOH 溶液中で NH₄⁺や NH₂⁻等のイオンになりやすいため、溶媒の導電性が向上するものと考えられる。

MeOH 溶媒中で製膜した薄膜の膜厚と体積抵抗率は、それぞれ約 2μm と約 10¹⁴ Ωcm であった。一方、MeOH- NH₃ 溶媒中で作製した薄膜の膜厚と抵抗率は、それぞれ約 800nm、約 10⁸ Ωcm と異なった値を示した。



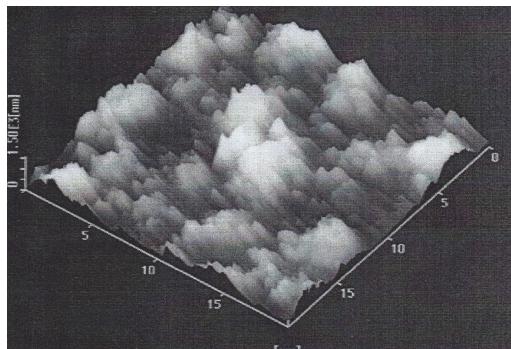

Fig.3. Voltage-time characteristic of films deposited for 8 h at 4 mA/cm² in (a) methanol and (b) methanol-ammonia solutions

Table 1. Work function values of DLC films

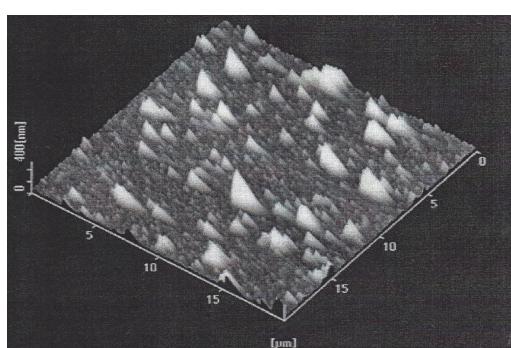

	Work function [eV]	
Solution	MeOH	MeOH-NH ₃
DLC film	5.02	4.68

表1は、製膜後の薄膜の仕事関数値の結果である。MeOH-NH₃ 溶媒中で作製した薄膜の仕事関数値は、MeOH 溶媒中で作製した膜に比べて、約 0.4eV 低下した。一般に、窒素原子が混入している膜は n 型半導体特性を示すという報告^{4,5)}があることから、抵抗値及び仕事関数値が低下した原因として、窒素原子が薄膜中に混入しているものと推測される。

図4は、異なる溶媒中で作製した薄膜のAFM像である。MeOH 溶媒中で作製した薄膜の平均面粗さ (Rz) は約 780 nm で、最大約 1μm の凹凸が認められた(図4(a))。一方、MeOH-NH₃ 溶媒中で作製した薄膜の平均面粗さ (Rz) は約 300 nm であり、MeOH 溶媒の膜に比べて凹凸は小さくなっている(図4(b))。NH₃を添加した系では、図3のように未添加の場合に比べて、溶媒の導電性が約 3~5 倍向上するため、膜成長時における基板への電界強度が小さくなることが予想される。従って、上記の膜形状の違いは、Si 基板表面上で成長する炭素化合物の運動エネルギーの大きさが膜成長に影響を及ぼしていることが一因であると考えられる。

(a) Methanol solution



(b) Methanol-ammonia solution

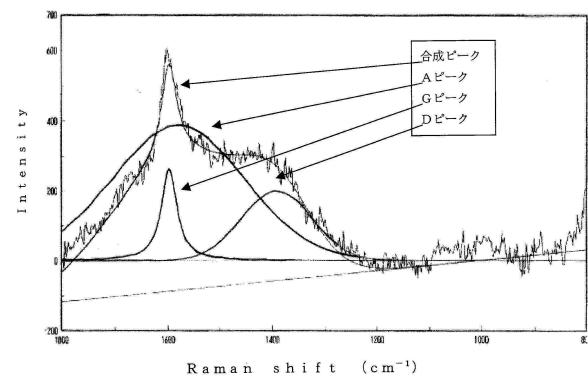

Fig.4. AFM images of films deposited in (a) methanol and (b) methanol-ammonia solutions

図5に、異なる溶媒中で作製した薄膜のラマンスペクトルを示す。2つの薄膜共に、1400 cm⁻¹ 近傍にダイヤモンド構造に起因する D ピーク、1580 cm⁻¹ 近傍に非晶質炭素構造に起因するプロードな A ピーク、1600 cm⁻¹ 近傍に結晶性の高いグラファイト構造に起因するシャープな G ピークが観測された^{4,7,9,10)}。これらのピークの発現は、MeOH 及び MeOH-NH₃ 溶媒中で作製した薄膜が DLC 構造を有した膜であることを示唆している。次に 3 つのピークを分離し、各ピークの面積比を解析した結果、MeOH 溶媒ではダイヤモンド構造と非晶質炭素構造が約 1:1 の膜が、MeOH-NH₃ 溶媒では殆どが非晶質炭素構造で形成されている膜であることが明らかとなった。

表2は、これらの薄膜のXPS元素分析の結果である。MeOH-NH₃ 溶媒中で作製した薄膜は、MeOH 溶媒の薄膜に比べて、窒素の含有量が約 5 倍増加しており、前述した体積抵抗率及び仕事関数値の低下を裏付ける結果となった。

(a) Methanol solution

(b) Methanol-ammonia solution

Fig.5. Raman spectra of films deposited for 8 h at 4 mA/cm² in (a) methanol and (b) methanol-ammonia solutions

Table 2. Atomic concentrations of films deposited for 8 h at 4 mA/cm² in (a) methanol and (b) methanol-ammonia solutions

elements	solutions	C	N	O	others
atom%	MeOH	27	2	55	16
	MeOH-NH ₃	34	11	40	15

3.3 ITO 基板上への DLC 薄膜作製

実験には、ガラス基板上にスパッタ法により膜厚約 100 nm の ITO 膜を設けた基板を用いた。また、液相合成中の膜形成に及ぼす基板表面の影響を調べるために、ITO 膜に-50 V の電圧を印加しながら、オゾナイザーで 1 分間オゾン処理を施した基板も併せて用意した。図 6 は、60°C の MeOH 溶媒中において、定電流 0.29 mA/cm²、製膜時間 60 分の条件下で ITO 基板上に作製した薄膜のラマンスペクトルである。製膜中、印加電圧値は、約 100 V の一定値を示し、電圧の時間変動は認められなかった。

図 6 より、未処理 ITO では、1130 cm⁻¹, 1180 cm⁻¹, 1220 cm⁻¹, 1300 cm⁻¹, 1330 cm⁻¹, 1460 cm⁻¹, 1580 cm⁻¹ など多数のピークが観測された。1130 cm⁻¹, 1300 cm⁻¹, 1460 cm⁻¹ のピークは、ポリアセチレン (PA) 由来のピーク¹¹⁾に類似しており、PA と DLC (1330 cm⁻¹, 1580 cm⁻¹) が混在する膜であるものと推測される。一方、オゾン (O₃) 処理 ITO は、1400 cm⁻¹ 近傍にダイヤモンド構造に由来するブロードなピークと 1580 cm⁻¹ 近傍に非晶質炭素に由来するブロードなピークが観測され、典型的な DLC 構造を有した膜であると考えられる。

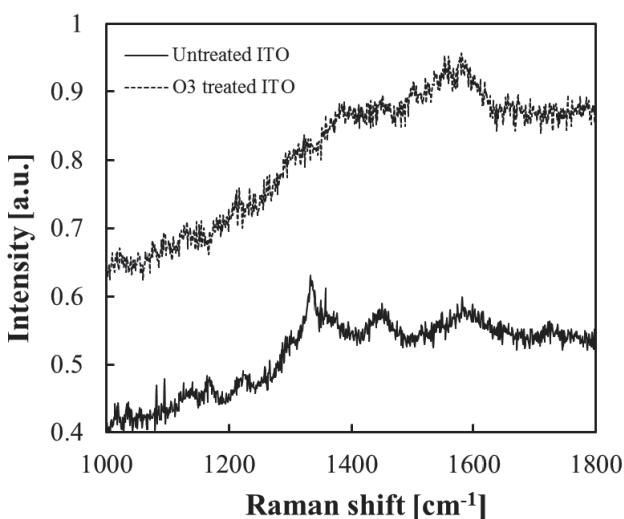


Fig.6. Raman spectra of films deposited on ITO substrates for 1 h at 0.29 mA/cm² in methanol

一般に、ITO 表面に対して酸素プラズマや UV オゾンを用いて処理を施した場合、酸素イオンやオゾンにより ITO 表面近傍の炭化水素系残留物質が除去され、清浄な表面が得られる。また同時に、ITO 表面の酸素原子や水酸基の配位状態が変化し^{12, 13)}、ITO 表面上に形成される膜構造(結晶性)に影響を及ぼす報告がある^{14, 15)}。したがって、オゾン処理の有無により作製した膜の構造が変化した現象は、ITO 表面の電子状態の変化が、その後の液相合成中における膜形成に影響を及ぼしているものと考えられるが、詳細は不明である。

4. まとめ

本研究の電気分解法を用いて作製した膜は、ラマン分光法等の測定結果より、ダイヤモンドライクカーボン特有の構造を有し、膜内へ窒素等の添加物を容易にドープすることが可能であることが明らかとなった。

また、基板材料の種類や表面状態を変えることにより、代表的な導電性ポリマーの一つであるポリアセチレン構造を含む膜の形成が示唆された。

このように、有機溶媒を用いた液相合成法は、様々な性質を有する DLC 膜を創製するための有用な手法であるものと考えられる。

参考文献

- 1) "Diamond: Electronic Properties and Applications", edited by L.S. Pan et al, Kluwer Academic Pub (1995).
- 2) R. Wachter, A. Cordery, S. Proffitt, J.S. Foord: *Diamond Relat. Mater.* **7**, 687 (1998).
- 3) A.V. Karabutov, V.I. Konov, V.G. Ralchenko, E.D. Obraztsova, V.D. Frolov, S.A. Uglov, H.J. Scheibe, V.E. Strelnitskij, V.I. Polyakov: *Diamond Relat. Mater.* **7**, 802 (1998).
- 4) I.H. Shin, T.D. Lee: *J. Vac. Sci. Technol.* **B18**, 1027 (2000).
- 5) J.H. Jung, N.Y. Lee, J. Jang, M.H. Oh, S. Ahn: *J. Vac. Sci. Technol.* **B18**, 933 (2000).
- 6) Y. Namba: *J. Vac. Sci. Technol.* **A10**, 3368 (1992).
- 7) H. Wang, M.R. Shen, Z.Y. Ning, C. Ye, C.B. Cao, H.Y. Dang, H.S. Zhu: *Appl. Phys. Lett.* **69**, 1074 (1996).
- 8) V.P. Novikov, V.P. Dymont: *Appl. Phys. Lett.* **70**, 200 (1997).
- 9) M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, T. Akamatsu: *J. Appl. Phys.* **64**, 6464 (1988).
- 10) A.C. Ferrari, J. Robertson: *Phys. Rev.* **B61**, 14095 (2000).
- 11) J.Y. Kim, E.R. Kim, D. Ihm, M. Tasumi: *Bull. Korean Chem. Soc.* **23**, 1404 (2002).
- 12) T. Ishida, H. Kobayashi, Y. Nakano: *J. Appl. Phys.* **73**, 4344 (1993).

- 13) D.J. Millron, I.G. Hill, C. Shen, A. Kahn, J. Schwartz: *J. Appl. Phys.* **87**, 572 (2000).
- 14) Y. Hashimoto, M. Hamagaki, T. Sakakibara: *Jpn. J. Appl. Phys.* **40**, 4720 (2001).
- 15) Y. Hashimoto, M. Hamagaki: *Electrical Engineering in Japan* **154**, 1 (2006).

RHEED ロッキング曲線による ZnO(0001)表面の極性評価

Polarity Determination of ZnO(0001) Surface by RHEED Rocking Curve

堀尾吉巳* 安部功二** 高桑雄二***

Yoshimi Horio Koji Abe Yuji Takakuwa

Summary

Zinc oxide (ZnO) is a wide bandgap semiconductor and is a hoped material as a transparent conducting film and photo-electronic devices. Since ZnO crystal has wurtzite structure, the polarity of ZnO surface, Zn-polar and O-polar, influences the crystal growth process, surface morphology and electrical properties. Therefore, it is important to determine the polarity of ZnO. We have measured RHEED rocking curves from ZnO(0001) surface and analyzed these results by dynamical calculations. The calculated rocking curves for Zn- and O-polar surfaces are found to be rather different. The calculated rocking curves for Zn-polar surface reproduced the experimental ones relatively well. The result is consistent with the sample specification. It has been found that the determination of surface polarity is possible by RHEED rocking curves.

キーワード：反射高速電子回折、ロッキング曲線、極性表面、酸化亜鉛

Keywords : reflection high-energy electron diffraction (RHEED), rocking curve, polar surface, Zinc oxide (ZnO)

1. はじめに

酸化亜鉛 (ZnO) はワイドギャップ半導体であり、透明導電膜や光-電子素子の材料^{1,2)}として期待されている。ZnO 結晶はウルツァイト構造をとり、最上表面層が Zn 面となるか O 面となるかの極性の違いにより、結晶成長過程や電子的特性に影響を与える。それ故、ZnO の極性を識別することは重要である。これまで ZnO の表面極性を評価するための手法として、収束電子回折 (CBED)、エッティング、同軸型直衝突イオン散乱分光 (CAICISS)、そして X 線光電子分光 (XPS) 等が用いられてきた³⁻⁶⁾。これらの中で、CBED とエッティングは破壊的手法である。また、XPS は非破壊的手法であるが、シンクロトロン放射光を利用する必要がある。CAICISS は極性評価によく用いられる手法であるが、

比較的広い試料表面サイズを必要とする。

これらの手法に比べ、反射高速電子回折(RHEED)⁷⁾は比較的簡便な手法であり、結晶成長中のその場観察も可能である。入射電子の視斜角変化に対する反射回折電子強度の変化、これをロッキング曲線と呼ぶが、本研究では RHEED のロッキング曲線を用いて ZnO(0001)表面の極性識別が可能か検証したので報告する。実験で測定されたロッキング曲線を動力学的回折理論を用いた計算により、表面構造を解析した。このような解析手法はこれまで幾つかの表面構造に対して行っているが⁸⁻¹⁰⁾、今回は同様な計算手法を ZnO(0001)表面構造に対して適用した。実験と計算のロッキング曲線を比較することにより、表面の極性を識別可能であることを見出したので報告する。

* 大同大学工学部電気電子工学科

** 名古屋工業大学大学院工学研究科機能工学専攻

*** 東北大学多元物質科学研究所

2. ZnO(0001)表面の極性について

ZnO 結晶は図 1 に示すウルツァイト構造をとり、 a 、 b 、 c を基本ベクトルとする単位胞で表される。この結晶格子の場合、方向指数と面指数は通常 4 つ整数で示すが、3 つの整数で示す場合もあるため、図には両表記で記述した。また、図には基本逆格子ベクトル a^* 、 b^* 、 c^* も示してある。実験での電子線の入射方位 $[2\bar{1}\bar{1}0]$ (もしくは $[100]$) は a 軸方向であり、図中に示されている。

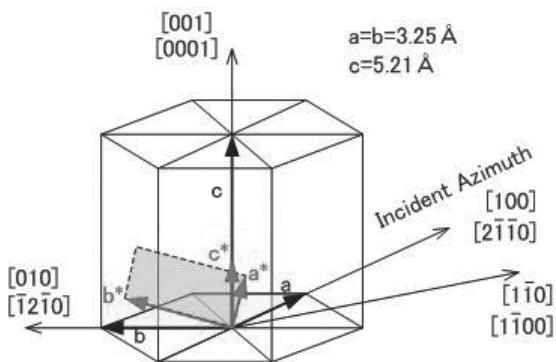


Fig. 1 Wurtzite crystal structure

2種類の構成元素 Zn と O のイオン半径で描いた構造を図 2 に示す。図 2(a)と図 2(b)はそれぞれ Zn 原子面が表面に現れる構造と O 原子面が表面に現れる構造の 2 つの極性表面を示す。いずれの極性表面においても 3 回対称性を有し、 $[2\bar{1}\bar{1}0]$ 入射方位から (0001) 表面を眺めれば、左右方向の原子配列に非対称性が存在することを確認できる。従って、RHEED パターンは左右の回折強度が異なるはずである。しかしながら、実際の表面には必ず原子ステップが多数存在する。このステップ高さは、表面垂直ボンドが切断されて生じるため $c/2$ の整数倍となる。ここで c は表面垂直方向の格子定数である。最も低いステップ高さ $c/2$ 或いはこの奇数倍のステップ高さが存在する場合、高いテラス表面と低いテラス表面の原子配列は互いに反対称の非対称性を有することになる。それぞれのテラス表面の原子配列を A、B と名付ければ、2重分域表面として捉えることができる。多数のステップが存在する実際の表面では A と B の分域が等分の割合で存在することが予想されるため、RHEED パターンの左右両側のそれぞれの相対応する回折斑点の強度は等しくなり、あたかも対称入射のような回折強度を与えることが予想される。

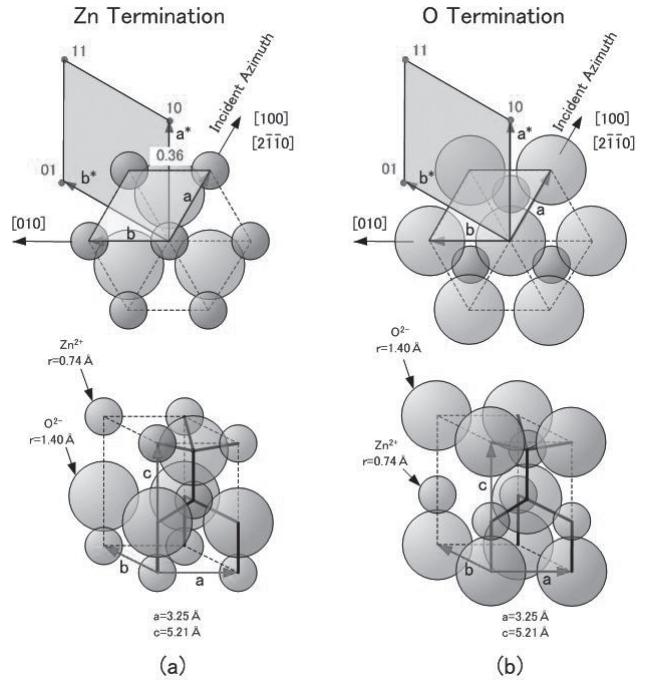


Fig. 2 Polarity of ZnO(0001) surface:
(a) Zn terminated surface, (b) O terminated surface

3. 実験方法

実験は図 3 に示す超高真空 RHEED 装置を用いて行った。装置内の基本真空は 1×10^{-9} Torr である。試料は ZnO(0001) (東京電波株式会社) であり、その仕様書によれば、 $(1\bar{1}00)$ 方位に沿った方向に $0.5 \pm 0.2^\circ$ の微傾斜角を有するものである。ここでは Zn 終端表面を試料表面として用いた。試料は $5 \times 10 \times 0.5$ mm³ のサイズに切り出され、試料ホルダーにセットする際には厚さ 0.05 mm の Ta シートを試料裏面に敷き、Ta シートに通電することにより試料加熱が出来るようにした。Ta シートに流す電流と試料温度との関係は予め CA 熱電対を用いて測定した結果、10A の電流で 650°C の試料温度となり、電流と温度との関係はほぼ比例することがわかった。

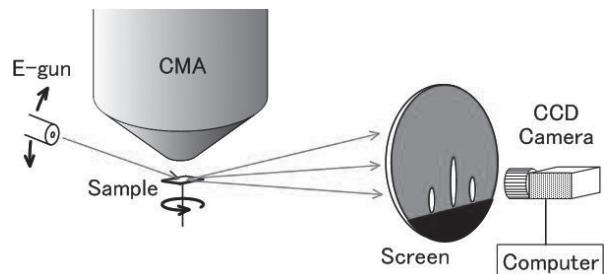


Fig. 3 Schematic diagram of experimental apparatus

超高真空中で Ta シートを通電加熱することにより試料表面の清浄化を試みた。また、試料表面上に吸着している汚染元素は図 3 に示す円筒鏡面型エネルギー分析器 (CMA) を用いたオージェ測定から評価した。

入射電子の加速電圧は 10kV であり、入射方位は $[2\bar{1}\bar{1}0]$ 方位 ($[100]$ 方位) に固定した。入射視斜角は 0° 付近から約 6° まで電子錠を機械的に傾斜させ、螢光スクリーンに映し出される反射回折斑点の強度変化を CCD カメラを用いて検出した。約 0.05° 刻み毎の視斜角変化に対する回折強度変化をパソコンにデータ保存し、ロッキング曲線を計測した。

4. 結果および考察

4.1 試料表面の清浄化処理

試料の清浄化のため、超高真空中で徐々に試料の加熱温度を上げ、その都度、CMA を用いてオージェ測定を行ったが、図 4(a)に示すように 450°C までの加熱で汚染炭素は除去できなかった。しかしながら、図 4(b)に示すように RHEED パターンは比較的明瞭な ZnO(0001)表面を特徴付けるものであり、炭素由来の構造は認められなかった。したがって汚染炭素原子は恐らく表面にランダムに吸着しているものと思われる。清浄化のための更なる高温加熱は逆に試料表面の組成に変化を及ぼす可能性があるため、本研究ではこの程度の清浄度の表面に対して解析を行った。

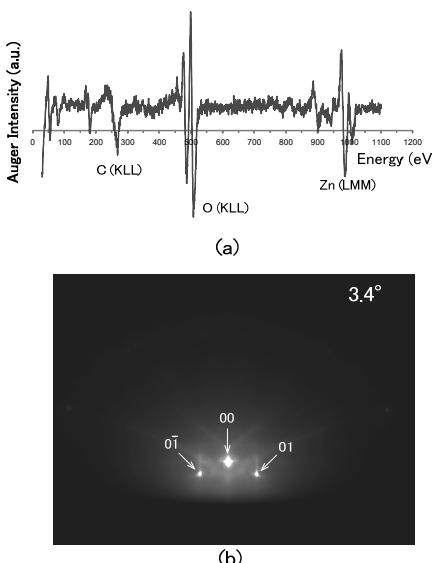


Fig. 4 After heat treatment of 450°C for ZnO(0001): (a) Auger spectrum, (b) RHEED pattern (Arrows indicate three diffraction spots of 00 , 01 and $0\bar{1}$.)

4.2 RHEED パターンの視斜角変化

入射電子の視斜角を変化させたときの ZnO(0001)表面からの RHEED パターンの変化を図 5 に示す。本研究では、 00 , 01 , $0\bar{1}$ の 3 つの反射回折強度のロッキング曲線を測定し、計算との比較を行った。

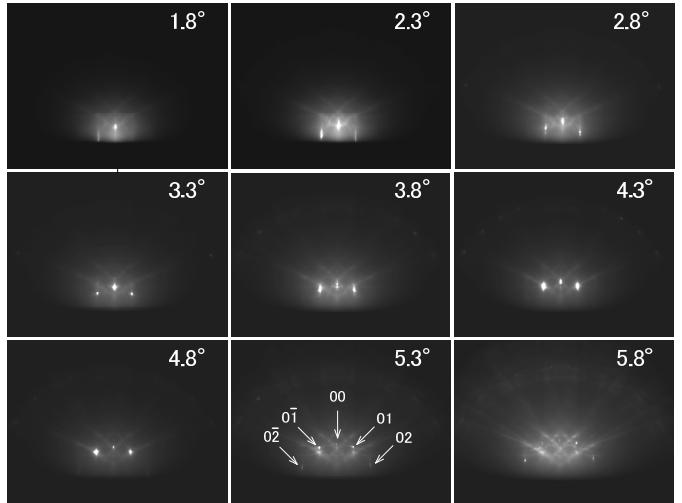


Fig. 5 Change of RHEED pattern of ZnO(0001) surface depending on the glancing angle from 1.8° to 5.8° (Arrows indicate five diffraction spots of 00 , 01 , $0\bar{1}$, 02 and $0\bar{2}$.)

4.3 ロッキング曲線の計算

計算には動力学的回折理論を用いた。ここでは、ZnO(0001)表面から深さ約 100 \AA までを約 0.1 \AA の厚さでスライスし、スライスされた平板内は深さ方向のポテンシャルは一定と見なし、表面平行方向の周期的ポテンシャルを考慮した Schrödinger 方程式を解いて波動関数を求めた。各平板内で求めた波動関数は連続につながるように境界条件を付して最終的に反射波強度を求めた。結晶ポテンシャルは Doyle と Turner によって計算された数表¹¹⁾から求め、またデバイ温度は 510 K とした。計算では 0 次ラウエ帯上の 7 ビーム (00 , 01 , $0\bar{1}$, 02 , $0\bar{2}$, 03 , $0\bar{3}$) を用いた。

計算対象の ZnO(0001)表面は図 2 に示すような Zn および O を終端表面とする 2 種類の極性表面であり、その深さ方向に対する平均ポテンシャル分布を図 6 に示す。ここでは表面緩和は考慮されていない理想表面を扱った。

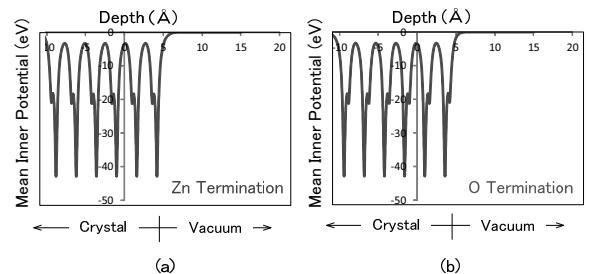


Fig. 6 Potential distribution of ZnO(0001) surface: (a) Zn terminated surface, (b) O terminated surface

それぞれの表面に対するロッキング曲線の計算結果を図 7 の(a)と(b)に示す。これらの図には 7 つの反射回折強度の計算結果が示されているが、回折パターンの左右に現れる相対する回折斑点 $0\bar{1}$ と $0\bar{1}$ 、 $0\bar{2}$ と $0\bar{2}$ そして $0\bar{3}$ と $0\bar{3}$ のロッキング曲線は互いに異なるプロファイルを示すことがわかる。これは非対称入射であるためである。しかしながら、実際の表面は既に述べたように、多数のステップテラスが現れているため、A と B の分域からの強度和で議論する必要がある。そこで、 $0n$ と $0\bar{n}$ (n は 1,2,3) の両回折斑点強度の平均値でロッキング曲線を表示したグラフを図 8 に示す。ただし、回折斑点の指数表示は $0n$ で代表して表記した。

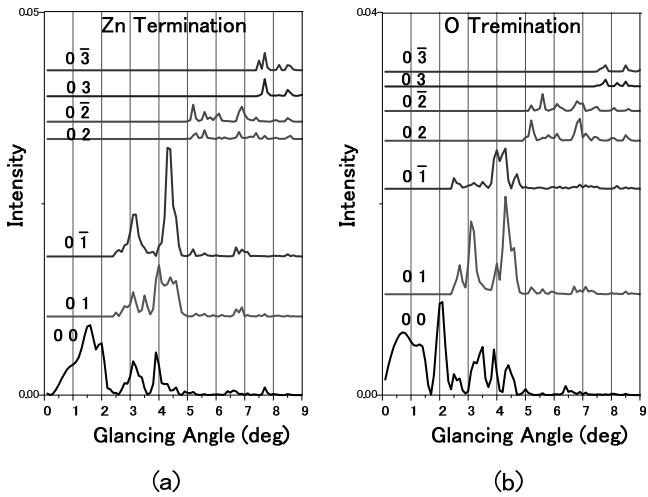


Fig. 7 Rocking curves from ZnO(0001) surface without surface steps:
(a) Zn terminated surface, (b) O terminated surface



Fig. 8 Rocking curves from ZnO(0001) surface with double domains of surface step terraces:
(a) Zn terminated surface, (b) O terminated surface

用いた試料は微傾斜表面である。RHEED パターンのシャドーエッジや菊池線を参考に微傾斜角 α を求めたところ、入射方位に対して $\alpha=0.55^\circ$ であり、ステップダウンの方向に電子線が入射していることがわかった。図 9(a) に示すようにステップによって発生する電子線の影の領域は特に低視射角では無視できないものと考え、電子線の照射面積割合 d/L が入射視射角に対してどのように変化するかを計算したものが図 9(b) である。入射電子の視射角 θ は規則的ステップ端を結ぶ直線(図 9(a)中の一点鎖線)が実験的には $\theta=0^\circ$ であるが、これは ZnO(0001) ジャスト面を基準とすれば既に α だけ高い角度に相当する。そこで、本論文では実験も計算も ZnO(0001) ジャスト面を視射角 $\theta=0^\circ$ の基準として視射角を表示した。従って、図 9(b) では視射角 0.55° から照射面積割合が立ち上がっている。この照射面積割合を計算ロッキング曲線に考慮した結果が図 10 であり、実験結果と比較すべきものである。ここで注目すべき点は 00 反射(鏡面反射)の計算ロッキング曲線は Zn 終端表面か O 終端表面かにより大きく異なることである。このことから RHEED は極性表面の識別に有効であると期待される。

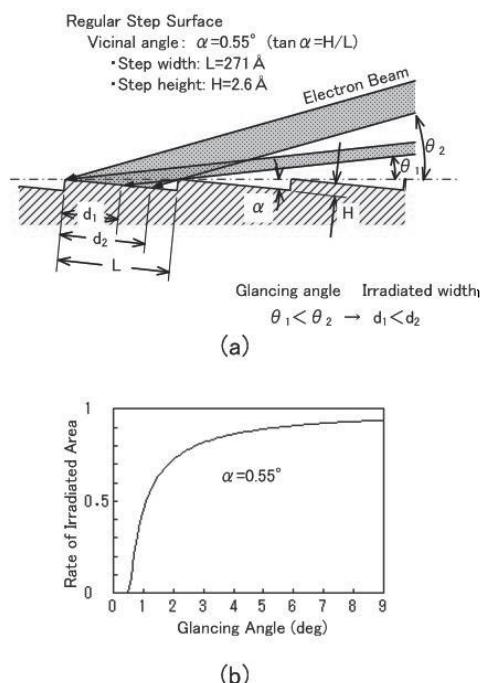


Fig. 9 Beam irradiated area on regular step surface: (a) irradiated and shadow areas by incident beam, (b) rate of irradiated area depending on the glancing angle

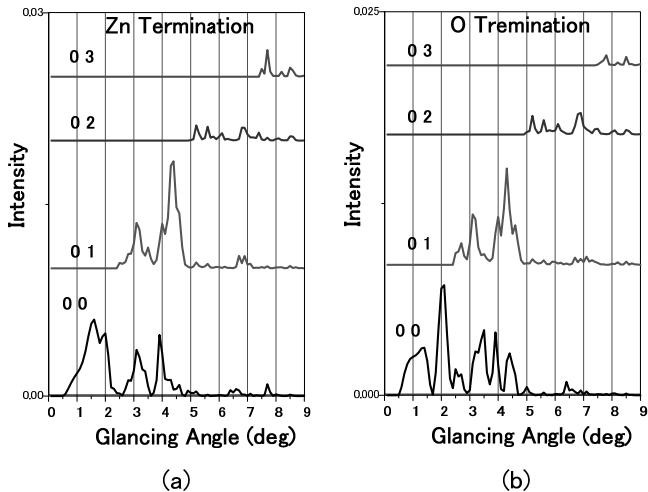


Fig. 10 Rocking curves from ZnO(0001) surface taking into account of the double domains and the rate of irradiated area:

(a) Zn terminated surface, (b) O terminated surface

4.4 実験及び計算ロッキング曲線との比較

図11に実験ロッキング曲線（破線）と計算ロッキング曲線（実線）とを並べて示す。実験ロッキング曲線は(a)のZn終端表面の構造モデルに比較的よい一致を示し、(b)のO終端表面では特に00反射において一致しないことがわかった。すなわち、試料の仕様書と矛盾しない結果が得られた。Zn終端表面の(a)図の中の00反射については3°付近と4°付近に現れるピークはほぼ再現されている。しかしながら1.5°付近のピークについては実験では現れていない。01反射について、計算では01と01の平均された一本のロッキング曲線が01と指数付されて示されているが、実験ではRHEEDパターンの左右に現れる01と01の2本の反射ビームのロッキング曲線が示されている。実験の01と01は互いによく似たプロファイルであることがわかる。本来であれば、非対称入射であるため両者は異なるプロファイルを示すはずであるが、既に述べたように多数のステップの存在により反対称な原子配列を有するAとBの分域テラスが混在していることによるものと考えられる。いずれにせよ計算結果と実験結果はともに視射角4.3°付近の極めて強いピークが現れており、よい一致を示すことがわかる。詳細に微細構造を見れば、十分一致しているとは言い難い点も認められる。その原因として、計算では理想的結晶構造を想定しているが、実際には表面原子のエネルギー安定化に向けた構造緩和が生じているはずである。そのような最適構造をここでは考慮していないためと推察される。また、今回測定した試料表面には炭素原子が残存することもその要因を生んでいる可能性はあるため、表面の清浄

化に向けた処理方法を今後講じる必要がある。

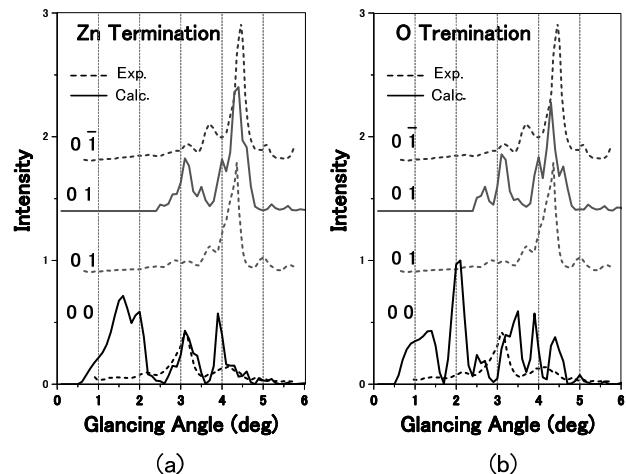


Fig. 11 Comparison between calculated (solid line) and experimental (broken line) rocking curves:

(a) Zn terminated surface, (b) O terminated surface

5. まとめ

本研究の目的である極性表面の識別がRHEED法で可能か否かという点で、可能性を見出したことに意義がある。従来の手法に比べてRHEED法は今や広く普及した手法であり、実験室レベルで比較的容易に実験できる。また、その場観察にも適しているためZnO膜の成長やZnOを基板として用いる研究等に対してその有効性が発揮できる。現在、試料表面の清浄化対策として、酸素導入系を準備している。酸素雰囲気内で高温加熱することにより、表面の汚染炭素は炭素酸化物として脱離し、また表面に生じる酸素欠陥に対しては、酸素補給の役割も果たすことが期待されるためである。また、エネルギー的に安定な構造緩和を計算から求め、その構造パラメータを指針に表面構造解析を今後行う予定である。

謝辞

本研究の一部は物質・デバイス領域共同研究拠点における支援ならびにJSPS科研費25390085の助成を受けたものであり、感謝の意を表す。

参考文献

- 1) T. Minami, J. Vac. Sci. Technol. A **17**, 1765 (1999).
- 2) M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K.

Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, Appl. Phys. Lett. **93**, 123309 (2008).

3) S. Hong, T. Hanada, H. Ko, Y. Chen, T. Yao, D. Imai, K. Araki, M. Shinohara, K. Saitoh, and M. Terauchi, Phys. Rev. B **65**, 115331 (2002).

4) H. Tampo, P. Fons, A. Yamada, K. Kim, H. Shibata, K. Matsubara, S. Niki, H. Yoshikawa, and H. Kanie, Appl. Phys. Lett. **87**, 141904 (2005).

5) S.K. Hong, Y. Chen, H.J. Ko, and T. Yao, phys. stat. sol. (b) **229**, 803 (2002).

6) J. Williams, H. Yoshikawa, S. Ueda, Y. Yamashita, K. Kobayashi, Y. Adachi, H. Haneda, T. Ohgaki, H. Miyazaki, T. Ishigaki, and N. Ohashi, Appl. Phys. Lett. **100**, 051902 (2012).

7) A. Ichimiya and P. I. Cohen: *Reflection High Energy Electron Diffraction*, Cambridge, UK, 2004.

8) Y. Horio, Jpn. J. Appl. Phys. **37**, L164 (1998).

9) Y. Horio and D. Sakai, Jpn. J. Appl. Phys. **48**, 066501 (2009).

10) Y. Horio, Y. Takakuwa and S. Ogawa, Sur. Interface Anal. **46**, 1165 (2014).

11) P. A. Doyle and P. S. Turner, Acta Crystallogr. A **24**, 390 (1968).

油汚染地盤に対する汎用的な非掘削浄化技術開発に関する室内土槽実験

Laboratory soil tank experiments for the development of generic in-situ purification on oil polluted ground without excavation

棚橋秀行*

Hideyuki Tanahashi*

Summary

In this study, laboratory experiments were conducted to develop a generic purification method without excavation for the ground polluted by sticky and low volatile machine oil. From the result of the small and large soil tank experiments, results were obtained as below.

- 1) A Seepage /sparkle/emulsification method was used. CO₂ gas is generated in a chemical reaction of acetic acid and bicarbonate. The mechanical mixing accelerates emulsification of oil. This method was very effective for small soil tank, but not suitable for large soil tank.
- 2) Another method with using a thickener was thought to control the flow of surfactants. From the result of the experiments, this method was very effective for small and large soil tank both.
- 3) An intermittent injection method was thought to purify the polluted soil with underground facility. This method was very effective in homogeneous /heterogeneous and small/large soil tank experiments.

キーワード：地盤汚染、機械油、非掘削浄化、室内実験

Keywords : Ground pollution, Machine oil, Purification without excavation, Laboratory experiments

1. はじめに

近年、地盤環境の分野で注目されているのは、トンネル工事などで発生する建設発生土に含まれる自然由来の重金属¹⁾²⁾³⁾と東日本大震災の災害廃棄物の処理⁴⁾⁵⁾⁶⁾である。ともにその規模が大きく、喫緊の課題でもあるため産官学を通じて多くの研究がおこなわれている。一方で工場などからの油による地盤汚染は從来からの地盤環境問題である。油のなかでも、有機塩素化合物のように粘性が小さく揮発性に富む油に関する浄化の研究⁷⁾⁸⁾は進んでいるが、機械油などの高粘性で揮発しにくい油に対してはあまり進んでいない。燃料油汚染現場におけるベンゼンに対する微生物分解の成功事例は多く報告されている⁹⁾。機械油を分解する微生物も製品として市販されてはいるが、地盤内での接触の困難さなどから非掘削浄化の成功事例はほとんど報告されていない。

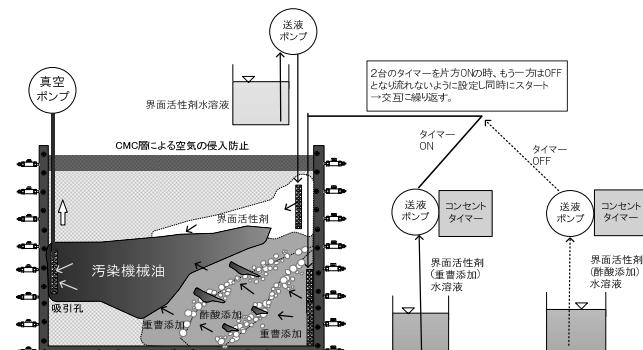


図-1 実験 2-1 の装置概略図

大同大学棚橋研究室では、油汚染地盤の非掘削浄化を目的に、界面活性剤を用いて機械油を乳化し回収する技術 (SEAR: Surfactant-Enhanced Aquifer Remediation)について継続的に研究を行っている。2013年には酢酸と重曹を添加した界面活性剤の切り替交互圧入による間隙内二液発泡法を用いた実験を行な

*工学部建築学科 土木・環境専攻

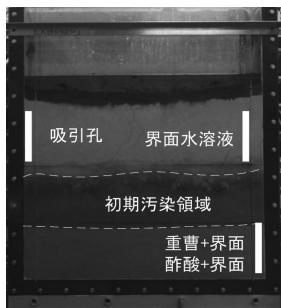


写真-1 実験 2-1
初期状態

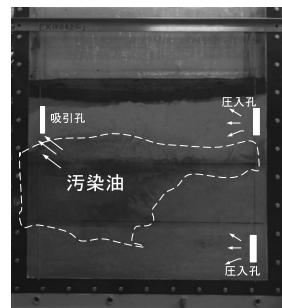


写真-2 4 時間後
(0.4PV)

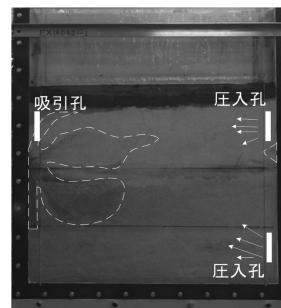


写真-3 8 時間後
(0.8PV)

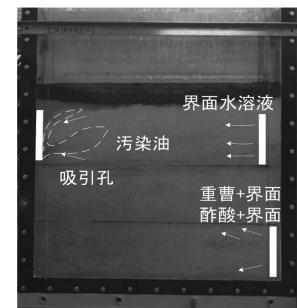


写真-4 12 時間後
(1.2PV)

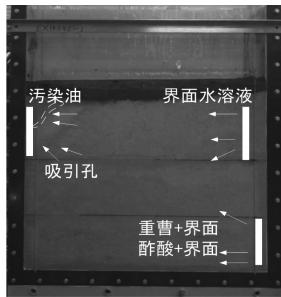


写真-5 18 時間後
(1.8PV)

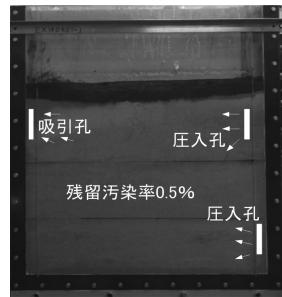
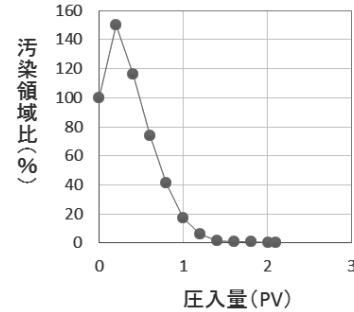
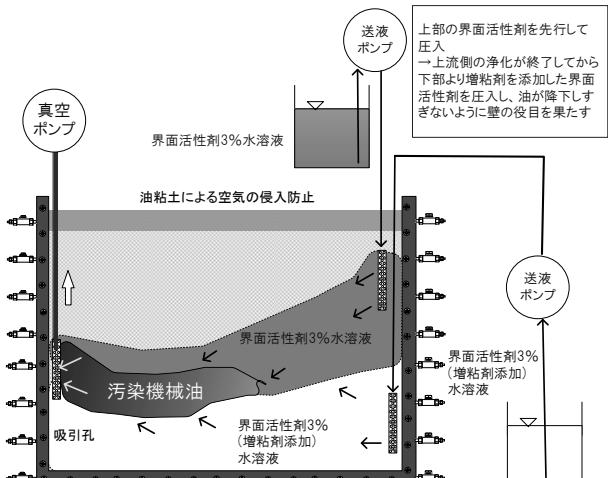



写真-6 21 時間 10 分後
停止 (2.1PV)

いその結果を報告¹⁰⁾した。室内土槽実験とは異なり、実際には汚染現場ごとに異なる条件が想定される。

そこで本研究では、多くの条件下でも適応できる「汎用性」を持った技術の開発、という観点から室内土槽を用いた模擬油汚染地盤の浄化実験を行った。


2. 小型 2 次元土槽を用いた実験

2.1 小型 2 次元土槽を用いた実験 2-1

(切り替え交互圧入による間隙内二液発泡法)

2.1.1 実験の目的と方法

先述のように 2013 年度の研究において、重曹添加界面活性剤と酢酸添加界面活性剤を模擬油汚染盤に交互に圧入して発泡させる実験で効率の良い浄化を行うことができた。本節の実験 2-1 は、昨年とほぼ同条件で行うことでその性能を確認するために実施した。浄化にはこれまで用いてきた HLB10.5 の界面活性剤を用いた。HLB 値は 0 から 20 までの値を取り、0 に近いほど親油性が高く 20 に近いほど親水性が高くなる界面活性剤の物性指標である¹¹⁾。実験の際、撮影画像から画像処理(2 値化)を用いた方法で、土槽透明アクリル板観察面における油の残留領域の時間的变化を、初期汚染領域を 100%とした汚染領域比(%)として定量化した。図-1 は実験装置の概略図である。小型 2 次元土槽(内寸幅 62.0 cm × 高さ 72.0 cm × 奥行き 5.0 cm)に下から豊浦砂を高さ 15 cm、質量比 10% の汚染油を混ぜた豊浦砂を高さ 15 cm、覆土として豊浦砂を高さ 20 cm の

順で水締め充填した。充填密度は全層共通で、乾燥密度は $\rho d = 1.55 \text{ g/cm}^3$ である。汚染油は灯油 1 : エンジンオイル 10 の比率で混合しスタン IV にて赤く着色したものである。

地表面には、CMC (カルボキシメチルセルロース) の粉末を水で溶いたものにより被覆を施し吸引回収の際の空気の進入を防いだ。図-1 の土槽内の右の圧入ノズルを用い、上からは HLB10.5 の界面活性剤 3% 水溶液 10 L、下からは同界面活性剤 3% に重曹を 8% 添加した水溶液 5 L と、同界面活性剤 3% に酢酸を 5% 添加した水溶液 5 L をともに 6 mL/min の速度でタイマーにより 30 分毎交互に圧入していく。この 3 つの水溶液の

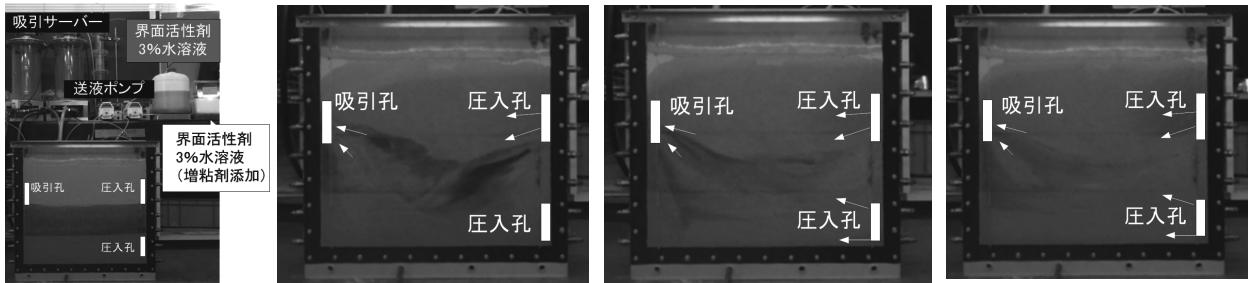


写真-7 実験 2-2 初期状態

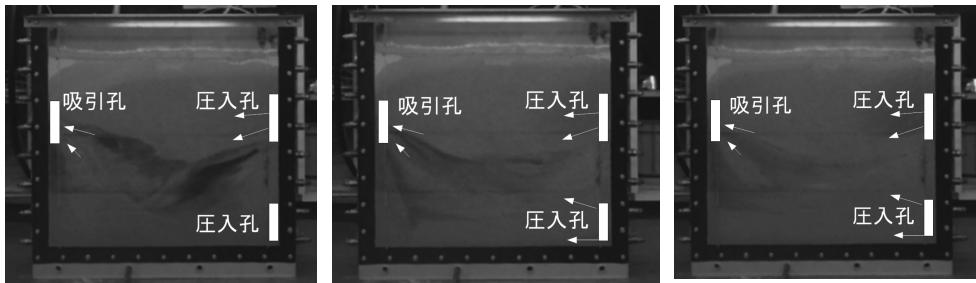


写真-8 5時間後 (0.64PV)

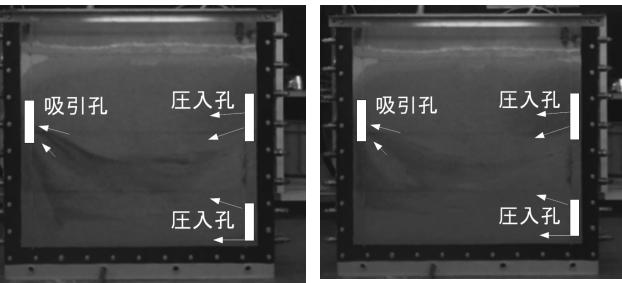


写真-9 10時間後 (1.28PV)

写真-10 15時間後 (1.91PV)

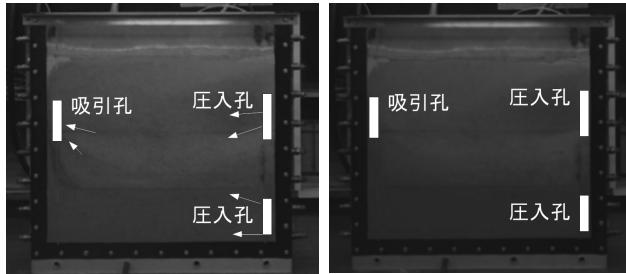


写真-11 20時間後 (2.55PV)

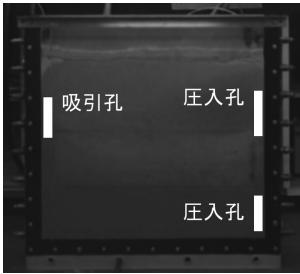


写真-12 終了時 (3.0PV)

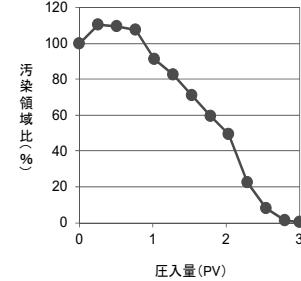


図-4 実験 2-2 の浄化の進行

合計 20 L は 3 PV (Pore volume) に相当する。同時に図左側のように吸引孔を通じて真空ポンプで汚染油を吸い上げ真空サーバーの中へと回収する。

2.1.2 実験経過

写真-1 は実験開始時の初期状態である。写真-2～写真-4 のように発泡によって右下から順調に汚染油が押し上げられ乳化し、これが上方のノズルからの界面活性剤水溶液によってすすぐれて左へ移動し、吸引孔から回収されていくことが分かる。写真-6 は 21 時間 10 分が経過した状態の写真である。この時点では視認できる汚染油が殆ど除去されたので実験を停止した。この実験の浄化の進行を図-2 に示す。写真-1 の初期汚染領域が汚染領域比 100% である。界面活性剤水溶液総計 3 PV を圧入する予定であったが、1.5 PV でほぼ浄化が完了した。

2.2 小型 2 次元土槽を用いた実験 2-2

(下部より増粘剤添加液圧入)

2.2.1 実験の目的と方法

これまでの小型 2 次元土槽を用いた実験では汚染機械油が土槽底面に残留し、吸引回収が難しくなる状況がよく見られた。そこで本節の実験 2-2 では図-3 のように先に上の洗浄液を流し汚染領域まで浸透させてある程度まで浄化した後、増粘剤として以前被覆に用いた CMC を添加し粘性を高めた界面活性剤水溶液を下から圧入することで、汚染油が下方へ降下しないようになり残留なく浄化が進むのではないかと考えた。実験装置および汚染地盤の作成に関しては実験 2-1 と同じである。上からは界面活性剤 3% 水溶液を 13.3 L、

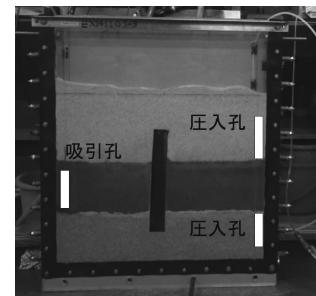


写真-13 実験 2-3 初期状態

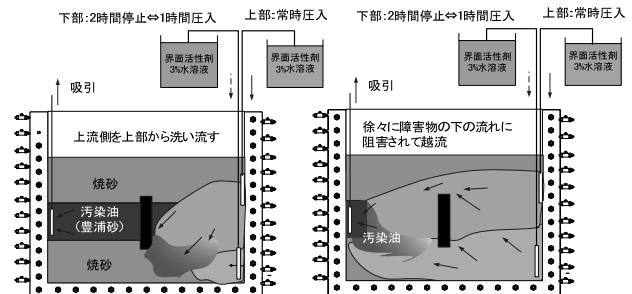


図-5 実験 2-3 挙動予想図

下からはこれに、CMC 粉末を 0.5% (33.5 g) 添加したもの 6.7 L、計 20 L (=3 PV) 用意した。今回は地表面に油粘土を被覆し空気の進入を防いだ。圧入流速は上から 10.0 mL/min、下からは 5.0 mL/min とした。

2.2.2 実験経過

写真-7 は初期状態であり、中層の色の濃い部分が初期汚染領域である。写真-8 は 5 時間後 (0.64 PV) の写真である。上からの洗浄液が汚染領域に浸透し、汚染

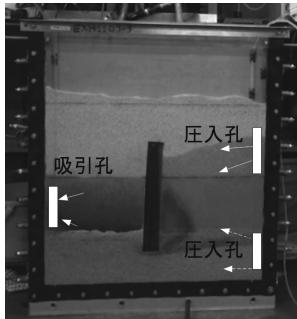


写真-14 12時間後 (1.5PV)

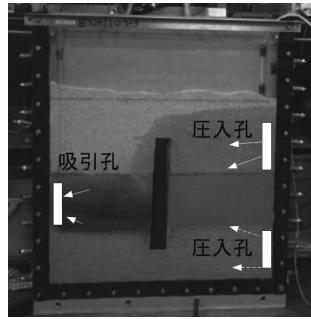


写真-15 24時間後 (3.0PV)

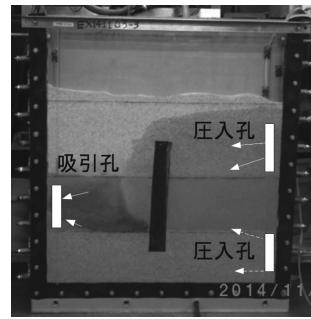


写真-16 36時間後 (4.5PV)

写真-17 圧入終了時 (6.0PV)

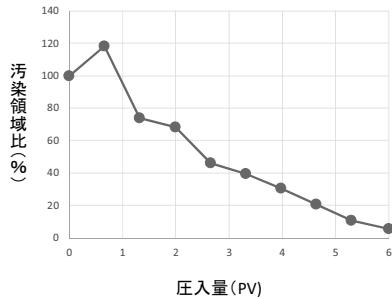


図-6 実験2-3の浄化の進行

油を乳化し左へ押し流している。この時点では下の洗浄液がまだ流れ始めた段階のため、汚染油が下方へ少し降下してしまっている。写真-9、10は10時間後(1.28 PV)、15時間後(1.91 PV)の写真である。下層に粘性の高い液体が流れているので、油が下方に残留することなく、ほぼ水平に押し流されていることが確認できる。写真-11は20時間後(2.55 PV)の写真である。若干細く線状に汚染油が残っているが、ほとんど浄化できている。写真-12は実験終了時の写真である。この時点で洗浄液(3.0 PV)を全て流し切ったので実験を終了した。図-4に今回の実験の浄化の進行を示す。実験の序盤での汚染油の乳化により汚染領域比がいったん上昇したが、その後は順調に低下し、最終的には3.0 PV時に0.2%まで下がることができた。

2.3 小型2次元土槽を用いた実験2-3

(複数地層・障害物実験)

2.3.1 実験の目的と方法

実際の地盤では複数の地層が存在し、特に工場の地下には各種埋設物が存在し浄化の障害となる。本節の実験2-3では、より実地盤での汎用性を高めるため、複数地層からなる模擬汚染地盤内に障害物を設置し、浄化実験を行うこととした。実験で用いた障害物の材質は弾力性に富んだゴムであり、土槽の奥行5cmに対して6cmの厚みを持つ角材状のものを土槽上部より鉛直になるように留意しながら挿入し設置した。写真-13が今回の実験の初期状態である。実験装置にはこれま

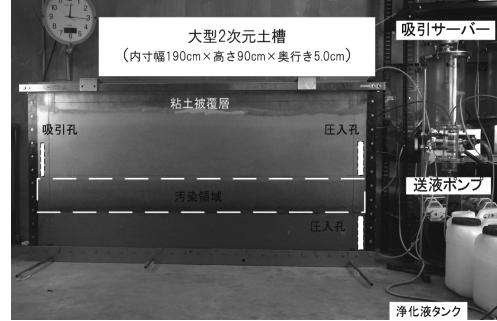


写真-18 大型2次元土槽と周辺装置(実験3-1と3-2で共通)

でと同じく小型2次元土槽を使用した。下層と上層には粒径約1mmの焼砂を使用し、中央の油汚染層は豊浦砂を使用した。充填密度・初期汚染濃度はこれまでと同様である。上部の圧入孔からは界面活性剤3%水溶液を常に流し続け、下部の圧入孔からは界面活性剤3%水溶液を2時間停止、1時間圧入を交互に行なう。この間欠圧入は流れの固定化を避けることを狙うものである。流速は上下共に10mL/minとした。図-5の挙動予想図のように、まず上流側の汚染油を障害物の下をくぐらせ、その後下流側で上下から挟み撃ちにすることで汚染油を回収する、という浄化の進行に期待し実験を開始した。

2.3.2 実験経過

写真-14は12時間後(1.5 PV)の写真である。期待通り下をくぐるように障害物の上流(右)側の汚染油が移動している。写真-15は24時間後(3.0 PV)の写真である。障害物の上流が完全に浄化され、洗浄液が障害物を超えて下流(左)側に達しているのが確認できる。これまでの実験ではこの3.0 PV圧入時で実験を終了していたが、今回の実験は設定条件が厳しいため、特に上限を設げずに浄化にめどが立つまで圧入～回収を継続することとした。写真-16は36時間後(4.5 PV)の写真である。障害物の下流側の浄化が徐々に進んでいる。写真-17は6.0 PV圧入時の写真で、ここで実験終了とした。図-6に今回の実験の浄化の進行を示す。終了時までに6 PVを使用したが、最終汚染領域比

写真-19 実験 3-2 初期状態

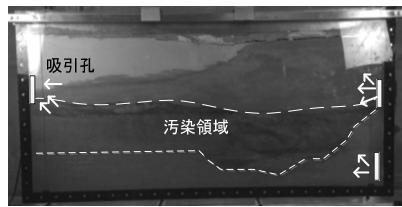


写真-20 24 時間後 (0.4PV)

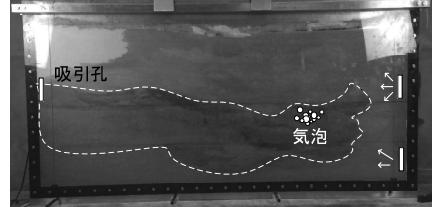


写真-21 48 時間後 (0.8PV)



写真-22 60 時間後 (1.3PV)

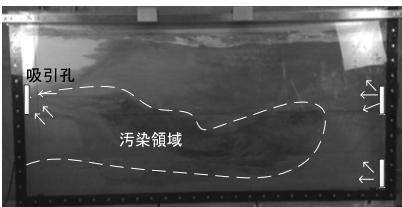


写真-23 72 時間後 (1.3PV)

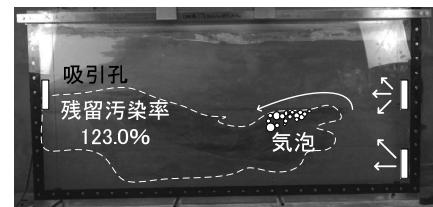


写真-24 73 時間後停止 (1.5PV)

5.5%にいたるまで停滞なく順調に浄化が進行した。困難な条件であったが発泡反応も増粘剤も使用せず、洗浄液の送液・停止というシンプルな方法で浄化に成功したことは今後の汎用性に期待できる結果となった。

ここまで小型 2 次元土槽を用いた実験で確認された浄化性能を、次章では大型 2 次元土槽を用いて確認する。

3. 大型 2 次元土槽を用いた実験

3.1 大型 2 次元土槽を用いた実験 3-1

(切り替え交互圧入・間隙内二液発泡法)

3.1.1 実験の目的と方法

実験 2-1において交互圧入発泡による浄化性能が再確認された。今回は大型の土槽において実験を行いその浄化性能を確認する。写真-18 は実験装置の概略である。実験装置の構成は基本的に小型 2 次元土槽と同じである。大型 2 次元土槽(内寸幅 190 cm × 高さ 90 cm × 奥行き 5.0 cm)に下から豊浦砂を高さ 20cm、10%の汚染油を混ぜた豊浦砂を高さ 20 cm、覆土として豊浦砂を高さ 40 cm の順で水締め充填した。

充填乾燥密度は $\rho d = 1.55 \text{ g/cm}^3$ である。地表面は油粘土で被覆し空気の進入を防いだ。

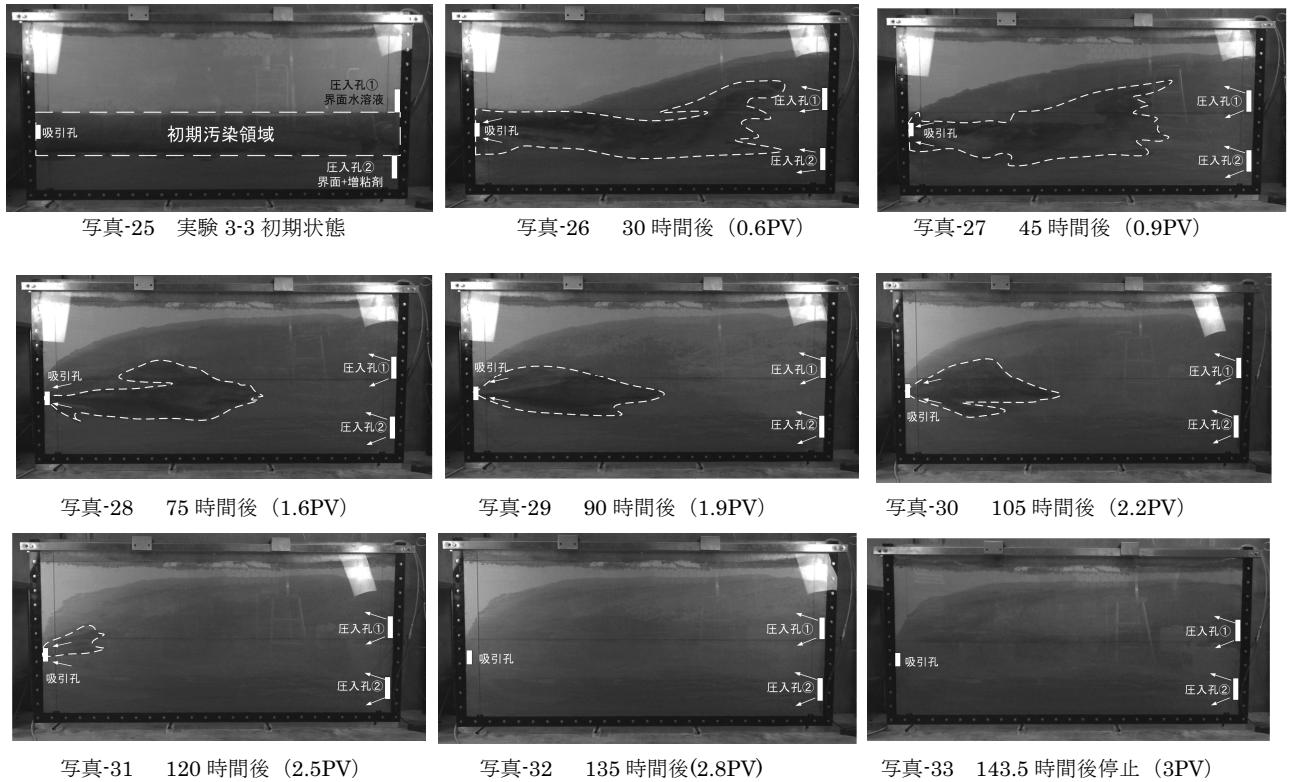
右の上の圧入孔から界面活性剤 3%水溶液 50 L、下からは界面活性剤 3%+重曹 8%水溶液 25 L と界面活性剤 3%+酢酸 5%水溶液 25 L とをそれぞれ 30 分毎交互に圧入していく。この水溶液の合計 100 L が大型 2 次元土槽実験における 3 PV である。今回は上下共に流速を 5 mL/min の速度で圧入した。

3.1.2 実験経過

写真-19 は初期状態である。写真-20 の 24 時間後 (0.4 PV) には下から圧入している水溶液が作用し始め、汚

染領域の右下部分が浄化されている。しかし、この時に上から圧入している水溶液が地表面付近にまで来てしまっていることもわかる。写真-21 は 48 時間後の状態の写真である。地表面と被覆油粘土との隙間に、圧入している水溶液が溢れ出す現象が確認された。写真-23 は 72 時間後の状態の写真である。被覆油粘土をすり抜けて水溶液が噴き出してしまった。このまま実験を続けると水溶液が溢れてしまう恐れがあるため写真-24 の 73 時間後に実験を停止した。

前章の小型土槽では発泡により生じた二酸化炭素が溶液とともに右から左へと吸引されていた。しかし、大型土槽では吸引圧力が右のほうまで作用せず、気体が左へ移動せずこれにより上部からの水溶液が噴き出してしまったと考えられる。この間、浄化も進んでいない。理由は通底しており、発生した気泡が油汚染ゾーンの間隙に封入されてしまい、上部からの界面活性剤が浸透せず、期待したすすぎの働きをしなかった。発泡による浄化のコントロールには工夫が必要になることがわかった。


3.2 大型 2 次元土槽を用いた実験 3-2

(下部より増粘剤添加液圧入)

3.2.1 実験目的と方法

実験 2-2 と同様に、上の圧入孔からの界面活性剤の圧入に加えて、下の圧入孔から増粘剤として被覆と同じ CMC を添加し粘性を高めた界面活性剤水溶液を圧入することで、大型 2 次元土槽においても油汚染域を下から支えつつ挟み込むようにすることで汚染油が吸引孔へほぼ水平に移動するように浄化できるか実験を行う。汚染地盤の作成に関しては実験 3-1 (写真-18) と同じである。

粘性を測定したところ、上から圧入する界面活性剤 3%水溶液は粘性 $3.8 \text{ mPa}\cdot\text{s}$ 、下からの界面活性剤 3%+

CMC0.5%水溶液の粘性は $50.0 \text{ mPa}\cdot\text{s}$ であった。これらを上下とも流速 $5 \text{ mL}/\text{min}$ で圧入した。

3.2.2 実験経過

写真-25は初期状態である。写真-26～27は30～45時間後の状況である。下から圧入された粘性の高い界面活性剤の流れに支えられて、汚染油が降下することなく左に移動している。写真-28～30は75～105時間後の写真である。上層部に広がった汚染域も徐々に小さくなっている。その後も浄化が順調に進行し、写真-32の135時間後(2.8 PV)には浄化がほぼ完了している。浄化液3 PVを流し終えたので写真-33の143.5時間後に実験を停止した。油汚染領域の下部に粘性の高い流れを作成することで、汚染油をほぼ水平に移動させて回収する良い結果を得られた。

3.3 大型2次元土槽を用いた実験3-3

(複数地層・障害物実験)

3.3.1 実験目的

第2章の実験2-3では、2つの圧入孔からの界面活性剤の時間差圧入や、圧入・停止を繰り返す投与パターンにより浄化に成功した。今回は、実験装置を小型2次元土槽から大型2次元土槽へと変更し、障害物の個数を1本から4本へと増やして実験を行う。

3.3.2 実験方法

写真-34に実験装置の概略を示す。下層と上層には粒径約 1 mm の焼砂を使用し、中央の汚染された層は豊浦砂を使用した。油の汚染濃度はこれまで同様 10% であ

る。障害物に見立て角棒状のゴム素材を、4本入れた。写真には実験経過の説明のために①～④の番号を振つてある。圧入流速は上下共に $10 \text{ mL}/\text{min}$ とした。まず、上部に設置した圧入孔から先行して3%界面活性剤水溶液を圧入することから実験を開始する。実験開始から2時間後に下の圧入孔から同じく3%界面活性剤水溶液を圧入する。圧入を1時間行った後は再び2時間停止、1時間圧入の繰り返しで実験を行なっていく。上部孔に関してはこの間欠操作は行わず3%界面活性剤水溶液を継続して圧入する。

3.3.3 実験経過

写真-35は初期状態である。写真-36は100時間後(1.89 PV)である。②番と③番の障害物の間の汚染油が少し浄化されている。写真-37は140時間後(2.65 PV)である。全体的に汚染油の色が薄くなっている。また、①番の障害物の右側がほとんど浄化されているのが確認できる。写真-38は160時間後(3.03 PV)である。写真-37から20時間経過したがほとんど変化がない。写真-39は161.5時間後(3.05 PV)である。やはり、140時間後(2.65 PV)からほとんど変化がない。小型2次元土槽で成功した実験では障害物の下をくぐらせて汚染油を左に流していたのだが、写真をよく見ると油は上に行こうとしているが上の圧入孔からの界面活性剤に押さえつけられて停滞しているようである。そこで、次のように圧入パターンを変更した。

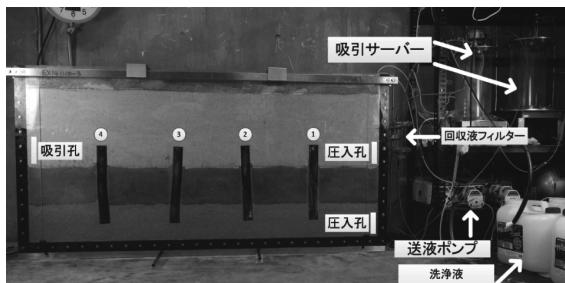


写真-34 大型2次元土槽と周辺装置（実験3-3）

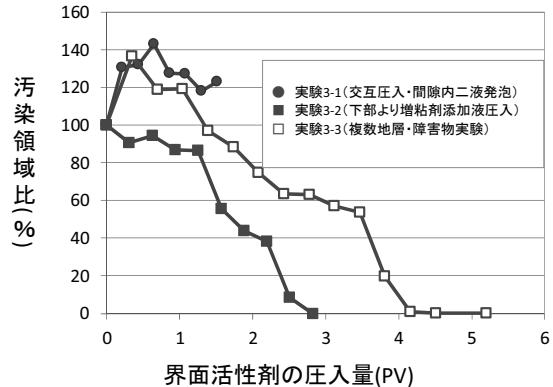


図-7 大型2次元土槽を用いた実験の浄化の進行の比較

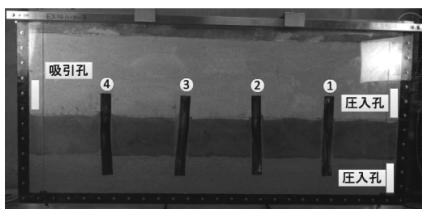


写真-35 実験3-3 初期状態

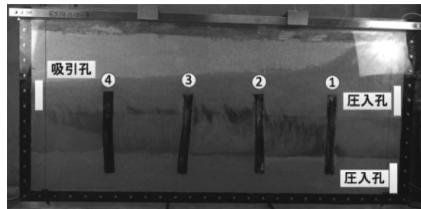


写真-36 100時間後 (1.89PV)

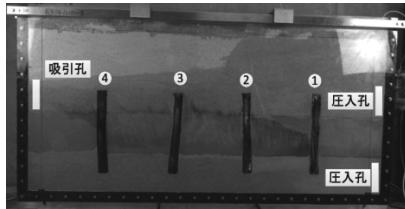


写真-37 140時間後 (2.65PV)

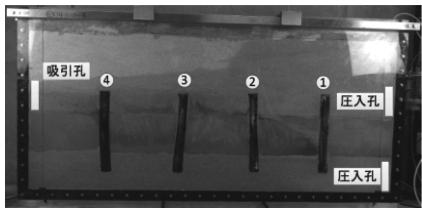


写真-38 160時間後 (3.03PV)

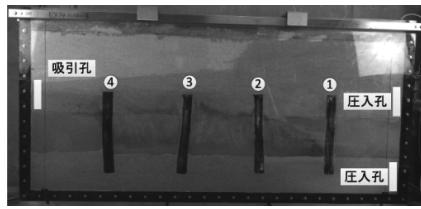


写真-39 161.5時間後 (3.05PV)

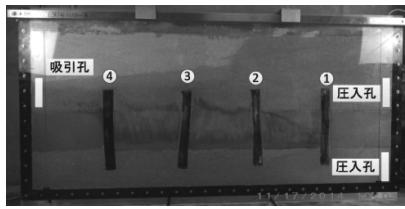


写真-40 162.5時間後 (3.07PV)

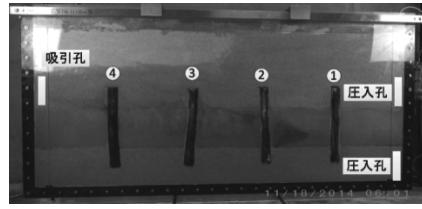


写真-41 182.5時間後 (3.45PV)

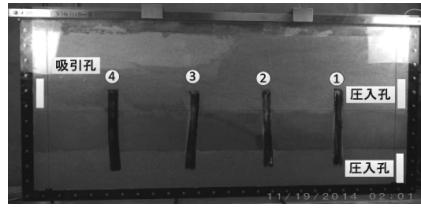


写真-42 202.5時間後 (3.83PV)

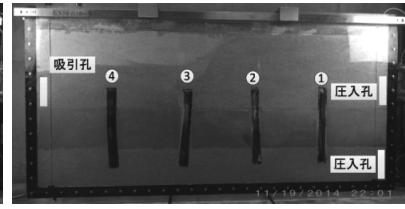


写真-43 222.5時間後 (4.21PV)

これまでの実験では上の圧入孔は常時洗浄液を流し、下の圧入孔は2時間停止、1時間圧入の繰り返しで行ってきたが、下の圧入孔の役割を2時間圧入、1時間停止に変更した。これにより上への流れの時間が増え、油が障害物の上側を通過するようにならないかと期待した。下からの圧入をあくまで間欠にしたのは、上下の圧入流速を固定してしまうと浸透領域が固定化し障害物の背面によどみ領域ができやすいと考えたことによるものである。写真-40の162.5時間後(3.07 PV)から下の圧入孔の圧入パターンを変更して洗浄液を圧入した。写真-41は182.5時間後(3.45 PV)である。下の圧入孔からの洗浄液の圧入時間が増えたことで、汚染油がこれまで以上に押し上げられ浄化が進んだと考えられる。写真-42は202.5時間後(3.83 PV)である。①番

と②番の障害物の間の汚染油がほぼ浄化されているのが確認できる。②番と③番、③番と④番の障害物の間も同様にかなり浄化が進んでいる。写真-43は222.5時間後(4.21 PV)である。この時点で全体的に汚染油を浄化することに成功した。実験はその後もしばらく継続し275時間後で圧入を終了した。

使用した洗浄液の量は合計185 L(5.2 PV)であった。今回の実験も小型2次元土槽実験2-3に引き続き困難な条件であったが、発泡反応も増粘剤も使用せず、洗浄液の送液・停止というシンプルな方法で浄化に成功した。均質で障害物の無い汚染地盤の浄化に要した3 PVとさほどかわらない4.21 PVで浄化を終了しており、今後の浄化対策における汎用的な方法として期待できる結果を得ることができた。

4. 考察

4.1 ここまで実験結果について

大型 2 次元土槽実験の浄化の進行をまとめた図-7 にそって、ここまで実験結果について考察する。

実験 3-1 (●) : 図-7 より、初期汚染領域よりも汚染領域を界面活性剤で拡散させただけで終わってしまった。この実験が途中で中断となったのは地表への界面活性剤水溶液の噴き出しによるものであったが、間隙内発泡法の浄化方法としての失敗は、発生した気泡が油汚染領域の間に入り込んだまま封入されてしまったため上部からの界面活性剤が汚染ゾーンに浸透できず、小型 2 次元土槽実験 2-1 のようなすすぎの働きをしなかったことにあった。発泡による浄化を広範囲で行うために、更なる工夫が必要であることがわかった。

実験 3-2 (■) : 3 PV の時点での汚染領域比をほぼゼロにすることことができた。下から圧入する界面活性剤に CMC を添加し粘性を増したこの方法は、油汚染領域の下部に粘性の高い流れを作成することで、汚染油をほぼ水平に移動させて回収する良い結果を得られた。この方法は効率のみならず、実地盤では地下水の 2 次汚染を防止することができる可能性の高い方法とも考えられる。

実験 3-3 (□) : 複数地層に障害物が埋設された難条件での実験であったが、4.2 PV でほぼ浄化され良い結果が得られた。2 PV から 3 PV のあたりにかけ、浄化が若干停滞しているのが見受けられる。当初は上部圧入孔からの洗浄液で押し下げた油を下部圧入孔からの洗浄液で障害物の下をくぐらせる形で左へ流すことを考えていた。実際、圧入孔付近の障害物は我々の予想通りの結果となったが奥へ進むにつれ実際の挙動は予想とは違った油が押し上げられ浮上する状況となった。

これまでの小型 2 次元土槽で今回の圧入方法を行った際には、土槽の横幅が小さいため、吸引が強くかかり洗浄液を過剰に吸引して水位を下げてしまい、これに引きずられて汚染油下層に降下したのに対し、大型 2 次元土槽は横幅が大きいため、吸引が左端下流付近にしかからず水位があまり下がらなかったため、汚染油がむしろ浮上した状態で障害物上部に引っかかっている様子になったことがわかった。これは土槽のサイズを変えたことによる挙動の大きな相違点であった。

その後、下部からの圧入パターンを 2 時間停止/1 時間圧入から、1 時間停止/2 時間圧入に変更した結果、3 PV を超えたあたりから浄化は飛躍的に進み、最終的には残留汚染油が 0.2% になるまで浄化することに成功した。これは今後、継続的に研究してゆきたい方法であるが、特殊な条件下のみでの実験であったので、プレーンな条件、すなわち均質地盤で障害物のない状態で実施した場合にどの程度の浄化性能の上乗せとなる

のを検討すべく、次節の追加実験 2 ケースを実施した。

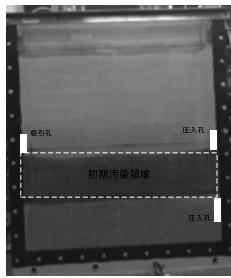
4.2 小型 2 次元土槽を用いた追加実験-1 と 2

4.2.1 実験の目的と方法

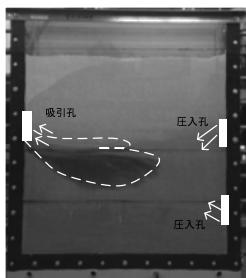
追加実験-1 と 2 の 2 つの実験を行った。目的は先述の通りで、障害物のない均質地盤において、界面活性剤を連続投与するケース（追加実験-1）に対して間欠投与するケース（追加実験-2）がどの程度浄化性能が上乗せとなるのを比較することである。

前出の小型 2 次元土槽を 2 つ用意し、第 2 章の実験 2.1 と同様に汚染地盤を作成した。地表面には被覆を行わず、これまでの小型 2 次元土槽のように吸引圧がかかりすぎて地下水位が過度に低下しないよう、変更した。コストのことも考え、今回の追加実験では 1、2 とも下の圧入孔からは界面活性剤（3%）を投与するが、上からは水のみを投与することにした。これにより使用する界面活性剤の減量に期待する。

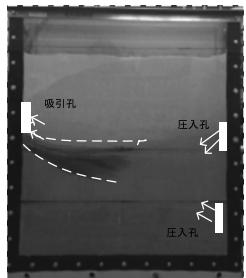
追加実験-1 では、上部圧入孔からは水を 5.0mL/min で、下部圧入孔からは界面活性剤を 5.0mL/min でともに連続投与した。

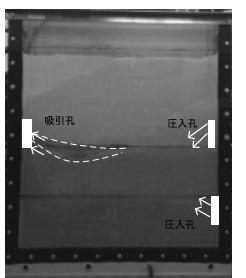

追加実験-2 では、30 分おきに、上部圧入孔からは水を 4.5mL/min で、下部圧入孔からは界面活性剤を 4.1mL/min で、間欠的に投与した。

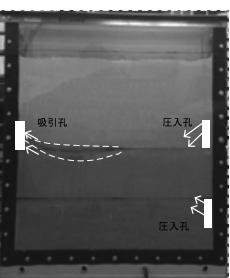
4.2.2 実験経過と考察


追加実験-1（連続投与）の実験経過が写真-44 の(a)~(e)、追加実験-2（間欠投与）の実験経過が写真-45 の(a)~(c) である。写真の下の PV は水と界面活性剤の合計 PV で表記してある。追加実験-1（連続投与）では 7.0PV 投与時でも汚染油がすじ状に残留しているが、追加実験-2（間欠投与）では 4.0PV で浄化がすでに終了している、といった違いがみられた。

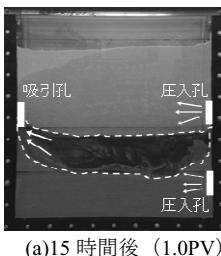
浄化の進行をグラフ化し、比較したものが図-8 である。追加実験-1（連続投与）では 5.0PV あたりから浄化効率が低下するのに対し、追加実験-2（間欠投与）ではほぼ一直線上に浄化完了（4.0PV）まで進行する様子が分かる。およそ半分の PV でほぼ同等の汚染油が回収できている。また、今回の実験では水も圧入しており、界面活性剤の実際の使用量はこれまでの実験よりさらに少ない。図-8 の白丸（○）は、追加実験-2（間欠投与）における界面活性剤（3%）の圧入量である。2.0PV でほぼ浄化が完了している。小型 2 次元土槽を用いた実験で最も少ない圧入量で浄化できたのは実験 2.1（切り替え交互圧入による間隙内二液発泡法）の 1.5PV であった。圧入量だけみると追加実験-2（間欠投与）は確かに 0.5PV 多いが、実験 2.1 では発泡反応のために重曹を 8%、酢酸を 5% とかなりの高濃度で添加しており、コスト的には間欠投与のほうが安いと思われる。


また、追加実験-2（間欠投与）では地表面に被覆をしておらず、比較的低吸引圧の状態でも油分を移動・回

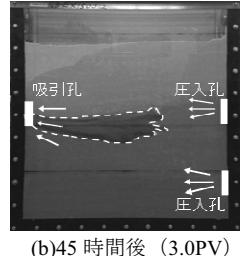

(a)13 時間後 (1.0PV)


(b)39 時間後 (3.0PV)

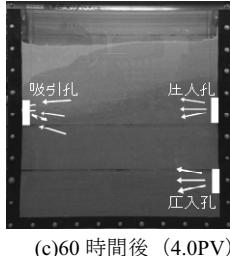
(c)52 時間後 (4.0PV)



(d)78 時間後 (6.0PV)



(e)91 時間後 (7.0PV)


写真-44 追加実験-1 連続投与のケース（上部圧入孔：水のみ、下部圧入孔：界面活性剤を連続投与）

(a)15 時間後 (1.0PV)

(b)45 時間後 (3.0PV)

(c)60 時間後 (4.0PV)

写真-45 追加実験-2 間欠投与のケース

(30 分おきに上部圧入孔：水のみ、下部圧入孔：界面活性剤を交互に投与)

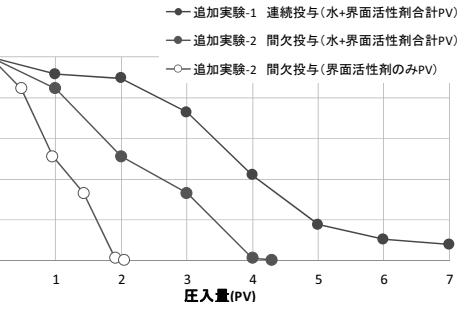


図-8 追加実験-1 と 2 の浄化の進行の比較

収できたことは浄化作業工程の簡略化、ひいてはコストの削減にもつながるものと期待される。

5.まとめ

本研究では、多くの条件下でも適応できる「汎用性」を持った技術の開発という視点から室内土槽を用いた模擬油汚染地盤の浄化実験を行った。これらのことより、以下のような点が抽出された。

- 1)間隙内反応発泡法を広範囲で行う際の気泡の封入によるその後の浄化液浸透阻害をいかにして解決するか。
- 2)増粘剤を添加した界面活性剤により汚染油の下面を固定し浄化する方法の更なる高効率化とその応用。
- 3)界面活性剤を間欠投与する方法の更なる高効率化。

このうち、3)については追加実験を行いその性能を確認したところ、間欠投与は従来の連続投与よりおよそ半分の圧入量で浄化が完了できることができた。

この間欠投与による浄化方法は比較的汎用性が高いものあると思われるため、今後の研究の中心としてとり組んでゆきたいと考えている。

謝辞：この研究には著者の所属する油汚染土壤の修復技術研究会（大同大学・株式会社エヌ・システム・応用地質株式会社・三信建設工業・財団法人東海技術センター・株式会社フジミックス・ミヨシ油脂株式会社）のご協力をいただきました。ここに記して感謝の意を表します。

参考文献

- 1) 加藤欣也・城まゆみ・板橋秀治・佐高 裕之：シート被覆による掘削土（ズリ）置場の浸出水量の低減、およびホウ素・窒素濃度低減、土木学会第67回年次学術講演会講演集、pp.323～324、名古屋（2012）。
- 2) 宮本 裕二・木佐貫 浄治・梅 秀作・北村 良介・中川 浩一・鈴木 雅文・大山 洋一：自然由来重金属を含むトンネル湧水の減水対策について、第11回環境地盤工学シンポジウム発表論文集、pp.385～390、福島（2015）。
- 3) 細野哲・門間聖子・久木原峯隆・佐保亮輔・船水義一・佐藤貴之：安山岩及び粗粒玄武岩における自然由来重金属等の溶出事例、第17回 地下水・土壤汚染とその防止対策に関する研究集会講演集、pp.7～9、川崎（2011）。
- 4) 東日本大震災対応調査研究委員会地盤環境研究委員会：（委員会活動報告）東日本大震災における地盤環境課題への取り組み、第11回環境地盤工学シンポジウム発表論文集、pp.1～11、福島（2015）。
- 5) 看倉宏史・勝見武・野口真一・中村吉男：災害廃棄物から再生された復興資材の有効活用に資するための地盤工学会からの提言とガイドラインについて、第21回 地下水・土壤汚染とその防止対策に関する研究集会講演集、pp.42～47、福岡（2015）。
- 6) 山根華織・勝見 武・高井敦史・乾 徹・森田康平：地震・津波で発生した災害廃棄物処理物の物性に及ぼす再ふるいの影響、第10回環境地盤工学シンポジウム発表論文集、pp.371～376、東京（2013）。
- 7) 岩崎広江・根岸昌範・樋口雄一：浄化用鉄粉の脱塩素反応持続性評価及び反応性回復手法の検討、第19回 地下水・土壤汚染とその防止対策に関する研究集会講演集、pp.362～365、京都（2013）。

8) 秦 浩司：揮発性有機化合物 (VOCs) および塩化ビニル・1,4-ジオキサンに対する化学的分解法の適用性に関する研究、第 21 回 地下水・土壤汚染とその防止対策に関する研究集会講演集、pp.62～67、福岡（2015）。

9) 西川直仁・桐山 久・藤井治彦・石川洋二：バイオスページング工法によるベンゼン汚染土壤の原位置浄化、土木学会第 67 回年次学術講演会講演集、pp.311～312、名古屋（2012）。

10) 棚橋秀行：間隙内二液反応発泡を用いた切替交互圧入による油汚染地盤浄化ムラの低減、第 20 回地下水・土壤汚染とその防止対策に関する研究集会講演集、pp.301～306、和歌山（2014）。

11) 中西茂子：洗剤と洗浄の科学、新コロナシリーズ 33、コロナ社、p.43（1995）。

最小定和の素数魔方陣の検索

Finding Magic Squares of Prime Numbers with Minimum Constant

大石弥幸*

Yasaki Oishi

Summary

A magic square including only prime numbers is the well known problem. Though some magic squares of consecutive prime numbers are seen frequently, those of non-consecutive prime numbers are rare. In this paper magic square of non-consecutive prime numbers those have minimum constants are calculated. Magic squares of high order require long time to calculate by computers. In order to shorten the time Monte Carlo Tree Search is introduced. And magic square of non-consecutive prime numbers of order 5th,6th,7th,8th and 9th are found.

キーワード：魔方陣，素数，整数，最小定和，モンテカルロ木探索

Keywords : Magic square, Prime number, Minimum constant sum, Monte Carlo tree search

1. 魔方陣

1.1 魔方陣とは

魔方陣とは 3 以上の整数 n について、 n 行 n 列の行列に $1 \sim n^2$ の整数を置き、すべての行、列、および 2 つの対角線上の数の和を等しくするものである。 n 行 n 列の魔方陣は n 次魔方陣、 $n \times n$ 魔方陣などと表記される。3 次、4 次、5 次の魔方陣の例を図 1 に示す。同様に 6 次以上の魔方陣が存在する。

数学的には整数解に限定する多元連立方程式である。和が同じ値（定和という）だという式が n 行と n 列と 2 対角線あるが、そのうちの 1 本は独立ではないので実質 $2n+1$ 本の式が与えられる。これは未知数の個数 n^2 に対して不足しているため解は不定となるが、 $1 \sim n^2$ の整数という条件のため有限個数の解が存在する。

最小次の 3 次魔方陣は古くから知られ、今でも子供向けパズルとして出題されることがある。しかし、4 次以上は急に難しくなるので、歴史的に見ても多くの人の頭を悩ませる問題となっている。それでも、解の検索に関しては、特殊な配列以外は未だに効率的なアル

2	9	4
7	5	3
6	1	8
9		2
14		3
7		11
4		13
10		15
7		25
20		8
19		21
9		18
10		12
20		3
19		5

図 1 魔方陣の例

ゴリズムは発見されず虱潰し的な計算を行うしかない。

そのような事情から学術的な論文で魔方陣が扱われることも少なく、いわゆるパズル愛好家による散発的な研究が中心となっている。そのため既存研究の範囲もはつきり分からぬことが多い。

1.2 魔方陣の解の総数

魔方陣の研究のなかでも大きなテーマは、解の総数がいくつなのかである。たとえば 3 次魔方陣はちょっとした計算で 8 通りの解を得ることができる。ただし、それらはすべて回転や裏返しで互いに同じものとなり、本質的に解は 1 つだけである。

* 大同大学情報学部情報システム学科

表1 魔方陣の総数

次数	解の総数
3	1
4	880
5	275,305,224
6	約 1.8×10^{19}

そこで魔方陣の総数を論議する場合は回転、裏返しで重なるものは1つと数えることを原則としている。

次数ごとの魔方陣総数は現在までに表1のように算出されている。

3次の魔方陣は古代から知られ、解が1つしか存在しないことは魔方陣が神秘的なものとされたことにも関係している。

4次については19世紀までにすべて手計算で求められた。しかし5次の総数は1970年になってアメリカのRichard Schroeppellによってはじめて確認された[1]。方法はコンピュータで時間をかけて全部の解を求めたのである。四色問題[2]がコンピュータの計算力頼りの方法で証明されたのとほぼ同時期であり、証明へのコンピュータの利用の是非が問われた。

同様にして6次魔方陣の計算が考えられたが、それはすぐに不可能だとわかる。単純な総当たり的計算では現在のスーパーコンピュータの速度でも天文学的な時間を要する。そのため正確な総数は不明であるが、筆者は1992年にランダムサンプリング（モンテカルロ法）を用いた推定値として1800京を発表した[3]。後の1998年にはドイツのK.PinnとC.Wieczorkowskiもほぼ同じ数（ 1.775×10^{19} ）を出している[4]。また彼らは7次についても推定値を出しているがさらに莫大な数となる。

コンピュータの計算速度の進歩は著しい。Shroeppellが1970年に5次の全解を出すのにミニコンで1000時間以上かかったとある。しかし今ならスーパーコンピュータを使わずとも、手元の普通のパソコンで20~30分で計算できる（10分という報告もある[5]）。しかしそれでも6次以上の魔方陣にはまったく歯が立たない。

1.3 1~ n^2 以外の数の魔方陣

パズル愛好家たちが基本的な魔方陣の次に考えたのは、魔方陣の中でさらに特定の条件を満たすものを探すことであった。たとえば行、列、2対角線に加えて汎対角線（方陣の左端と右端、上端と下端がつながっているトーラスでの斜行周）の和も等しいもので、これを完全魔方陣と呼んだ。また魔方陣の中に含まれる部分方陣も行、列、2対角線の和が一定になるという

内包魔方陣なども求められた[6][7]。

もう一方の拡張は使用する整数を1~ n^2 ではなく、特定の性質をもった数に置き換えることであった。たとえば、素数、平方数などである。数学的でない例も挙げるなら、16種類の切手を配置して額面の和を等しくして4次魔方陣に見立てるというものもある。

さて、ここではこれらの中でも最も多くの研究がみられる素数を使う魔方陣について述べる。

2. 素数魔方陣とは

素数魔方陣とは素数のみを使って n 行 n 列の行、列、2対角線の和を等しくするものである。歴史的にみると、古くは1900年頃から文献を見つけることができる。ただ、その当時は1を素数とみなしているため正確には素数魔方陣ではない。コンピュータのない時代には素数魔方陣を見つけるのが困難で、1を許容することによってかなり易しくできたからであろう。しかし、ここでは1は素数としないで考える。

つぎに素数魔方陣と称するものの中には、暗黙に連続した素数を使うといい条件が含まれているものが多い。これは見た目に美しいということもあるが、実は計算量を減らすための条件でもある。連続素数であれば最小の素数を決めれば全部の素数が決まる。しかし、非連続では、いろいろな組み合わせを試す必要があるため検索範囲が膨大になってしまうのである。ここでは連続という条件があるか否かを明確に区別して説明する。

いずれの条件においても素数は無限に存在するため解も無限に存在すると考えられる。その中で最初に見つけておきたいのは定和が最小になるものである。以下、最小定和の素数魔方陣についてのみ述べる。

3 連続素数魔方陣

素数魔方陣では唯一の偶数素数である2が使えないことは明らかであるから3以上の素数を使うことになる。しかし、3から小さい順に n^2 個の素数を使っても常に魔方陣ができるわけではない。 n^2 個の総和は定和の n 倍なので、総和が n の倍数でない場合は除外できる。だが、総和が n の倍数の場合でも魔方陣が可能かどうかは簡単にはわからない。その定和での解の存在証明は1つでも解を見つければよいが、存在しないことを証明するのは非常に難しい。演繹的に証明する方法は知られていない。そのため、全組み合わせを計算して解の不在を証明しなければならない。

それでも遅くとも1970年代頃には4次から9次の

最小定和の連続素数魔方陣は発見されている[6]。これらは魔方陣の愛好家の間では知られる鈴木昭雄氏と阿部楽方氏の仕事であった。さらに高次の連続素数魔方陣は、最近インターネット上の個人のホームページに公表されている[8]。4次から9次までの連続素数魔方陣を例を図2に示す。

37	97	83	41
89	59	67	43
53	71	61	73
79	31	47	101

4次連続 sum=258

13	83	89	109	19
107	17	43	67	79
29	59	113	41	71
103	53	37	73	47
61	101	31	23	97

5次連続 sum=313

7	167	149	109	41	11
157	13	59	17	107	131
67	31	151	101	97	37
61	103	83	71	29	137
53	43	23	113	163	89
139	127	19	73	47	79

6次連続 sum=484

7	139	179	173	47	181	71
67	31	107	131	239	73	149
53	229	97	167	113	127	11
227	109	17	101	83	157	103
233	19	163	59	211	23	89
13	79	193	29	61	199	223
197	191	41	137	43	37	151

7次連続 sum=797

79	281	313	107	439	137	311	349
431	113	331	271	97	223	353	197
277	397	127	131	263	233	359	229
373	199	193	389	83	419	181	179
163	101	383	151	421	337	167	293
157	401	173	409	307	191	239	139
103	241	269	211	257	367	317	251
433	283	227	347	149	109	89	379

8次連続 sum=2016

37	347	263	281	353	79	227	383	241
449	43	317	257	431	83	197	97	337
439	311	179	41	211	223	283	151	373
157	421	331	443	73	433	101	191	61
89	409	397	53	47	109	467	401	239
251	277	59	419	379	479	127	113	107
269	103	139	67	229	463	461	167	313
131	163	293	457	181	71	199	349	367
389	137	233	193	307	271	149	359	173

9次連続 sum=2211

図2 連続素数魔方陣

さてここまで、3次については触れなかったが、3次の連続素数魔方陣だけは例外的に非連続素数魔方陣よりも発見が困難であった。1988年に発表されたその最小定和の解は図3の通りで、最小といつても非常に大きな数となっている[9]。コンピュータなしでは発見は難しかっただろう。

1480028201	1480028129	1480028183
1480028153	1480028171	1480028189
1480028159	1480028213	1480028141

3次連続 sum=4440084513

図3 3次連続素数魔方陣

4. 非連続素数魔方陣

4.1 既知の非連続素数魔方陣

非連続素数魔方陣については連続魔方陣に比べると公表されている記事が少ない。それでも3、4次までは簡単な計算なので、誰が見つけたというほどのこともなく、最小定和の解を見つけることができる。最小定和の3、4次非連続魔方陣を図4に示す。

しかし、5次以上は論文、インターネットでは最少定和の魔方陣を見つけることはできなかった。

4.2 最少定和の証明

素数魔方陣が見つかったとして、それが最少定和であることを示すためには、それより小さい定和では魔方陣がないことを全検索して示す。3次、4次では素数の個数が少ないので値が小さいことから、計算量はそれほど多くない。しかし、5次以上になると個数も値も大きくなるので計算量が莫大になることが予想される。これについては後でわかるが、5次から9次までは総和が n の倍数という条件を満たす候補の中の最初（和が最少）の組み合わせで解が発見された。したがって、その候補より小さい定和での解の不在証明は不要であった。

17	113	47
89	59	29
71	5	101

3次非連続 sum=177

3	61	19	37
43	31	5	41
7	11	73	29
67	17	23	13

4次非連続 sum=120

図4 3次、4次非連続素数魔方陣

3	79	43	103	5
71	11	7	61	83
67	47	89	17	13
73	59	41	29	31
19	37	53	23	101

3	89	83	53	5
97	13	23	59	41
19	67	79	61	7
71	47	11	31	73
43	17	37	29	107

3	37	83	103	7
101	31	17	11	73
29	53	67	5	79
41	89	19	71	13
59	23	47	43	61

5	89	73	59	7
101	11	13	41	67
79	3	71	61	19
17	83	53	43	37
31	47	23	29	103

5次非連続 sum=233

3	149	29	137	73	41
167	11	97	13	17	127
5	19	131	73	101	103
107	43	109	89	23	61
71	113	7	37	151	53
79	97	59	83	67	47

3	107	71	131	101	19
139	13	11	137	23	109
41	73	167	31	97	23
37	97	149	43	17	89
61	59	5	67	127	113
151	83	29	23	67	79

5	149	41	137	89	11
97	17	167	43	29	79
97	7	71	113	103	41
11	97	109	61	47	107
83	31	41	59	151	67
139	131	3	19	13	127

5	149	61	151	47	19
7	23	67	101	127	107
137	71	103	11	13	97
79	17	167	73	59	37
137	41	3	29	139	83
67	131	31	67	47	89

6次非連続 sum=432

3	137	239	131	67	43	113
101	17	197	31	151	139	97
107	163	181	211	7	41	23
83	157	71	103	37	173	109
199	13	11	179	191	61	79
73	193	29	19	47	149	223
167	53	5	59	233	127	89

5	199	113	223	19	131	43
163	17	107	37	101	127	181
41	179	73	193	83	157	7
89	79	233	139	13	31	149
239	61	23	3	211	137	59
29	151	173	71	109	97	103
167	47	11	67	197	53	191

7	67	89	193	139	191	47
23	31	83	233	11	173	179
223	199	107	17	109	59	19
167	149	61	197	3	5	151
79	131	41	43	157	181	101
97	29	239	13	211	71	73
137	127	113	37	103	53	163

7次非連続 sum=733

3	139	263	107	47	257	277	61
193	31	179	233	19	137	163	199
251	229	71	97	223	37	79	167
43	149	109	239	331	127	53	103
241	13	283	151	173	131	73	89
11	271	29	17	181	269	59	317
311	281	197	83	113	5	157	7
101	41	23	227	67	191	293	211

5	263	211	163	67	311	7	127
131	37	31	229	173	257	19	277
103	61	83	241	317	13	293	43
23	11	283	149	193	137	251	107
331	167	151	71	233	113	59	29
181	197	281	109	89	179	17	101
157	227	41	139	3	47	269	271
223	191	73	53	79	97	239	199

7	269	181	223	131	31	229	83
193	61	3	59	277	233	257	71
41	199	101	239	5	191	97	281
241	79	13	311	103	37	107	263
211	173	331	197	113	43	67	19
283	127	47	73	179	139	157	149
11	109	227	29	293	317	151	17
167	137	251	23	53	163	89	271

8次非連続 sum=1154

3	283	359	17	367	281	61	349	11
109	73	37	157	251	239	431	127	307
433	29	97	313	149	137	317	59	197
331	347	199	131	13	67	193	41	409
229	211	379	311	233	31	89	241	7
47	79	163	167	151	397	227	277	223
107	337	373	23	5	173	269	263	181
389	353	53	191	179	113	43	271	139
83	19	71	421	383	293	101	103	257

5	89	379	431	193	173	359	83	19
313	59	421	47	373	131	53	317	17
233	97	179	293	337	23	137	101	331
139	181	67	223	11	389	263	349	109
307	163	269	43	3	229	151	199	367
103	79	277	353	13	433	157	149	167
211	383	31	107	239	41	241	281	197
347	409	37	227	251	29	113	191	127
73	271	71	7	311	283	257	61	397

9次非連続 sum=1731

図 5 5～9次非連続素数魔方陣

4.3 非連続素数魔方陣の検索結果

4.3.1 5次非連続素数魔方陣

5次非連続素数魔方陣では、総和が n の倍数である条件から可能性のある最小定和が 233 となる。それで検索してみると非常に多くの解が求まる。図 5 の最上段がその例である。回転、反転、単純な行列入れ替えを同種としても 184,850 個の解が出てきた。5次までであれば、このように全数検索は可能である。計算時間は数十分であった。

4.3.2 モンテカルロ木探索

定和および使う素数の組合せの候補が分かったとしても、6次以上ではたった1つの解を見つけるのも難しい。全検索のアルゴリズムでは大抵、大きさの順に探索していくので最初の方は全く解が出てこない。最初の解が発見されるまでに相当の時間が費やされる。

そこで魔方陣の n^2 個のセルの内のいくつかを事前にランダムに埋めておき、残りのセルを計算するという方法を採用する。これはチェスや将棋の指し手の探索で使われるモンテカルロ木探索と同じ考え方である。将棋と違って最善手を見つけずとも1つでも解が見つかればよい。

具体的には6次非連続素数魔方陣では、定和として可能性のあるところを探すと、3、5、7、11、13、…、139、149、151、167 で総和が 2592、定和が 432 となる。その36個で魔方陣を構成すればいい。とはいっても6次ともなると全数検索は不可能である。そこで、8個のセルには候補から8個の素数をランダムに置いて残りのセルを合わせるという方針をとった。

ランダムに置くわけだからほとんどはその先の計算が行き詰って解は見つからない。それでも組合せを変えて何千、何万回と繰り返すことによって解が出ることを期待する。実際、この計算は早ければ1秒以下、遅い場合でも数分で答えが出てくる。

7次以上の非連続素数魔方陣についても同様の方法で解を探索した。事前にランダムに置くのは7次で49セル中の22セル、8次の場合は64セル中の27セル、9次の場合は81セル中の34セルである。次数が上がれば計算時間が徐々に増える。それでも9次でも1時間程度待てば1つの解は求められるという程度である。5次から9次までの最小定和の非連続素数魔方陣を図5に示す。

5. 最後に

素数魔方陣を連続と非連続に分けて最小定和を求

めた。9次までの素数魔方陣の最小定和を表2に示す。連続素数の方は多くの文献やネット上で紹介されているが、非連続の方はなかなか見られない。網掛けの部分は筆者自身が計算して求めた値である。

6次以上では全解を求めるることは当然ながら、たった1つの解を見つけるのも容易ではない。そこで適当なセルにランダムに数を配置するという方法を採用した。いかにもいい加減な方法であるが、それでも比較的短時間で解を見つけることができた。

表2 素数魔方陣の最小定和

次数	非連続	連続
3	177	4440084513
4	120	258
5	233	313
6	432	484
7	733	797
8	1154	2016
9	1731	2211

参考文献

- 1) Martin Gardner, Magic Square, Scientific American 1976.1
- 2) 一松信, 四色問題, 講談社ブルーバックス, 1978
- 3) 大石弥幸, ランダムサンプリングによる6次魔方陣の総数の推定「数芸パズル第177号」1992
<http://www.daido-it.ac.jp/~oishi/TH5/magics6.pdf>
- 4) K. Pinn, C. Wieczerkowski, Number of Magic Squares From Parallel Tempering Monte Carlo, Int. J. Mod. Phys. C 9 (1998) 541
- 5) <http://blog.unfindable.net/archives/7179>
- 6) 平山, 阿部, 方陣の研究, 大阪教育図書, 1983
- 7) 大森清美, 魔方陣の世界, 日本評論社, 2013
- 8) <http://www.magic-squares.net/primesqr.htm>
- 9) H. L. Nelson (Journal of Recreational Mathematics, 1988, vol. 20:3, p.214)
- 10) 大石弥幸, 魔方陣ホームページ,
<http://www.daido-it.ac.jp/~oishi/TH5/ms.html>

簡易脳波センサを用いた快・不快音聴取時の情動推定に関する一考察

Emotion Extraction Method for listening to the Pleasant and Unpleasant Sound using Alpha and Beta Wave on a Simplified EEG

柴田 慎一* 秋田 貴俊** 木村 春彦***

Shin-ichi Shibata* Takatoshi Akita** Haruhiko Kimura***

Summary

The physical disorders as a depression and dementia are caused by a high stress society. There is the way which is music therapy to treat disease using music. The music is so abstractness that the therapists have no foundation on the selection music for the therapy. In this study, we examine the EEG (electroencephalogram) in listening to the music when the music which was consistently effective for emotion was used. We look at the relativity between the brain wave and emotion and conduct the evaluation of emotion in listening to the music using brain wave. The electroencephalogram power spectrum in alpha and beta wave were used for input data and the change in subjective emotional state was evaluated by the POMS (Profile of Method States) & TDMS-ST (Two-Dimensional Mood Scale-Short Term) test. We evaluate the subjective emotion state by SVM (Support Vector Machine). In the result, we obtain the high identification rate and the rate was 95% in the case of using sound source or TDMS-ST for learning data.

キーワード：脳波，音刺激，情動，サポートベクターマシン， α 波， β 波，主成分分析

Keywords : EEG, Sound Stimuli, Emotion, Support Vector Machine, Alpha Wave, Beta Wave, Principal Component Analysis

1. はじめに

現代社会ではストレスが蔓延しており、うつ病や認知症など精神疾患の原因になっている。人間関係や経済、仕事や勉強での悩みなどから日常的に不安や苛立ちを感じていることがストレスの原因であると述べられている¹⁾。平成23年の厚生労働省の調査によると、精神疾患の患者数は平成8年で約220万人であったが、平成23年には約320万人と増加していることが示されている²⁾。

精神疾患の治療法にはカウンセリングや薬物の服用などがあるが、通院や入院期間が数年と長めになりがちで治療を途中で断念してしまうことや、長期間の治

療により自立して生活する力が次第に無くなってしまうこと、さらに薬物による副作用の危険性がある³⁾。

このような治療を支える手法として音楽療法が注目を浴びている。音楽療法とは、音を聴くことでリラクセーション効果を与えることができる医療的介入のことをいい、身体的、精神的、情緒的に健全な状態に回復させるための治療手段である。音楽を聴くことで生じる変化を医療的場面に応用し、治療効果を上げるための補助的手段として活用されている⁴⁾。

しかし、音は抽象的なものであり、表示された音に対してどう感じるかは人それぞれであることから、音楽療法には様々な問題がある。例えば、音楽療法がどういった対象に効果的か、どのような音楽が効果的か

* 大同大学情報学部情報システム学科

** 大成株式会社

*** 金沢大学自然科学研究科

などの根拠が明らかになっていないことや、音楽のリズムやテンポ、患者の状態や音楽に対する感じ方など、様々な要因により生理的な反応が生じることなどが挙げられる。

また、音楽療法に用いる音楽は多種多様であるため、音楽療法士は患者に対して適した選曲を行わなければならず、選曲にかなりの時間がかかるてしまうという問題もある^{5,6)}。

そこで、著者たちは携帯性に優れた簡易脳波センサを用い、音楽療法における音選定に関して脳波による選曲システムの構築を目的としている。音刺激を与えた時の情動の変化と脳活動の関連性を示し、どのような音楽が快や不快に感じるかの効果が明確になれば、患者に適した音楽を使用することが期待される。

本研究では、快や不快といった情動と脳波との関連性を検証し、脳波による音聴取時の情動の評価指標作成を検討した結果について報告する。

2. 提案手法

2.1 脳波計測

本研究では、快や不快といった情動と脳波との関連性を検証し、脳波による音聴取時の情動の評価指標の作成を検討することを目的としている。脳波（Electro Encephalo Gram : EEG）とは、脳内で発生する電気活動を頭皮上の電極で記録し、脳活動を計測する方法のことである⁷⁾。脳活動の計測法は大きく分けて、侵襲的と非侵襲的計測の2つに分類されている。侵襲的な手法とは、外科手術を行い、脳細胞の近くにセンサを貼り付けて計測を行う方法であり、医療機関等以外での使用は認められていない。そのため、本研究では生体を傷つけない計測法である非侵襲的な脳波計を用いて脳活動を計測する。

脳活動を非侵襲的に計測する方法として、近赤外線分光法（NIRS）、陽電子放射断層撮影（PET）や機能的磁気共鳴画像法（fMRI）、脳磁図（MEG）といった方法がある。これらの計測法には時間分解能、空間分解能、拘束性などの特性が異なっているため、研究の目的に合わせて選択する必要がある。時間分解能とは、活動のタイミングを区別することができる最小の時間間隔、空間分解能とは、活動部位を空間的に区別することができる最小の距離、拘束性とは、計測中の被験者に対する制約のことである。

本研究では、音聴取時の情動変化を対象としているため、被験者の脳の状態がいつ、どのように変化しているのかを見る必要がある。そのため、時間分解能に優れており、データとして記録する時間間隔が短いも

のが適切であると考える。

また、測定装置の拘束感により、被験者の情動が変化する可能性があることから、拘束感が少ないものが望ましいと考える。そこで、被験者に対する拘束性が低く、時間分解能に優れている脳波計が本実験には適していると判断し、本研究では脳波に着目をした。

脳波を計測する方法は、基準電極導出法（Referential Derivation）と双極導出法（Bipolar Derivation）の2種類がある⁷⁾。基準電極法とは、電位を零とする点におく電極（基準電極）と、脳波そのものを計測するために頭の表面におく電極（探査電極）を組み合わせて脳波を計測する方法である。双極導出法とは、探査電極同志を組み合わせ、計測する方法である。本研究では、基準電極導出法を使用して脳波の計測を行った。

脳波は、周波数ごとに大きく分けてδ（デルタ）波、θ（シータ）波、α（アルファ）波、β（ベータ）波の4つに分類される。δ波は浅い眠りの状態、θ波は深い眠りの状態、α波はリラックスした状態、β波はストレスを感じている状態を示している。

本研究では、上記のα波、β波の脳波をslow, mid, fastと細分化を行った。細分化することでより詳しく被験者の状態が分かるのではないかと考えたためである。脳波の周波数分類は研究により異なっているが、本研究では、文献8)の「アルファ波優勢状態の条件づけによるストレス耐性強化」⁸⁾と文献9)の「常習喫煙者の禁煙と再喫煙が脳波に及ぼす影響」⁹⁾より設定した。脳波の分類についてTable1に示す。

Table1 脳波の周波数分類^{8,9)}

分類	周波数[Hz]	意識状態
δ波	0.5～4未満	浅い眠り
θ波	4～8未満	深い眠り
slow α波	8～9未満	
mid α波	9～12未満	リラックス
fast α波	12～14未満	
slow β波	14～20未満	
mid β波	20～26.6未満	ストレス
fast β波	26.6～29未満	

2.2 POMS・TDMS

情動を理解するには主観的視点と、客観的視点からのアプローチが必要であるとされている¹⁰⁾。そこで、本研究では主観的視点としてPOMS（Profile of Mood States）とTDMS-ST（Two-Dimensional Mood Scale-Short Term）を用いて情動の変化について検証する。

POMSとは、気分状態を主観的側面からの評価を目的として米国の McNair らにより開発された。65項目の質問に「まったくなかった」（0点）から「非常に多く

あった」(4点)までの5段階(0~4点)で回答し、対象者の緊張・不安、抑うつ・落ち込み、怒り・敵意、疲労、混乱、活気の6つの気分尺度を同時に評価できるものである¹¹⁾。「緊張・不安」は得点が高いほど緊張している状態を示し、「抑うつ・落ち込み」は自身喪失状態、「怒り・敵意」は不機嫌な状態、「疲労」は疲労状態、「混乱」は困惑、思考力低下を表す。「活気」は元気さ、躍動感、活力を表し、他の尺度とは負の関係にある。

本研究では、POMSの質問項目を30項目に削減した日本語版POMS短縮版を使用した。理由として、音刺激を与えた時の情動変化を見るものであるため、時間短縮と負担を軽減することで、実験以外での不快感を軽減することができると考えたためである。また、信頼性は短縮版と通常版と比較して大差がないことが示されているため、使用に適していると判断した¹¹⁾。

TDMS-ST(以下TDMS)とは、坂入らによって開発された主観的側面から心の活性度と安定度を評価するものである。8項目の質問に対し、「全くそうでない」(0点)から「非常にそう」(5点)の6段階で回答し、心理状態を測ることができる気分尺度である¹²⁾。活性度、安定度、快適度、覚醒度の4つの心理状態を評価することができる。活性度、安定度は+10~-10点、快適度、覚醒度は+20~-20点で得点化される。

「活性度」は+得点でイキイキした状態、-得点で元気が出ない状態、「安定度」は+得点で落ち着いた状態、-得点でイライラした状態、「快適度」は+得点でポジティブな状態、-得点でネガティブな状態を示す。覚醒度は+得点で興奮状態、-得点で沈静状態を示し、他の尺度とは負の関係にある。

POMSとTDMSの2つの気分尺度を使用する理由としては、POMSでは緊張・不安、抑うつ・落ち込みといったように、ネガティブな感情を細かく見ることができる。しかし、緊張・不安項目の得点が高く、抑うつ・落ち込みの得点が低いといった結果が得られた場合、快か不快かを判定するのは難しい。

そこで、快適度という快か不快かを判定する明確な項目があるTDMSと共に使用することで、快・不快といった心理状態をより詳しく見ることができるのでないかと考える。そこで、POMSとTDMSの2つを用いて快であるか不快であるかの心理状態の変化について検討を行う。

2.3 実験装置

実験に用いる装置は、脳波センサZA(ZAB-009-D:株式会社プロアシスト)を使用した。脳波センサZAでは脳波と眼球を計測可能であるが、事前実験として脳波と眼球運動の関連性を調べたところ、眼球運動によ

る脳波への影響はδ波のみであることが示された。

また、今回の実験では脳波のmidα波、midβ波のみに着目していることや、被験者には安静閉眼状態で脳波の計測を行ったため、眼球の計測は行わなかった。

サンプリング周波数は128Hz、基準電極を左耳の後ろ側に、探査電極を額の中央部の1箇所に貼り付け、基準電極導出法にて計測する。脳波センサの受信機と送信機はワイヤレスデータ通信が採用されており、送信機が20gと軽量であるため、従来の脳波計と比べ拘束性は少ないと考えられる。計測可能な脳波の周波数帯域は0.5~40Hzである。Fig.1に脳波センサZAの概観を、Table2に脳波センサZAの基本構成について示す。電極はBlueSensor M(M-00-S/50: Ambu)を使用した。

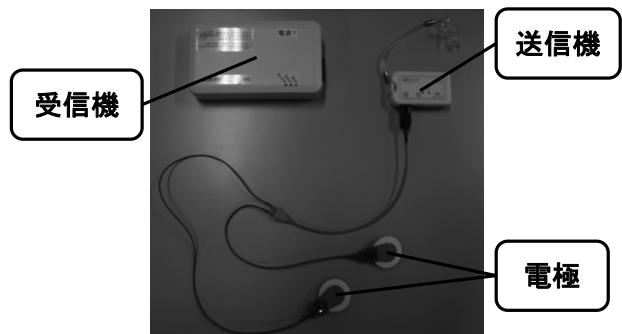


Fig.1 脳波センサZA

Table2 脳波センサZA本体の基本構成¹³⁾

送信機	入力端子	脳波入力1、眼球入力1
	電極数	脳波2極、眼球2極
	外形寸法	65mm(W) × 35mm(H) × 14mm(D)
	重量	20g(本体のみ)
	使用電源	ボタン型空気電池PR44×2個
	電池寿命	連続約50時間
	消費電流	平均6.5mA
	帯域	脳波: 0.5~40Hz、眼球: 0.5~10Hz
	サンプリング周波数	128Hz
	AD変換分解能	12ビット
受信機	無線周波数	2.4GHz
	外形寸法	135mm(W) × 76mm(H) × 27mm(D)
	重量	155g(本体のみ)
	電源	ACアダプタ100V(出力6VDC)
	メモリ	メモリカード(2GB)
	測定モード	オンライン、オフライン
	データフォーマット	オンライン: CSV、EDF / オフライン: EDF

2.4 呈示音

情動と脳波の関連性を検証するにあたり、快適に感じる音2種類、不快に感じる音2種類の聴取時の脳波計測し検証する。

快適に感じる音としては、睡眠誘導作用のある音楽CD「Sleep deeply」(全8曲収録)から被験者にどの曲が快に感じるかアンケートを行い、最も選ばれた2曲である“Twilight Fades”(快音1)と“Worlds Away”(快音2)を使用した。このCDに収録されている音楽は、

心身を休め、ゆっくりとした規則的な呼吸を促し、脳を睡眠状態に誘導する効果があるとされていることから、快適な情動を誘発させるために適していると考えたため使用した¹⁴⁾。

不快に感じる音は、一般的に不快であるとされている“黒板を爪で引っ搔く音”（不快音1）と“発砲スチロールを擦り合わせる音”（不快音2）を使用した。この2つの音に関しても同様に、被験者に対して不快に感じるかアンケートを行い、使用するのに適していると判断した。

また、快音1・2には共に癒し効果を持つとされている1/fゆらぎがみられ¹⁵⁾、不快音1・2には人が不快に感じるとされる2000~4000Hzの周波数帯域が多く含まれている¹⁶⁾。このことから、快音1・2、不快音1・2は本実験に適した音源であると考えられる。

3. 実験方法

3.1 実験手順

本実験で情動と脳波の関連性を検証するにあたり、快適に感じる音2種類、不快に感じる音2種類の聴取時の脳波を各6回ずつ測定した。被験者は研究室に所属する11名とし、周囲の音環境を考慮するため簡易防音室内で実験を行った。

実験を行う際の条件として、全被験者に対して計測時間の統一（14時から16時30分）、前日、当日の激しい運動の禁止、睡眠時間の確保（6時間以上）、昼食時間の統一（12時から13時）の4つの条件を守るように指示した。そして、これらの条件を確認するため、計測前に簡易的なアンケートの記入を行い、条件を満たしているかどうかの確認を行った。

簡易アンケートの記入後、脳波計測前後の気分変化を見るために、POMSとTDMSの記入を行った。そして、被験者の額と耳にアルコール消毒をし、センサの装着を行った。これは、汗や皮脂によりノイズが発生するのを防ぐためである。そして、ヘッドホンを装着し、音の聞こえ方の個人差を考慮し、被験者ごとの設定を行った。

なお、使用する快音1・2、不快音1・2に対しては、音圧を70dBに設定を行っている。その後、簡易防音室に入り、脳波を安定させるために30秒経過してから計測を開始した。被験者には計測中はなるべく体を動かさず、眼を閉じた状態を保つように指示した。

表示される音源は初めに20秒の無音区間があり、続いて20秒の有音区間を9回交互に繰り返す様に加工し、無音区間180秒、有音区間180秒の計6分の聴取となる様にした。理由として、一定の感情は5分程度まで

しか保つことができないことや¹⁷⁾、同じ音を聴き続けることにより生じる慣れによる影響を考慮したためである¹⁸⁾。快音に関しては無音区間と有音区間の切り替え時に不快感を覚えることを考慮し、フェードさせるように加工した。

計測終了後、再度POMSとTDMSの記入を行った。実験手順をFig.2に示す。この計測を1日1回行い、音源毎につき6回、計24回計測を行った。1日1回にした理由は、被験者への負担と、音源による脳波の影響を考えたためである。また、先入観により感情が変化するということを考慮し、どの音源を使用するかは被験者には事前に知らせずに計測を行った。実験により聴取する音源の順番は、ラテン方格法を用いて日ごとにランダムとなるように設定した¹⁹⁾。

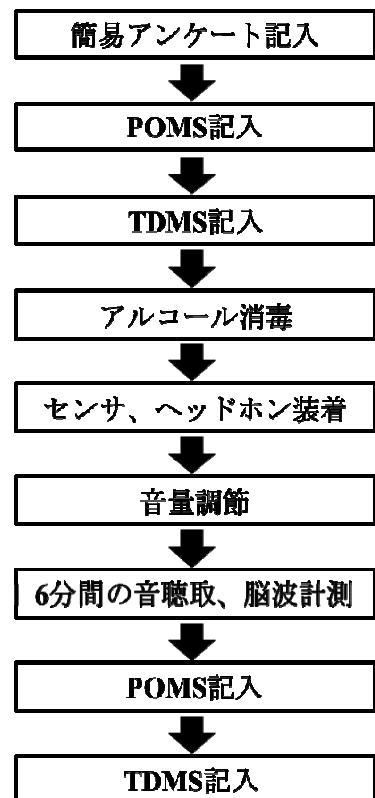


Fig.2 計測の流れ

3.2 解析手法

POMSとTDMSの結果に対しては、各音源聴取時に情動変化が発生しているかどうか調べるために、音聴取前後の結果に対して、一対の標本による平均のt検定を行い、各測定項目の有意差の検証を行った。

計測した脳波に対しては、統計解析ソフト「R(ver3.1.2 64bit版)」を用いて解析を行った。Rを使用した理由としては、Rはオープンソースなフリーソフトであることから、利用できる関数のコードを確認する事が可能であり、関数の計算の信頼性が高いという点にある。ま

た、世界中の研究者が様々な追加ライブラリを公開していることや、自分で新しい拡張関数を付け加えることができるなど、拡張性が高いという利点もあることから、本研究では R を使用して解析を行った。

本研究では追加ライブラリとして e1071 パッケージを使用してサポートベクターマシン (SVM) の計算機能を使用している。e1071 パッケージの内容は libSVM という台湾国立大学の Lin らによって作られた SVM が実装されており、カーネルトリックや交差検証法が使用できるといった特徴がある。

解析手順としては、まず測定した生データに対して窓関数 (ハミング窓) を使用し、最小値 0・最大値 1 となるような正規化処理を行った後、音源の有音部分 20 秒の区間にに対して高速フーリエ変換 (Fast Fourier Transform : FFT) にて周波数成分の算出を行った。

本研究でハミング窓を使用した理由としては、小さい電力のスペクトル検出に向いているという特徴があり、微小な電気信号である脳波を検出するのに適していると考えたためである。

そして、有音 9 区間分の周波数データに対して、ノイズの影響を最小限にするために加算平均を行い、これらの周波数帯域の mid α 波、mid β 波データ 200 変数を抜き出し、データをより少ない変数に要約する主成分分析 (Principal Component Analysis : PCA) を行い、累積寄与率 90% となる 34 変数を算出した。

そして、SVM の学習識別器を用いて情動評価のモデルを作成し、検証用データの識別を行った。SVM のカーネルには汎用的なカーネルである RBF カーネルを用い、11fold-cross validation の交差検証を行った。交差検証を行った理由としては、機械学習では学習データの内容によって識別性能が大幅に変化してしまうことから、交差検証を行うことで平均の識別率を算出し、学習データに依存しない評価を得るためにある。

4. 実験結果

4.1 POMS・TDMS 結果

計測実験時の POMS と TDMS の結果と、一対の標本による平均の t 検定を行った結果について Table3, Table4 に示す。それぞれ実験前後において各測定項目に有意差が認められたものについては矢印が記載されている。快音 1 の結果より、POMS では緊張 - 不安、抑うつ - 落ち込み、活気、混乱の 4 つのネガティブな項目で低下の有意差が認められた。TDMS では活性度、安定度、快適度で上昇の有意差が、覚醒度では低下の有意差が認められた。

快音 2 では、POMS では緊張 - 不安、混乱のネガテ

Table3 POMS 結果

測定前後差	POMS					
	ネガティブ			ポジティブ		
	緊張	抑うつ	怒り	疲労	混乱	活気
快音1	↓	↓		↓	↓	
快音2	↓				↓	↑
不快音1		↑	↑	↑	↑	
不快音2	↑	↑	↑	↑	↑	↓

Table4 TDMS 結果

測定前後差	TDMS			
	ポジティブ		ネガティブ	
	活性度	安定度	快適度	覚醒度
快音1	↑	↑	↑	↓
快音2	↑	↑	↑	
不快音1	↓	↓	↓	↑
不快音2	↓	↓	↓	↑

イブ項目で低下の有意差、活気のポジティブ項目で上昇の有意差が認められた。TDMS では活性度、安定度、快適度で上昇の有意差、覚醒度で低下の有意差が認められた。不快音 1 では、緊張 - 不安以外のネガティブ項目で上昇の有意差、活気のポジティブ項目で低下の有意差が認められた。TDMS では活性度、安定度、快適度で低下の有意差、覚醒度で上昇の有意差が認められた。

不快音 2 ではすべてのネガティブ項目で上昇の有意差、活気のポジティブ項目で低下の有意差が認められた。TDMS では活性度、安定度、快適度で低下の有意差、覚醒度で上昇の有意差が認められた。

これらの結果より、快音 1・2、不快音 1・2 はそれぞれ心理状態を快、不快へと変動させる効果があると分かる。これらの音聴取時の脳波を用いて、脳波から情動を識別できるか検討を行う。

4.2 情動評価

SVM を用いた情動評価実験の結果について示す。得られた脳波データに対して 3.2 節に示すようにデータの加工を行った。使用した音源を教師データとし、快音 1・2 を快、不快音 1・2 を不快として評価実験を行った。

教師データに音源を使用した理由は、POMS と TDMS の t 検定の結果より、被験者の状態は快音聴取時には快、不快音聴取時には不快になるということが示されている。よって、音源を教師データとしてすることで被験者の状態を適切に分類できていると考えたためである。

快・不快の 2 値で分類を行った理由としては、音の感じ方が被験者によって異なることから、快音 1・2、不快音 1・2 といった分類では被験者の状態を正確に分けることができないのではないかと考えたためである。

データ数は快・不快共に 132 で識別を行った。SVM での情動評価実験の結果を Table5, 結果の内訳を Table6 に示す。

Table5 音源を教師データとした際の識別結果

教師データ: 音源	単位: %		
	快	不快	平均識別率
正解率	92.4	97.7	95.1
エラー率	7.6	2.3	4.9

Table6 音源を教師データとした際の識別結果 内訳

	快	不快
快	122	3
不快	10	129

Table6 は列が元の教師データ、行が SVM で識別されたデータを示している。結果として、教師データを音源とした場合には約 95.1% と高い平均識別率を得ることができた。

しかし、POMS や TDMS による計測時の被験者の状態を個別でみると、不快音聴取時にポジティブな項目が上昇するといった結果が見られた。そのため、教師データによる被験者の状態を正確に分類することが困難であると考えられる。

そこで、TDMS の快適度項目の点数を計測前から計測後にどの程度の変動があるかを算出し、変動が 1 以上であれば快、-1 以下であれば不快として教師データを割り当て、再度 SVM にて情動評価実験を行った。変動が 0 の場合は変動がないものと見なし、使用データから除いた快 126 件、不快 116 件として使用した。

TDMS の快適度を使用した理由としては、快適度項目では快であるか不快であるかの判別を行うという項目であることから、データとして扱いやすいという点と、計測前後での変動量で快・不快をみることで、被験者の計測時の情動を考慮したうえでの評価が可能となるのではないかと考えたためである。教師データを TDMS とした際の SVM での情動評価実験の結果を Table7、結果の内訳を Table8 に示す。

Table7 TDMS を教師データとした際の識別結果

教師データ: TDMS	単位: %		
	快	不快	平均識別率
正解率	95.2	96.6	95.9
エラー率	4.8	3.4	4.1

Table8 TDMS を教師データとした際の識別結果 内訳

	快	不快
快	120	4
不快	6	112

以上の結果より、音源を教師データとした際の結果よりも約 0.8% 程度高い識別率を得ることができた。

このことから、教師データを音源とした時には被験者の状態を正確に分類できていないことがみてとれる。被験者ごとの特徴を考慮した実験を行うことで、より高い精度で情動を識別することができるのではないかと考えられ、音聴取時の脳波を用いて情動の識別をすることが可能であることが示された。

5. おわりに

現代社会ではストレスが蔓延しており、うつ病や認知症といった精神疾患の患者数が増加している。この精神疾患の治療を支える手法として、音を用いた音楽療法という手法が注目を浴びている。しかし、音は抽象的なものであるため、どのような音が効果的かといった根拠が明らかになっていない。

そこで、本研究では音聴取時の脳波によって情動を評価できるか検討し、脳波と情動の関連性について検証を行った。その結果、音聴取前後の POMS・TDMS より、各音聴取後に快音では快、不快音では不快に感じるという効果があることが分かった。

音聴取時の脳波データを用いた SVM での情動評価実験では、教師データを音源としたときでは被験者の状態を正確に分類できていないため、良い結果は得られなかった。

しかし、音聴取前後の TDMS の快適度の差を教師データとして学習することで 95.9% と高い識別結果を得ることができた。このことから、音源を教師データとした場合には被験者の状態を正確に分類できていないと考えられる。そのため、被験者ごとの特徴を考慮した教師データによる実験を行うことで、より高い精度で識別することができるのではないかと考えられる。

以上の結果から、音聴取時の脳波を用いた情動の識別への可能性が示されたことから、脳波と情動との間には関連性があることが示された。

今後の課題として、今回の脳波計測実験では、周囲の雑音を失くすために簡易防音室内で計測を行っているが、完全に雑音を失くすことはできおらず、正確なデータを得るために、より正確な計測環境にて実験を行う必要があることが挙げられる。具体的な案としては、簡易防音室の防音性をさらに高めることや、ノイズキャンセル機能を搭載したヘッドホンを使用するなどが考えられる。

また、本研究では、脳波計測前に被験者に対し、簡易アンケート、POMS、TDMS への回答を求めている。その際に、被験者に対して不快感を与えててしまうこと

が考えられる。POMS に関しては質問項目が分かりづらいといった意見や、どう答えればよいのか回答に迷うなどの声が挙げられている。そこで、TDMS のみで心理状態が解析できるかを検討する必要があると考えられる。

参考文献

- 1) 内閣府, “平成 20 年度版 国民生活白書”, 2008.
- 2) 厚生労働省官房統計情報部, “患者調査”, 2011.
- 3) 佐藤啓二, 石倉佐和子, 濱名優, 高瀬聰子, 杉本英昭, “精神科診療所における治療脱落の実態の一例”, 精神神経学雑誌. Vol.114, No.7, pp.789-792, 2012.
- 4) 志和資朗, 小川栄一, 青山慎史, ルディムナ優子, “音楽療法に関する臨床心理学的研究”, 島修大論集. 人文編, Vol.48, No.2, pp.323-337, 2008.
- 5) 小川宣洋, カレンガルスティーヴン, 満倉靖恵, 福見稔, 赤松則男, “ニューラルネットワークを用いた音楽聴取時の脳波解析”, 電子情報通信学会技術研究報告.NC, ニューロコンピューティング, Vol.107, No.92, pp.5-9, 2007.
- 6) 藤沢隆史, 松井淑恵, 風井浩志, 古屋晋一, 片寄晴弘, “音楽を鑑賞する脳”, 情報処理, Vol.50, No.8, pp.764-770, 2009.
- 7) 市川忠彦, “脳波の旅への誘い 楽しく学べるわかりやすい脳波入門 新版 第 2 版”, 星和書店, 2006.
- 8) 志賀一雅, “アルファ波優勢状態の条件づけによるストレス耐性強化”, 日本バイオフィードバック学会, Vol.20, pp.53-54, 1993.
- 9) 小松理依子, 元村直靖, “常習喫煙者の禁煙と再喫煙が脳波に及ぼす影響”, 大阪教育大学紀要.第 III 部門, 自然科学・応用科学, Vol.44, No.1, pp.103-109, 1995.
- 10) 横山和仁, 下光輝一, 野村忍, “診断・指導に活かす POMS 事例集”, 株式会社金子書房, 2002.
- 11) 横山和仁, “POMS 短縮版手引きと事例解説”, 株式会社金子書房, 2005.
- 12) 坂入洋右, 征矢英昭, 木塚朝博, “TDMS 手引き Two-dimensional Mood Scale ~二次元気分尺度~, アイエムエフ株式会社, 2009.
- 13) 株式会社プロアシスト, <http://www.proassist.co.jp/nouha/>, アクセス日 2015 年 1 月 30 日.
- 14) McCraty.R, “Entrainment”, IHM Research Update, Vol.2, No.1, p.2, 1996.
- 15) 菅井桂子, 斎藤兆古, 堀井清之, “音楽を伴う 1/f ゆらぎ周波数成分の抽出とその人間生理への応用”, 法政大学情報メディア教育研究センター研究報告, Vol.23, pp.103-107, 2010.
- 16) Christoph Reuter, Micharl Oehler, “Phychoacoustics of chalkboard squeaking”, The Journal of the Acoustical Society of America, Vol.130, No.3, p.2545, 2011.
- 17) 今若卓也, 山下雄己, 上岡英史, “脳波を用いた刺激に対する慣れの検出”, 電子情報通信学会ソサイエティ大会講演論文集, p.507, 2012.
- 18) 平澤瞬, 渡邊鉄也, 田中基八郎, “脳波を用いた環境音の快適性評価”, 日本機械学会論文集. C 編, Vol.76, No.771, pp.2876-2882, 2010.
- 19) 島根大学総合情報処理センター, <http://www.ipc.shimane-u.ac.jp/food/kobayashi/latinsquare.htm>, アクセス日 2015 年 1 月 30 日.

小型 PC クラスタ実験システム構築の検討

Construction of Experimental Cluster System with Card-sized PC

本田 隆司* (*情報工学)

Takashi HONDA

Summary

This document describes a method of constructing a testbed system composed of the credit card sized PC boards. This system is used for the purpose of evaluating a Linux-based parallel processing functionality. As the initial results it was possible to evaluate the performance degradation according with the dispersing treatment.

キーワード：カードサイズ PC クラスタ構成 並列処理 Linux

Keywords : Card-size PC Cluster Parallel Processing Linux

1. はじめに

近年の携帯端末に係る技術進展に伴い、主に組み込み用途に用いられる CPU 部品が高性能化し、かつ数多く安価に流通してきた。これらはデジタルカメラの記憶媒体として利用されている SD メモリカードを記憶媒体として利用し、超小型 PC として Linux などの汎用 OS のもとで単体で動作させることが可能である。これらの機器は処理能力的に前世代のノート PC に迫ることもあり、各種実験制御用などその利用範囲も拡大しつつある。

2. 並列処理システム

一方、社会的ニーズの高まりつつあるビッグデータ解析などにおいて、並列処理機構に関する動向も近年その活用が着目されてきている。(1)

これまで並列処理機構は実用的手段としては高価な専用設備を利用するところが求められたが、クラウドシステムなどの登場で計算資源リソースは仮想化され、その構成手法も多様化してきている。

我々はこの超小型 PC を多数用意してイーサネットワークで相互結合し、並列処理計算機構の評価用テストベッドシステムを構築することを計画した。

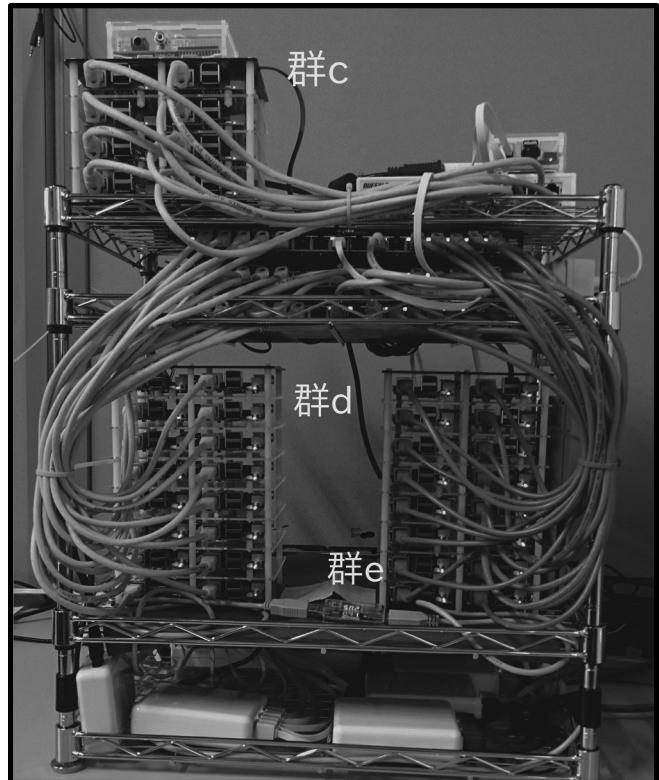


写真 1 今回構成したテストベッド装置

3. テストベッドシステム

今回構成するシステムの目的として以下の項目を上げる。

- (1) PC台数と処理能力の関係(スケーラビリティ)
- (2) 複数の並列処理手法の適用性
- (3) 複数計算機の制御機構の検討

今回はその構成の容易さから、共有メモリを有しない疎結合計算機モデルを用いて、複数の独立した汎用PCをイーサネット接続して分散処理装置を構成し、パフォーマンス評価実験を簡易に実施できることに主眼を置くこととした。

3.1 ノード構成

構築したシステムのハードウェア構成を下表に示す。電源ユニットに関しては容量の違う2種類を用意して長期連続運用での安定性を検証した。

CPU ボード (プロセッサ)	RaspberryPi type-B (700MHz/ARM11)
記憶媒体	SD カード 8GB
電源ユニット A	5V 4port 合計容量 2A
電源ユニット B	5V 6port 合計 5A(予備構成)
冷却ファン	随時設置

ソフトウェア構成(OS)としてはLinux OSであるGNU Debian 7.9をベースとしてRaspberry Pi向けに移植したバージョン Raspbian wheezy (2)を使用した。

3.2 相互結合機構(ネットワーク)

16ポートギガビットスイッチ3台を採用した。

CPU ボード内蔵のネットワークインターフェースは100Mbps Fast Ethernetであるが結合機構としてはよ

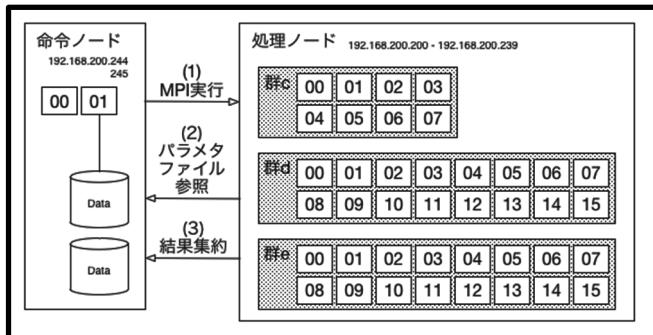
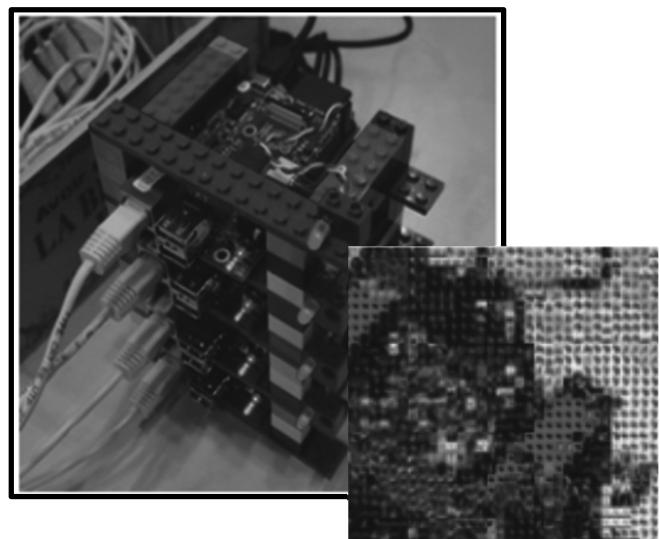


図1 テストベッドシステムの装置構成

り高速のギガビットスイッチを採用した。

構成した実システムを写真1に示す。そのシステム構成を図1に示す。


4. システム評価環境

評価手法として利用できるソフトウェア環境には以下に示すものが候補としてあげられる。

多くのものを初期段階で一次評価に用いたが、ここではその検討の一部を示す。

4.1 画像モザイク加工処理

今回試験した画像処理の例を図2に示す。

上:原画像 右:処理後(拡大)

図2 分散モザイク処理結果画像(例)

4.2 MPI 試験

MPI(Message Passing Interface)は、並列計算処理を利用するため標準化された規格である(3)。この仕組を利用して複数計算ノードがメッセージを送受信して協調動作を行うことができる。

比較的構成が簡単なため今回はこの仕組で並列計算をさせることとした。詳細は次節で述べる。

4.3 その他の評価手法

以下の評価を実行中または準備中である。

・姫野ベンチ

並列処理を含むベンチマークテストとして多く活用される汎用ツールである(4)。今回も一次評価として利用した。

・動画分散エンコード処理

計算量の多い動画像圧縮を分散機構で処理する機構である(5)。適切なパラメタ選定中である。

5. MPI 評価結果

今回評価で用いた MPI 機構による並列円周率計算の結果を述べる。全体動作としては、図 1 に示す通り、MPI 機構により命令ノードより対象となる処理ノード群に対して処理開始を指示(1)し、共通メモリからパラメタをロード(2)し、処理完了後に計算結果を集積(3)するものである。

円周率計算は下に示す計算式(a)により面積計算にもとづき値を求めるものである。図 3 に示す区間 $x=0 \sim 1$ の面積を部分区間に N 分割し、それを K 台の複数 PC で分担して求積するものである。 $K=2/N=1,000,000$ の場合、 $x=0 \sim 0.5$ を 500,000 分割して PC1 が、 $x=0.5 \sim 1.0$ を 500,000 分割して PC2 がそれぞれ求積することとなる。

$$\int_0^1 \frac{1}{(1+x^2)} \cdot dx = [\tan^{-1}(x)]_0^1 = \frac{\pi}{4} \quad (a)$$

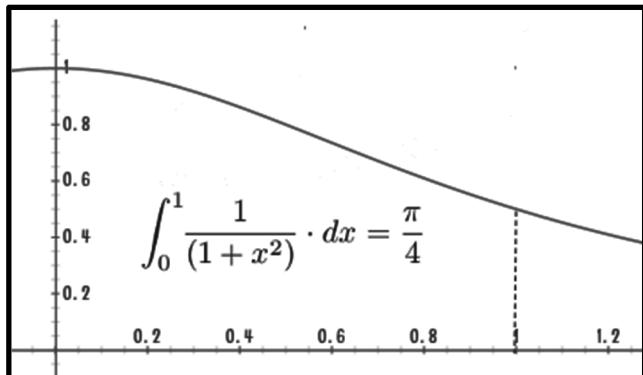


図 3 求積範囲の分割

領域分割数 N を変更することにより、計算処理量を変化させており、システム負荷パラメタとした。分割数 N は 1,000,000～30,000,000 まで変化させた。使用ノード数 K を 1/2/4/8/16/32/40 と変化させた。それらの組み合わせで処理完了までの時間の変化を観察した。単純に言えば、使用ノード数 K を 2 倍にすれば全体の処理時間 t は 1/2 となり、その述べ処理時間は変化しないこととなるが、処理分割のオーバヘッドにより使用ノード数を増やせば述べ処理時間 Kt は増大することとなる。今回の評価はその増加を測定した。

5.1 評価結果

図 4 は使用ノード数 K をパラメータとして領域計算分割数 N を変化させた場合の処理時間の増大である。 $K=2$ における分割数 $N=30,000,000$ の場合以外は所要時間は分割数 N に比例していることがわかる。

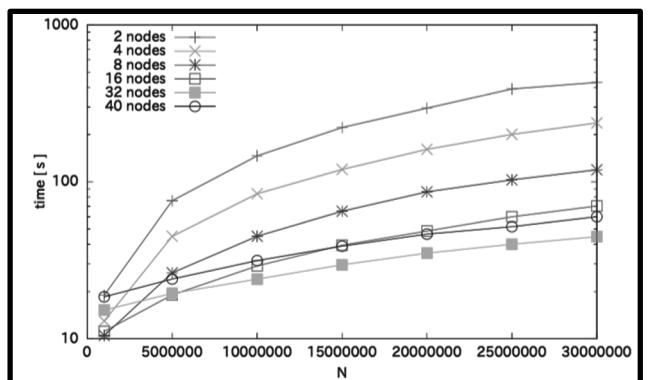
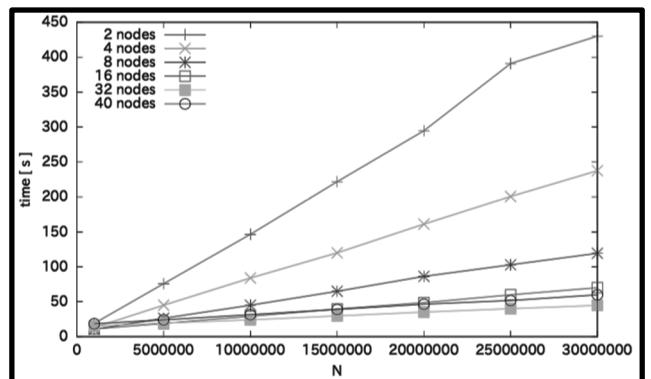
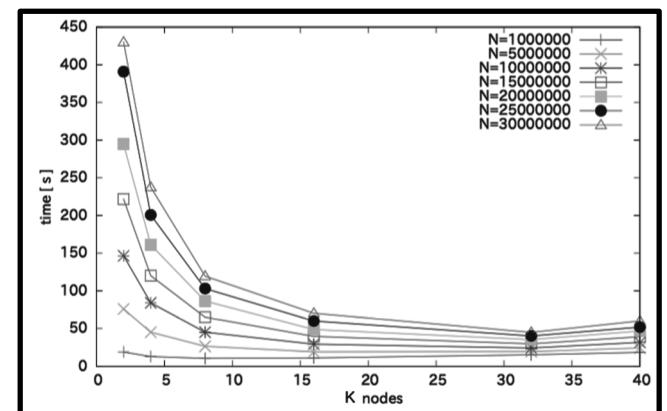




図 4 求積領域分割数 N と処理時間の関係

図 5 は分割数 N をパラメタとして使用ノード数 K を変化させた場合のノードあたりの所要処理時間である。分割数 $N=1,000,000$ を除いて処理ノード数の増加により処理時間は減少している。ただし $K=40$ の場合は $K=32$ に比べて増えている点が疑問点である。

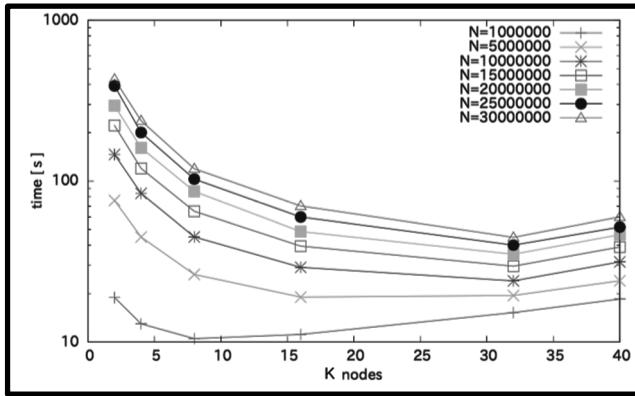


図 5 使用ノード数 K とノードあたりの所要処理時間

図 6 は述べ処理時間 K_t を比較したものであるが、使用ノード数 K の増加に伴い分割オーバヘッドが影響しており、特に領域分割数 N が小さい場合にその影響が大きいことが分かる。

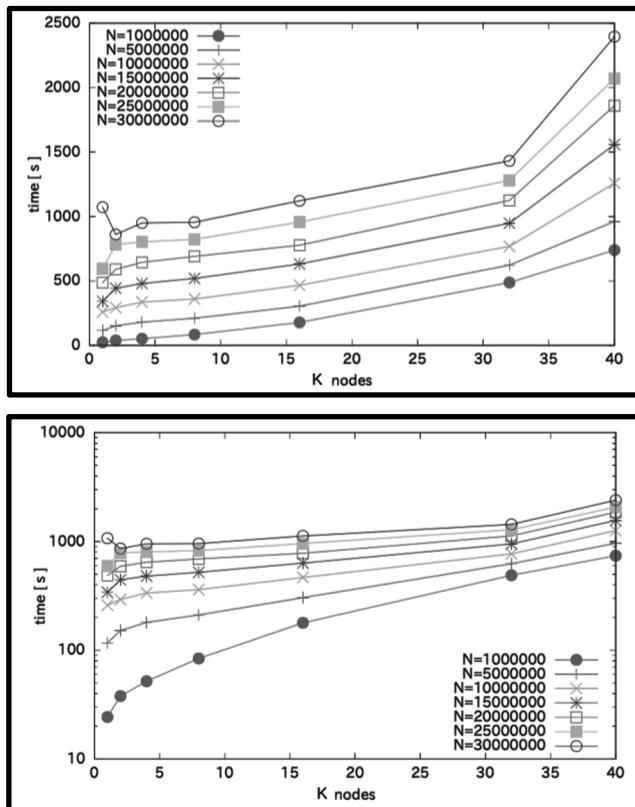


図 6 使用ノード数 K と延べ処理所要時間 K_t

6.まとめ

今回の企画においては複数台の Linux PC をネットワークでつなぎ分散処理系を構築でき、学生でも手軽に扱えるモデル実験システムを安価に構成することができた。本システムにより、Linux OS をベースとした各種分散処理系のパフォーマンス評価を実施できるよう

になった。

構築にあたっては携帯電話組み込み用途に供給されている ARM 系プロセッサを載せた SoC (System On A Chip) 基板を用いた名刺サイズ Linux ミニ PC を 40 台用意し全体制御に 2 台追加し、100Mbps Fast Ethernet で相互接続して一体的に運用できるようにした。

構築の結果として以下の知見が得られた。

- (1) 民生用の USB インターフェースの携帯電話用充電器を高密度に多数配置したが、長時間連続運転は想定外仕様のため特に電源系において放熱処理が必須であり、ファン空冷が必要であった。
- (2) 複数台の小型機器の正常動作確認（死活監視）を含めシステム起動・停止には集中管理機構が必須であった。2 台の監視制御系を追加した。
- (3) システム外ネットワーク（研究室ネットワーク）とは外乱遮断し独立ネットワークとして動作させて評価必要であることが判明した。

初期段階の評価は 2014 年度卒業研究をベースに行っており、今回は以下の項目を重点化して検討した。

- (1) 簡易言語 Python と分散処理ソフトウェアライブラリを用いて円周率計算における負荷分散処理機構の設計
- (2) 集中型制御ノード（命令ノード）による分散ノード端末制御機構の構築
- (3) ジョブ並列分割によるオーバヘッド評価
- (4) 長時間安定性とシステム使用電力評価

次段階評価として、継続発展的に以下の点の解明に注力していく予定である。

- (1) Python 以外の言語による並列処理ソフトウェア・ライブラリ仕様の評価
- (2) 視覚化を含め学生レベルでもより手軽で扱いやすい評価インターフェースの構築
- (3) 分散処理効果が明確に現れるアプリケーションおよび評価パラメタの検討

参考文献

- 1) ビッグデータ基盤
<http://www.ijj.ad.jp/biz/bigdatalab/bases.html>
- 2) <http://raspbian.org>
- 3) Message Passing Interface (MPI)
https://ja.wikipedia.org/wiki/Message_Passing_Interface
- 4) 姫野ベンチマーク <http://accc.riken.jp/2145.html>
- 5) Media Encoding Cluster
<http://sf.net/projects/brripper>

福祉サービス事業所の抱える課題の研究を卒業研究として 推進した結果にみる教育観点での効果

The educational effect analysis of the graduation study which tackled welfare service facility's issues

横井健二*

Kenji Yokoi

Summary

Generally speaking, through collaboration with an outside organization, students can learn a lot of useful and versatile things. In this sense, this type of collaborative study can be said a very effective educational method for students.

We have been pursuing collaborative design study with the welfare service facility in Ena-city for two years as a graduation study. Students have been learning many things through the collaboration work. As a result of two year graduation studies, we found that students learned very useful and versatile things very effectively.

In the first year, students learned how to define a design research subject from their feasibility study. And in the second year, students learned ethnography method skill. These are good examples to recognize effectiveness of collaborative study with an outside organization.

キーワード：福祉サービス事業所、卒業研究、イメージ構築、ブランディング、アート制作

Keywords : welfare service facility, graduation work, image building, branding, art production

1. はじめに

障がい福祉サービス事業所とは、雇用が可能と見込まれる 65 歳未満の障がい者を対象に就労に向けて生産活動の体験させる、あるいは能力向上を目的とした訓練をおこなうなどの多様な就労支援を実施している施設である。こういった事業所が良好な活動を継続的に進めるための課題は数多く存在しているが、事業所と外部との関係でいえば、地域企業と住民からの協力と理解を得ること。そして、生産活動の結果として生み出す制作物の販売が良好におこなわれることの二点が考えられる。

筆者の研究室では、この障がい福祉サービス事業所

の抱えている対外的な課題をデザインテーマと捉えて、平成 26-27 年度と 2 年度にわたり卒業研究の対象として継続的に取り組んできた。研究テーマとなるのは前述した対外的観点での二つの課題にも対応して①事業所のイメージ作り研究、②制作物の研究の二つである。

本稿では、学外の組織の抱える現実的な課題を卒業研究として取り組むことによって得られた教育の効果というものを、一般的な効果並びにデザインの学びという観点から評価、分析した結果を報告する。

なお、研究テーマ推進にあたっては「岐阜県恵那市福祉協議会障害福祉サービス事業所明智ひとつばたご [1]」にご協力をいただいた。

*情報学部 情報デザイン学科 プロダクトデザイン専攻

2. 活動概要

2.1 研究テーマの設定

本研究を進めることに至った経緯についてここで簡単に触れておく。恵那市福祉協議会に勤務されている方の息子さんが筆者の研究室の卒研生として在籍していた。このときに、この卒研生が母親から制作物についてデザインを学ぶ学生として何か考えられないかとの問い合わせを受け、それを筆者に相談として投げかけてきたことに端を発している。

この卒研生と筆者で構想を簡単な企画書にまとめたが、結果的には当該卒研生が卒業研究の締め切りに追われ始める時期になり、企画書が日の目を見ずに終わってしまう結果となった。しかし、新たな4年生を卒研生に迎えるにあたり、当該卒研生が下級生の新卒研生にこの研究テーマをやってみないかと相談を持ちかけ、同意した二名が着手することに至った。

元々は制作物の検討が研究テーマの端を発する切っ掛けになったと前述したが、研究テーマの設定としては、1章で述べた①イメージ作り研究と②制作物の研究として二つのテーマを対象としている。これは、筆者が事前打ち合わせとして、障害福祉サービス事業所明智ひとつばたごを訪れて、責任者の方と相談をさせていただいた後に、面白いアイデアの詰まった制作物ができたとしても、ゆくゆくはその制作物が評判を呼ぶことで、その制作物の評判が他の制作物の知名度や評判にも影響を及ぼすことになるプランディングの考えが必要と判断したために、このようなテーマの捉え方とした。

2.2 研究着手前の事業所での作業、制作物の状況

事業所における作業は事業所近隣の工場の生産部品の一工程を請け負うものと、事業所独自の作業の二つに分けることができる。前者は単純な作業で工賃が直接的な収入となる。後者では切干大根や干し椎茸などの農産物と、牛乳パックの紙を再利用して紙漉きはがきを制作するものなどがある。この制作物は近隣施設の販売場所において販売され、その売り上げが事業所の収入となっている。また前述の二つの作業以外には、アルミ缶を収集しリサイクルするなどの作業をおこなっている。

制作物の種類はあまり多くはない。制作物例でいえば、この事業所外での商品を仕入れて、仕上げて加工、梱包などをするものがある。これには綿靴下や化学繊維を編んだ食器洗浄用のたわしなどがある。このような制作物は、余分な糸の始末の加工や販売用のためのタグ付けと梱包をおこなっている。

3. 1年目の活動概要

平成26年度に実施した卒業研究では、女子学生と男子学生の各1名ずつによるペアによって推進した。筆者の研究室ではなるべく複数の学生による卒業研究を奨励している。その理由には次に示す①～③の三つがある。①成果が必ずレベルアップする。②グループ活動の貴重な経験を積むことができる。そして、③一人で悩んでしまわずに必ず活路を話し合いで見つけることができる。最後の1点は筆者の経験上もかなり重要な観点だと捉えている。1名だと壁にぶつかってしまうと、そのまま動けずに悶々してしまうことがあり、指導教員と一対一の話し合いになる。こうなると、どうしても受け身になって指導教員にどのように進めて良いかの解答を聞く姿勢になってしまうことが多い。一方、複数人数でテーマに取り組むと、教員がそのグループに入っても、グループでのディスカッションとなり、学生の姿勢が単純に受け身にはならない。この点が良い点だと捉えている。

さて初年度の卒業研究においては、イメージ作り研究ではいわゆるプランディング活動における基本的な仕組み作りをおこなった。具体的には事業所の特徴を見極め、その特徴にふさわしいキャッチフレーズ、ブランドロゴ、そして制作物を販売するときにその販売物を梱包するパッケージ用のタグデザインのシステムを作りあげた。

制作物の研究では、牛乳パックの紙漉きはがきに付加価値を加えたものにするとの意図から発想した、版画はがきの制作とマーブリングを施したはがきの制作をおこなった。

3.1 1年目におけるイメージ作り研究

事業所の特徴の見極めは、まず福祉協議会の使命である「恵那市民の誰もが地域の中で互いに助け合い、安心して暮らせる福祉のまちづくりの推進を使命としています」を踏まえ、地域性、作業のためにこの事業所に通所されている障がいをお持ちの方々や職員の方々の意思を盛り込むことが重要と考えた。通所者、そして職員の方々の作業に臨む姿勢は真摯で熱意のこもっていることは、学生と筆者が事業所での制作物の試作や打ち合わせを通じて、強く印象に残ったことである。このことを事業所のキャッチフレーズ作りに盛り込んだ。作成したキャッチフレーズは「心いっぱい、てづくり」である。このフレーズは、事業所でおこなわれている種々の活動のすべてにわたって、通所者と職員が気持ちを込めて、一つひとつの作業に手を抜かずにおこなっている事実を表現しようとしたものである。

また、視覚的なデザインでは、事業所の所在地である

図1. 明智ひとつばたごロゴマークデザイン

図2. 販売品タグデザイン
〔版木アートの版画はがき事例〕

恵那市明智町には日本大正村という町全体の文化遺産を生かした施設があり、大正ロマンという独特の雰囲気を持った地域であり、このことを活用した。そして事業所名の「ひとつばたご」は樹木の名称であり、この地域に群生するモクセイ科の植物で、5月ごろに数ミリの白い花を咲かせ、遠くから見ると樹木全体が綿毛で包まれたように見える。ひとつずつの個々の花を見ると、その花弁は端を束ねた4つの細い白い糸が広がったような愛らしい形をしている。

ロゴマークのデザインと販売品用タグデザインは、図1、2に示すものとした。ロゴマークはひとつばたごの白い糸を束ねたような花をモチーフにしている。販売品に取り付けるタグには、その制作物が「心いっぱい、てづくり」が示す、一品一品が手作りであることを裏書きすることを象徴する意図から、ひとつばたごの花をモチーフとした落款を入れた。「ひとつばたご」のひらがな部分のロゴデザインの書体は、学生が独自に大正ロマンイメージとひとつばたごの花の印象を盛り込むことに腐心したデザインである。

図2のタグデザインは後述する制作物検討の成果である版木に立体物を貼って版木アートと称する版画はがきの販売を想定したものである。

タグの表記に使用した書体は、市販品書体から大正・昭和時代を象徴するロマン書体である。右上にキャッチフレーズである「心いっぱい、てづくり」を横書きで配置した。販売品目名は縦書きとし、右下にはひとつば

たごの花弁の落款を配置している。キャッチフレーズと落款の二つの要素は、販売品が明智ひとつばたごの通所者による、精魂を込めた制作物であることを購入者に伝えるメッセージとなっている。

またタグの用紙は、手作り感をその用紙からも感じてもらう意図で漂白をしていない用紙であるクラフト紙を使い、生成りの風合いを活用している。生成りの風合いは、自然素材の印象を持っているために、このタグが取り付けられる制作物が引き立って見える効果があると考えて、採用したものである。実際取り付けてみるとその意図が正しかったと、関係者間でも確認した事項である。

3.2 1年目における制作物の研究

次に制作物の検討であるが、まず事業所での通年の作業状況、通所者の障がいの状況の確認をおこなった。その結果として実施作業のなかで、創造性の高いものでは、牛乳パック手漉きはがきにさらに契り絵を配したものと、網代網コースター・鍋敷きである。前者は一枚ごとに通所者の作成したいイメージの絵を契り絵で制作している。しかし、創作にあたって創意工夫の度合いは限定されていて、絵柄自身の完成度があまり高くないことや、はがきの盤面に対して絵の大きさや配置のバランスが取られていないなど商品の観点からはその魅力はあまり高いとはいえない。後者の網代網とは、桧の薄い板を短冊状に細く切ったものを編んで作成し、周囲を千代紙の帯で装飾した制作物である。完成度が高いものとはいえるが、一般的に販売されている同様の商品に比して、購入者の興味を引き付けるまでには至っていない。

卒研学生と筆者が相談した前述のような分析結果から、制作物を検討するための現行の通所者を対象とした場合に、作業上で配慮する要点は次に示す、①～③の三点とした。

- ① 作業は単純な内容のものが向いている
- ② 高度な創造性を必要とするものは不向きである
- ③ 作業には丁寧に心を込めておこなう。そして、それが制作物にも表れる

この三項目を踏まえて、制作することとした制作物は次の二種類である。制作物の前提として考えたのは、牛乳パック手漉きはがきに付加価値を付けて、独自性を持ったものにする案である。第1案は、木版画である。これは、版木に通所者が厚みの薄い立体物を自由に貼り付け、立体物の構成の面白さを版画で移し取る制作物である。実用品というよりアート作品的な

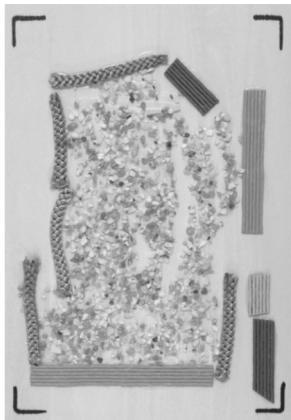


図3. 版木アート1

図4. 版木アート2

図5. 版木アート額装例

図6. 版画はがき額装例

図7. マーブリング1

図8. マーブリング2

発想である。名称は図2にタグ事例を示したが、版画自身をコラージュ版木アートと名付け、版木自身もアートとしてみるので、版木アートとした。

第2案は、マーブリングという墨流し技法を用いて水面に浮かぶ絵の具のパターンをはがきに施して、はがきの付加価値を高める案である。

図3、4に版木アートの作品例を示す。図3は細かい砂の粒を丁寧に一つずつ貼り付けた作品であり、根気と構成力が活かされる作品である。砂粒の周りにはクラフトテープと呼ばれる紐を並列して貼り付け、こ

のテープと中央の砂粒が微妙なバランスで配置されている。一方、図4の作品2は紙紐を渦状の形に成形して、数多く配置、構成した作品である。これも渦状にした紙紐の輪が大きさ、向きなどを絶妙なバランスで貼り付けてある。紙紐を木工用ボンドで貼り付けようとすると、直ぐには思い通りの形には固定し貼り付けることはできず、一定時間指で押さえていなければならぬ。制作には大変根気を必要とする作品である。

なお版木というのはインクを付けて版画を刷るためのものである。しかしそれにも関わらず、この版木自身を眺めていると、作品個々に独特の味わいがあつてアートの作品と呼べるものになっていた。図5はこの版木アートを額装した例で、立派なアートとして通用するレベルになっている。写真では小さくて確認し辛いが、版木アートの右下に例のひとつばたごの落款を押してあることも、この作品の価値をさらに引き立てている。

図6は版木を用いて文字通り版画を作成し、これも図5と同様に額装したものである。本稿では細かくは言及しないが、一つの版を用いて異なる色で版の方向を変えながら複数回の色付けをした例である。作品に深みが出て、面白いニュアンスを持った作品に仕上がっている。

図7、8にマーブリング作品の事例を示す。マーブリングとは日本においてはいわゆる墨流しと呼ばれる技法である。水に浮かぶ特性のある絵の具を落とし、波紋状の模様になったものを紙で移し取る技法である。多少のテクニックが必要となるが通所者の方々も数回試していくうちに、相応にコツを覚えて面白い作品作りをすることができていた。

また卒研生が工夫をし、いくつかのテクニックを編み出し、その手順に従うと、ある種の特定のパターンを作成することができるようになった。また使用する絵の具もマーブリング専用の絵の具の他に、油絵具などでも独特のマーブリングパターンを得ることができることを試行錯誤の末に発見し、異なる作風の作品を意図的に制作することができるような結果を得た。

3.3 デザインマニュアル

また、イメージ作りでの大きな研究成果は、ロゴマーク類の使用に関するマニュアルをまとめたことである。筆者自身が前職の企業勤務時代にブランドマネジメントの部門に属し、こういった業務をしてきたノウハウを伝え、学生がまとめたものである。かなりしっかりとしたレベルまで記述し、まとめることができた。イメージ作りというものは、短期間で確立できるものではなく、継続的に統一したイメージで活動が続

タグデザイン 商品名 + 落款 (*落款は10×10を使用 *印刷用紙は明るい色彩のクラフト紙の使用を原則とする)

パターンA

通常タグ(幅50cmより大きい)を利用する

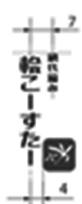

フォント:DFロマン黒A Std W7

商品名 30pt

商品名小文字は 10pt

落款の高さは商品名に少しかかるように配置
商品名とサブタイトルは上で整列させる

パターンA 例



パターンA 2行の例

パターンB

細めのタグ(幅50cm以下)を利用する

フォント:DFロマン黒A Std W7

商品名 22pt

商品名小文字は 10pt

パターンC

幅にゆとりがあるものや縦巻きのタグを利用する

フォント:DFロマン黒A Std W7

商品名 30pt

商品名小文字は 12pt

パターンD

落款8×8を使用する

フォント:DFロマン黒A Std W7

商品名 22pt

商品名小文字は 10pt

4

図9. タグデザインマニュルページ例

図10. 綿靴下にタグデザインを付加した例

けられることが重要であるが、こういったマニュアルが存在すれば有効なツールとなる。図9はマニュアルのページの一例で、タグデザインの一番基本となる商品名と落款のそれぞれの大きさ、配置、使用書体について規定しているものである。また図10はマニュアルに基づいて作成したタグを施した販売品の事例であ

る。これは一番の売れ筋の商品である綿靴下の例を示している。このタグは帯状の紙を商品に巻き付けるような形式で付けられるようになっており、商品の裏面に販売者名などの付帯的な情報が記載されるようなデザイン上の工夫をおこなっている。

4. 2年目の活動概要

平成27年度の2年目の活動は、女子2名の卒研生が担当することとなった。大きな括りとしては、イメージ作り研究と制作物の研究を継続することとした。具体的な活動項目は、1年目の活動で得られた成果を明智ひとつばたごの関係者と相談して決定した。

イメージ作りについては、大方の視覚デザイン要素とマニュアル化については、昨年度に研究をおこない完了している。このために、実質的な広報活動を主体としておこなうこととした。

具体的に実施したのは、二点でパンフレットデザインとWebサイトのデザインである。

制作物の研究については、昨年度の活動が新聞に掲載されたり、市役所のロビーで「ここりいっぽい、てづくり展」を開催し、来場者に好評であったりするなどの

成果を収めた。しかし、当初念頭に置いた新しい販売品につなげるとの観点では、残念ながら版画アートはがきやマーブリングはがき〔商品名としては「色模様はがき」と名付けた〕は、売り上げに貢献しているとはいえない状況であることが分かった。これはある意味無理からぬことで、販売場所は大きく分けて三種類があるが、その特性からもうなづける内容であった。その三つの販売場所とは、まず福祉協議会関係の施設である福祉センターがある。ここでは、受付脇などに机を置いて他の福祉関係用品〔身体障がい自助具や成人用オムツなど〕と併置されて販売されている。

次に、恵那駅にある恵那市観光協会が運営する地域の特産品を販売する観光物産館がある。こちらは、「えなてらす」と称し、多くの観光客が訪問することもあり、売り上げは期待できる。しかしながら、他のお店や施設で作られたたくさんの特産品があるなかで、明智ひとつばたごの販売品だけを目立たせるわけにもいかず、他の多くの特産の中に埋もれてしまっている。

最後の販売場所は関係者の知り合いが経営する喫茶店などに置いてもらっての販売である。こういった場所では、あまり多種の販売品を置くことはできず、販売活動は限定的にならざるを得ない。

以上のような結果から判断したのは、独自性ある制作物やアート作品を制作しても、そういった商品を現行の販売場所にて購入者となるお客様に対してアピールする環境作りは困難であり、単に新たな制作方法やアート作品のあり方を研究しても、実効は少ないとの結論を出した。その結果として、新たな制作物の研究は通所者の方々がアート制作に意欲的に取り組んでくれて、作業後に楽しかったという効果を第一の目的に実行することにした。

この考え方は明智ひとつばたごの関係者の方々もある意味同じ思いがあったようで、賛同をいただき、2年度目の制作物研究の方向性を決定した。

本稿の執筆中の段階では、まだ平成27年度の卒業研究の成果が完全には出ていないこともあり、ここでの報告は執筆時点〔平成27年10月19日〕での内容になることにご容赦をいただき、これまでに実施してきたことの概要を説明する。

4.1 2年目におけるイメージ作り研究

まず、イメージ作りに関しての活動であるが、パンフレットのデザインとWebデザインに取り組むことにした。

パンフレットは、これまでA3大の用紙を二つ折りしたものを利用されていた。このパンフレットのデザインを一新するとともに、新たに一つのタイプを加え

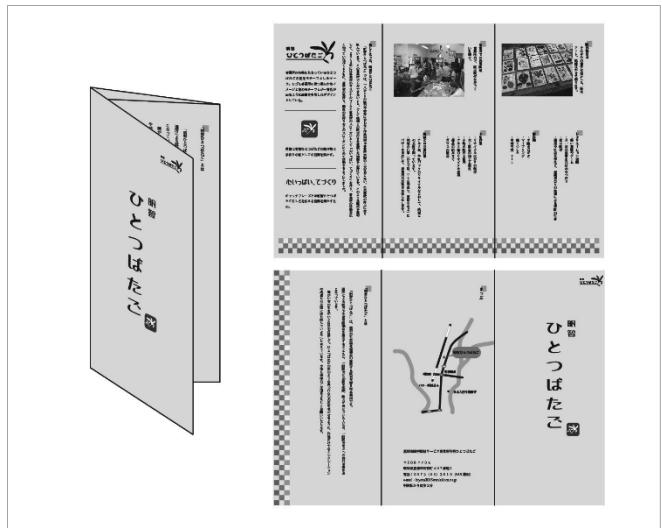


図11. A4タイプ三つ折りパンフレット

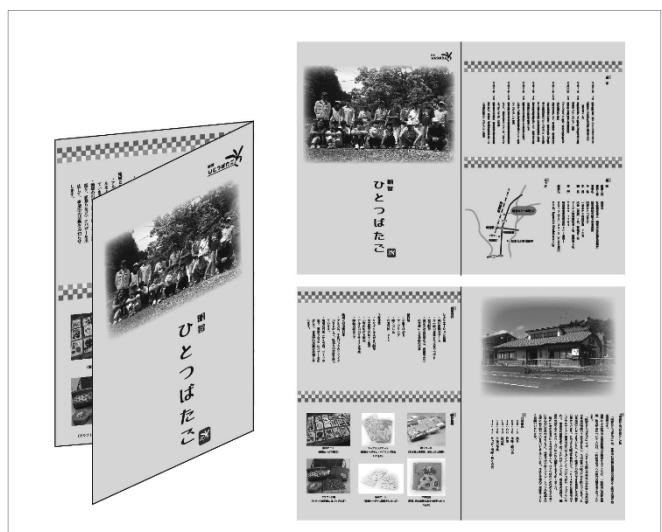


図12. A3タイプ二つ折りパンフレット

図13. Webデザイン案

て二種類のパンフレットのデザインを完成させた。基本的な記載内容は同様であるが、そのパンフレットの

使用目的によるタイプ別の提案である。

最初のタイプは、A4用紙に両面印刷をおこない、それを三つ折りにするタイプである。このタイプの想定用途は、地域のイベントに明智ひとつたごがブースとしての店舗を設けて直接的にお客様に制作物、生産物を販売する場合に配布するものである。用途とその目的から、パンフレット自身があまりかさばらずにブースに置いても自己主張をせずに興味を持たれたお客様だけが手に取るとの想定で、小さ目の大きさの変形タイプにした。

二番目のタイプは明智ひとつたごがその活動推進上で必要となる外部組織との交渉等の際に配布する目的のパンフレットである。ある意味企業における企業紹介パンフレットと呼ぶものである。したがって体裁はA3用紙に裏表印刷をしてA4見開き4ページとして相応の重みを感じるデザインを意識したものとしている。

二種類のパンフレットのイラストを図11、図12に示す。デザイン上の印象を表現する要素として、大正村の着物の柄を意識した市松模様を冊子の視覚デザイン要素に活用している。

次にWebサイトであるが、こちらは現時点では第一次案が完了した状況である。このことを前提に説明をさせていただく。Webサイトというのは、色々と細かく情報を掲載して、対外的にアピールし情報発信するのが理想的ではある。しかし、Web制作の専門家に依頼して制作しても、その後の更新作業が上手くなされないと、サイトは訪問者も減少し価値を持たないものになってしまう。そこで今回のサイトデザインの骨子とした考え方は、基本的な情報、例えば事業所紹介、所在地やそして電話番号などの変更の少ない情報を福祉協議会サイト内に掲載し、日々の活動や新しい制作物の情報は、ブログサービスをおこなっているサイトに掲載するとの案を提案し、その考えに沿って制作中である。

図13は、福祉協議会のサイトに掲載するいわば基となるサイトのトップページのデザイン案である。このサイトには数ページの情報しか掲載しない予定で、ここから外部のブログサイトへリンクを設けていく仕組みで今後デザインを検討していく予定である。

ブログサイトの選定や具体的なデザインについては、どのブログサイトが適当なのかを総合的に判断して決定する予定であるし、具体的なデザインについてもそのブログサイトの条件などでも大きく差が出てくるので未定である。

4.2 2年目における制作物の研究

一方、アート制作については、初年度の版画コラージ

ュアートやマーブリング制作で得られた知見をもとに考えるべきことをまとめた。まとめたものが以下の三項目である。

① 単純な手順、制作手法のものが向いている。また、作成の過程で気づいた効果などを直ぐに活用して制作している。特に偶然がもたらす面白さなどがあると創造性が刺激され、面白い作品になっていく

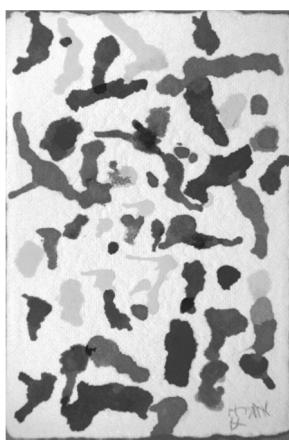


図14. ドリッピング1

図15. ドリッピング2

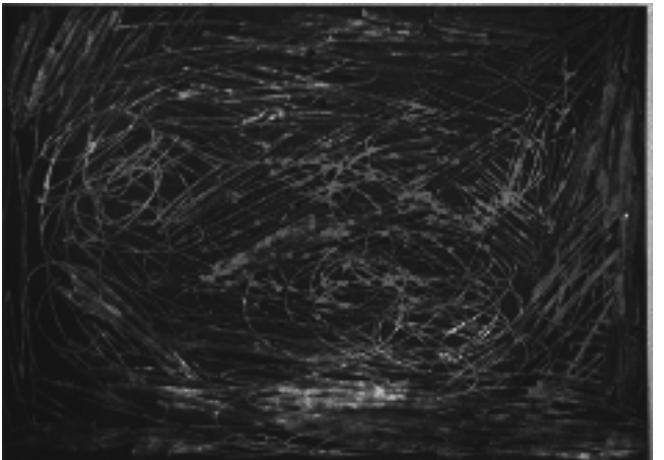


図16. スクラッチ1

図17. スクラッチ2

- ② 下書きをするなど、高度な創造性を必要とするものは不向きである
- ③ 作業は一つひとつの手順を丁寧におこなっており 制作物にもその緻密さ、正確さが表れる

以上のような考えをもとに、これまで二度のアート制作をおこなっている。今年度はあと一回、11月の中旬に実施予定である。

アート制作を実施する日のスケジュールとして二時間で一つの制作手法のものを終えて、午前と午後に一つずつの制作手法に取り組むことしている。初年度含めて、制作状況を見ていると、個々の通所者の障がいの種類、度合いの差にもよるが、なかなか手を動かさずにいたかと思うと、興が乗ると一気に手早く作業を進めて作り上げてしまう。また非常に細かい作業を丁寧に根気良く続けて制作するなど、制作時の光景は大変興味深い。

今年度の初回に実施したアート制作は、ドリッピングとスクラッチである。前者を午前中に後者を午後に実施した。ドリッピングとは、絵の具を紙の上に垂らし、その垂らした絵の具をストローで息を吹きかけて流し、絵具の流れた跡のパターンの面白さや美しさによって作品を作り出すものである。

スクラッチとはあらかじめ紙の上に、様々な鮮やかなクレパスを塗り分けておく。次にこの色彩の上に黒、あるいは濃い茶色などの色を塗る。そして最後に、爪楊枝などの細い先を持った道具で、表面の濃い色彩の部分を剥ぎ取って、細い線を使って絵柄を描いていく手法である。

図14、15がドリッピングの作品である。一方図16、17がスクラッチによる作品例である。

ドリッピングは、偶然性がその作品の出来具合に大きく影響を及ぼすこともあり、絵の具の垂らし方や息の吹きかけ方を加減することで、その作風は大きく異なる。このために、通所の方々は気軽に躊躇無く制作に臨んでいた。

一方、スクラッチのアート制作は下地となる色塗りと二層目の表面の濃い色塗りには、さっさと手が動いて無作為に塗っていく。しかし、最終の爪楊枝による描画となると、急に手が止まってしまっていた。これは知見として前提にした、②の「高度な創造性」を必要とするといったことが大きなハードルとなっているものと思われる。図16の作品は、特に絵柄を工夫して何を表現するということではなく、抽象的な線で描いている。このために、特に描き始めるときにどの部分にどのような線を描けば良いかなどの綿密な計算は為されずに制作を進めていく制作方法である。一方、

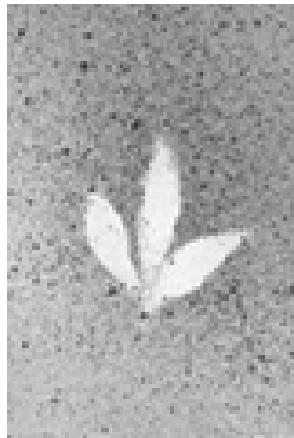


図18. スパッタリング1

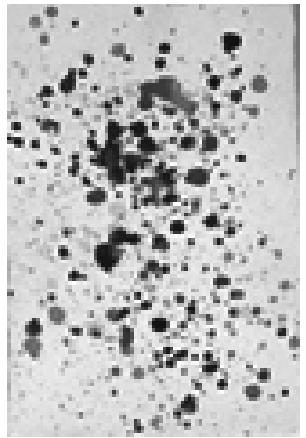


図19. スパッタリング2

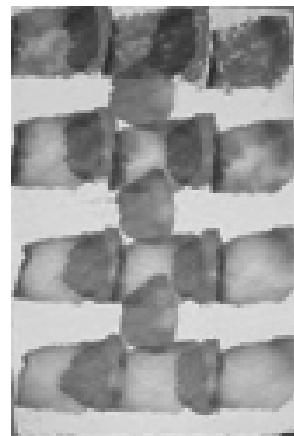


図20. スポンジアート1

図21. スポンジアート2

図17の作品は、人物と犬のような動物、そして空には太陽や雲が浮かんでいる構図で絵が描かれている。このような絵柄になると、いきなり何も考えずに描くというよりは、大まかな絵柄を頭の中に構想してから描き始めることとなる。したがって、他の通所の方々の作風を見ても、このような絵柄は少なかった。

二度目のアート制作には、一回目の経験を踏まえ、単純な手順、そして制作過程を確認し、その効果を上手く活用しながら制作できる手法のものを選択するようとした。

実施したアート手法は、スパッタリングとスポンジアートである。前者は、金網に絵の具を付けたブラシを擦り付け、絵の具のしぶきが飛んだものを紙に移し取る手法である。この時に紙の上に絵の具のしぶきがかからないようにカバーをすると、そのカバーの形に白い部分が残るという制作ができる。

後者のスポンジアートとは、約3cm立方の大きさに切ったスポンジに絵の具を染み込ませて紙に色を付けていく描画手法である。このときに二色の絵の具を混ぜることで、色のグラデーションを表現できたり、スポンジをスタンプのように押し付けたりすることで、

図 22. スポンジアート制作風景

同じようなパターンを紙面上に連続して表現することができる。

図 18、19 がスパッタリングの手法を用いて描いた作品の例である。図 18 は木の葉を紙の上に置いて絵の具のしぶきをカバーしているがために、綺麗に木の葉の形が紙面上に写し取ることができている。一方、図 19 は、かなり大きい色の粒がしぶきになって飛んでいっている、というよりは絵の具のしぶきが垂れてパターンができているという印象となっている。

図 20、21 はスponジアートの事例で、図 20 はスponジに青と赤の絵の具を付けてそれを紙面上に連続的に配置していっている。またその後に、赤の絵の具だけを付けて、リズムを取るように配置している。また、図 21 は、緑、赤、青といった絵の具をスponジに染み込ませ、スponジの角を利用してスタンプのように連続して押し付けて制作した作品である。押す位置、方向などを一回、一回確認しながら制作を進めている。残念ながら紀要は白黒印刷なので、この美しさをお見せできないのが残念である。

前述した四種類が平成 27 年度に実施したアート制作内容である。制作時の様子はいずれの時も、普段の生活では接しない学生や教員と一緒に作業をするという、ある意味の非日常性といった時間での緊張感と、自分が手を動かすことで、想像もしなかった美しいアートが出来上がっていく楽しさというものを実感として感じているようだった。

制作途中で筆者らが通所者の方に楽しいと質問すると、即座に笑顔で「はい」との返事が返ってきた。また、綺麗な作品に仕上がっているとほめると、恥ずかしそうに笑っていたのが印象的であった。

5. もたらされた教育的効果

もたらされた教育的な効果は大きく分けて二分類にことができる。最初はもちろん一般的な教育効果

の項目となるが、外部の組織や人間に接触することによる学びの効果である。日常触れ合う機会のない、外部組織の物事の進め方やそこで勤務されている方々と接触することによる社会との触れ合いによる学びである。そして加えて、対人的なコミュニケーションの経験である。これについては、大きな効果があることは個別の事例を持ち出さなくとも理解していただけることと思う。実際に 2 年間を通じて学生を見ていて、過程においてもそのコミュニケーションスキルの上達には目覚ましいものがあった。彼らを見ていると、自分の発した言葉や情報が相手側に伝わり、そこである反応や返答を受けることによって、逐次学んでいる印象を受けた。特に、デザイン案の提示というものは、しっかりとその意図や細かい仕組みなども説明しないと分野外の方には上手く伝わらない。そんなところを上手く伝えていくことには、こういった実践的なテーマの推進はまたとない機会といえる。

コミュニケーションの訓練は、学内という閉じた世界であれば、コミュニケーションが上手くいかずには間違った情報を双方が受け取ったとしても、実質的に大きな問題とはならない。しかし、外部組織と約束をしてデザイン業務を進めるとなると、そこに金銭的なやり取りの有無に関わらず、契約といった概念の約束が取り交わされたということになる。したがって、そこで合意されたことが期日までに履行されなければ、そこには大きな問題が発生することになる。その辺は学生もその本質は理解しているかどうかは別として、外部組織の方との約束は学内の約束とは異なると基本的に感じているのか、しっかりと期日を守って活動を進めているのが実情である。また、曖昧な状況であれば学生側から確認をするようなコミュニケーションの基本が身に付いていているようであった。

以下、次節からは一般論的な教育効果以外のデザイン的な教育効果について、検討した項目について解説をしていく。

5.1 1年目の活動でのデザイン的教育的効果

1 年目の活動については、教員である筆者としても初めての体験であることから、おぼろげながらしか進め方については構想を持っていなかった。詳細はすべて学生たちと事業所を訪問して実際に障がいを持つ通所者の方々と触れ合って、まず第一回目のアート作品制作の試みをしてから見えてきたことである。

一年目である平成 26 年度の活動では、どのような制作物を作ることができるかは、全くとっかかりの無い状態でのスタートだったが、制作物を販売するとの目的から、制作物から複数の制作物ができるような版

画的な制作物が良いと思い、開始したアート制作の提案であった。

最初の版木制作では、仕掛けた我々側が教えられることばかりだった。もともとの構想としては、ボタン、毛糸、アルミフィルなどの身近にある様々な物を版木に貼り付けて、多少でも面白い絵柄を作成してもらえば良いといった程度の構想は描いていたものの、結果は正直言って逆に想定を裏切られる結果となつた。ほぼすべての版木が版画を刷ることをしないでもそのままがアート作品と呼ぶことのできるものに仕上がっていだ。作品のすべてが抽象画とでも呼ぶべきレベルのものになつていて、あまり作為的な構想無しに構成していく造形的な制作のあり方のお陰もあるのか、非常に面白い作品に仕上がっていだ。健常者であればどうすれば美しいバランスになるかを考えて制作をしていくのであらうが、そういった他的な美意識の観点などを意識せずに、ある意味純真無垢な気持ちで創作に向かつた結果、このような良い作品に結びついたものだらうと推測する。

この点は学生にとっても同様の意識だったようで、いわゆる単純なデザインのプロセスによる問題発見、そして問題解決のデザイン発想とは異なる経験である。そういう意味でデザイン活動の幅の広さを発見できたことは、大きな収穫であった。

初年度の研究テーマ推進でデザイン的な教育効果の学びとしては、換言すると課題を捉えていく上でデザインのテーマ自身をどのように定義するのかを学べたことが挙げられる。

デザインの業務はデザインの対象が具体的なものだったとしても、デザインを進めるにあたって着目する点を発見するには、関わる多くの要素から思考錯誤の作業によって着眼点を見つけ出す過程が必要となる。

特に今回のような研究テーマの場合は、「制作物の研究」としか規定されておらず、そのような枠組みから学生が自分たちの課題を見つけ、定義付けをしていくプロセスはかなり高度なデザイン作業といえるものだつた。ある意味の偶然性にも恵まれたが、版木自身がアートになるとの気付き含め、デザインのテーマ自身を見極めていく過程を経験できたことは大きな学びにつながつたものと考える。

5.2 2年目の活動でのデザイン的教育的効果

2年目については、筆者も相応に心構えをして臨んだつもりではあつたが、また多くの発見があつたのも事実であった。1年目は通所者に作業をしてもらうにも、作業を上手くおこなつていただくことが、第一と考へて必死にサポートしていだ。

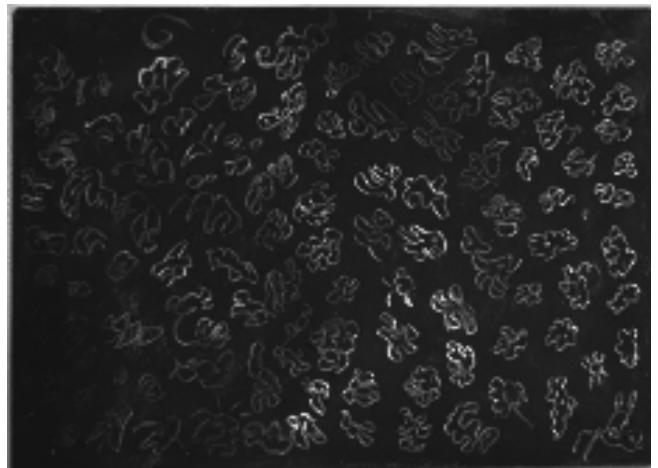


図 23. アート性の高い作品事例

しかし、2年目となって多少の余裕が出てきたこともあり、卒研生とともに通所者の作業を見守ることにも時間を割けるようになって、アート制作の過程を観察していた。その過程で面白い事実を発見した。数名の作業者が、自分がアート制作をする過程で自分なりに、アート制作の作業によって美しい効果や面白い絵柄ができることに気が付いて、それを繰り返していることである。通所者の方に、なぜこの作業を繰り返しているのと問を掛けても、面白いでしょう、あるいは綺麗でしょうとしか返答をしてこないのだが、明らかにそこには、美的感覚やアート的な試みとして面白い表現が見えてきていることを理解しておこなつてゐることは事実であった。通所者の方自身では、それを分析してどのような意味があるかを語ることはできないが、大げさに言えば芸術的な創作意欲が出てきている局面であつた。

図 23 はある通所者が描いたスクラッチ手法による作品である。この通所者は梅の花のようなパターンを紙面全体に細かく、丁寧に時間を掛けて描いていた。他の通所者が、二時間に 2 作、3 作と仕上げている時間を掛けて、一つの作品を仕上げていた。引っ越し思案の性格もあって、本人に凄い作品ですねといつてもたいしたことはないとは卑下して応対するものの、この執着心、熱心さには頭が下がる作品である。こういった作品を作成できる、性格や技能といったものはもう少し研究を進めなければなんともいえないが、学生にとっては、デザインやアートは専門家がするものといった理解を大きく覆すものになつたに違ひない。

2年目でのデザイン視点での学びとして大きかったのは、現場で観察する体験だったといえる。デザイン分野でのこの現場観察という手法はエスノグラフィーと呼ぶもので、文化人類学などの分野で使われている手法である。現場に出向きデザイン課題となる対象者

がどのような行動を取っているかを観察し、そこからデザインの糸口を見つける手法である。

2年目の「制作物の研究」は、通所者の方々に楽しい体験、面白い体験を味わってもらうことを目的としたため、観察の手法は有効だったといえる。そしてこの手法を学んだことは、重要なデザイン手法の学びの体験につながったものと考える。

5.まとめ

本稿では学外の組織の抱える課題を起点としたデザイン研究のテーマを卒業研究として取り組んだ結果がもたらす教育的な効果についてまとめた。

一般的な教育効果としては、対外的なコミュニケーション含めた社会性の学びの効果である。学外の方との接触、そして現実の課題と向き合うことで、学生の社会性は大きく培われる。

一方、デザイン的な観点での教育効果については、1年目、2年目とやや異なる学びの効果を得ることができた。

1年目には、課題を捉えていく上でデザインのテーマ自身をどのように定義するのかを学ぶことができた。そして、2年目にはエスノグラフィーと呼ばれる現場観察からデザインの糸口を見つける手法を学んでいた。

学外の組織と連携することで学生にとって大変多くの経験、そして学びができたことが確認できた。実社会に出ると当たり前のように様々な種類のデザイン課題に遭遇することとなる。その度に最適な手法を用いて、デザインテーマ自身を定義していくことが必要となるが、そういった経験を学生の時代にしておくことは、学生自らの持つデザインの知識や能力を格段に広げることにもつながるものと考える。

今後も学外組織と連携したテーマの推進を通じて学生の学びの幅を広げることに努力していきたいと考えている。

住所：〒509-7704 岐阜県恵那市明智町407-1

Webページ：

http://www.ena-shakyo.or.jp/modules/handicapped/index.php?content_id=1

〔平成27年10月19日閲覧〕

謝辞

最後に本研究を進めるにあたりご協力いただいた「岐阜県恵那市福祉協議会障害福祉サービス事業所明智ひとつばたご」の職員の方々に、本稿の場を借りて厚く御礼申し上げる。

注釈

- 1) [1]障害福祉サービス事業所明智ひとつばたご
「障害福祉サービス 就労継続支援B型事業所」として恵那市より指定管理を受け運営している事業所。

ドイツにおける鉄道貨物ターミナルの実態に関する研究

A Study on Rail Freight Terminal Actual Condition in Germany

小澤茂樹*

Shigeki Ozawa

Summary

Considering importance of rail freight terminal and lack of existing study of the terminal, this paper tries to show basic information of the terminal in Germany and to make basic research for further study of efficient use for the terminal. There are 8 categories of rail freight terminal in Germany. In order to make efficient terminal use, rule and organization for the efficient use are established, and economic rationality is included in them. Some terminal operators have capital ties with their specific user. The ties meet economics theory. On the other hand, there is a possibility that the ties would provide discriminatory treatment for the users having the capital ties.

キーワード：鉄道貨物ターミナル、ターミナルの保有・運営・利用、資本関係、差別的待遇、スロット配分、コンフリクト

Keywords : Rail freight terminal, Terminal owner, Terminal operator, Terminal user, Capital ties, Discriminatory treatment, Slot allocation, Conflict

1. はじめに

1980 年代以降、モータリゼーションの進展や国鉄による非効率な運営などが起因して¹、ヨーロッパにおける多くの国々では鉄道の輸送量が減少した。特に、鉄道貨物輸送の減少は顕著であり、鉄道の輸送量減少は、多くの国鉄に莫大な赤字をもたらした。1980 年代のヨーロッパにおいて、国鉄の赤字肥大化や度重なる運賃値上げ、低いサービス（乏しい輸送頻度や遅延の多発、老朽化した車両）、ストライキの多発は、当時、深刻な社会問題となつた。

こうした状況の中、欧州連合 (EU) の設立を契機に、ヨーロッパでは鉄道運営の見直しが模索され始めた。1990 年代以降、EU は線路をはじめとした鉄道施設（インフラ）²の保有・管理と列車の運行を分離させる鉄道政策（上下分離）を採用した。この政策の具体的な内

容とは、以下の通りである。すなわち、インフラは公的機関が保有・管理し、鉄道事業（列車運行事業）への参入・退出の自由化した上で、列車運行において複数の列車運行会社間の競争を促進させ、鉄道サービスの効率性（運賃の低下、輸送頻度の向上、定時性の確保など）を生じさせることである。インフラと列車運行に分離した背景には、国鉄による非効率な運営や低いサービスの原因は独占、言い換えれば、競争原理の欠如であったと考えられていたことがある。上下分離を欧州連合加盟国 (EU 諸国) に導入することは、当初、必ずしも進展しなかつたが、2000 年以降に講じた様々な政策パッケージなどにより、現在、殆どの EU 加盟国において、鉄道の上下分離は導入された³。

上下分離においては、インフラの保有・管理と列車の運行は異なる主体によって行われるため、両者の間にはインフラの賃借が発生する。また、この賃借の発

¹ 当時、ヨーロッパにおける殆どの鉄道は国鉄によって保有・運営されていたが、一部の鉄道については民間の鉄道事業によって運営されている。

² ここでの鉄道施設とは、線路や信号施設、保安施設、架線、電力施設、車庫、旅客駅、貨物駅、工場、給油施設を示している。一般に、これらの施設は、包括して「線路」と呼ばれている。

³ 上下分離の進展に用いられた EU 政策およびその展開については、小澤(2007a)を参照。

生に伴い、インフラの使用に対する対価、すなわち、インフラ使用料が発生する。

列車運行会社間の競争を通じ、上下分離は鉄道の効率性を高める効果をもたらしたが、その反面、インフラの利用に関する新たなシステムを構築させる必要性を生じさせた。こうした点は、上下分離のデメリットを主張する見解の根拠の一つに取り上げられている⁴。

2. 研究の背景と目的

2.1 研究の背景

上下分離の導入は、インフラという希少資源の効率的な利用（効率的な資源配分）のあり方やそれを実現させる手法に関する新たな研究課題をもたらした。特に、インフラの使用料金は上下分離の実施に不可欠であり、その設定に注目が集まった。

インフラのうち、最も重要な施設は線路であり、インフラの費用の大部分は、線路に関わる費用で占められる。現在、インフラの使用料金は「線路使用料(Access charge)」と総称されている。なお、線路使用料には、旅客駅や貨物駅を除く施設（信号施設や電力施設など）の使用料金が含まれる。

通常、長さや重量、速度、使用時期などが異なる複数の列車が、同一の線路を利用する。そのため、公平・公正な費用負担を明確にすることは容易ではない。このことは、電気通信や電力、ガズなどのネットワーク利用と大きく異なる点である。線路使用の特性が起因し、EU諸国における現実の線路使用料は各国ごとに異なっており、その設定に関する考え方や設定方法は一様でない⁵。

こうした状況の中、従来、ヨーロッパにおいて線路使用料に関する研究が行われてきた⁶。しかし、線路使用料には含まれない貨物駅（ターミナル）の使用料金やターミナルでの積み替え時間帯（スロット）の配分については、研究対象とされてこなかった。鉄道貨物輸送において、線路とターミナルは補完的な関係にあり、両者が有機的に結合しなければ効率的な鉄道貨物輸送は実現されない。

2.2 研究の目的

上下分離導入後のターミナル利用を検証した既存文献は存在せず、また、ターミナルの形態や保有者、運

営社、利用者などの基礎情報が整理された既存文献も存在していない。こうした状況を踏まえ、本稿においては2つの目的を定めている。1つは、ターミナルの形態や保有者・管理者、利用者などの基本情報を収集し、効率的なターミナルの利用を考察するための足場を整備することである。なお、本稿では、比較的に情報が収集し易いドイツのターミナルを調査対象とした。

2つ目は収集した基礎情報を基に、ターミナルの保有や運営の実態を経済理論からアプローチし、ターミナルの保有や運営に関する経済合理性を明示すると共に、ターミナルという希少資源の効率的な利用（配分）を阻害する要素を明らかにする。その上で、ターミナルの効率的な利用に関する詳細な分析および考察を実施する上で、今後、取り組むべき調査・研究の対象やその内容を明確にする。なお、本稿では2つの目的のうち、前者にウエイトを置く。

2.3 調査の方法

ドイツのターミナルに関する既存文献が存在しないことを踏まえ、ターミナルの情報収集を行うために現地調査（ヒアリング調査）を実施した。今回の現地調査においては、Frankfurt、Köln、Duisburgに立地するターミナルを調査対象とし、各ターミナルにおける保有者や管理者などに対してヒアリング調査を実施した。具体的なヒアリング対象は以下の通りである。

- DB Netz
- DUSS
- CTS
- Isewan Europe
- TFGI
- Kombiverkehr
- Duisport

また、各地の現地調査においては、主に以下の内容について情報を収集した。

- (1)ターミナルの形態
- (2)ターミナルの保有者および管理者・運営者
- (3)ターミナルの保有者および管理者・運営者の関係
- (4)ターミナル会社の業務および役割
- (5)ターミナルの料金およびスロット配分の決定者
- (6)ターミナルにおけるコンフリクトの発生状況
- (7)ターミナルにおけるコンフリクトの発生に対する対応

⁴ 上下分離が効率性以上のコストを発生させる懸念については、Ivaldi & McCullough (2001)や Drew(2009)を参照。

⁵ 線路使用料の考え方や設定の違いは線路使用料の水準の違いをもたらしている。殆どEU諸国において、線路使用料の単価として列車キロが用いられているが、列車キロ当たりの線路使用料は各国ごとに異なっている。

⁶ 線路使用料に関する既存研究としては、ECMT(2005)や Nash(2005)を参照。

3. ターミナルの分類（形態）

3.1 ターミナルの役割から見たターミナルの分類

ターミナル利用の実態を把握するには、ターミナルの形態や保有者、管理者、利用者などを把握する必要がある。この点を踏まえ、本章では、ドイツにおけるターミナルの分類やターミナルの保有者・管理者、利用者を明らかにする。

ターミナルの主な役割とは、荷役（積み替え）や保管、加工、通関などの行為によって、鉄道貨物輸送と異なる輸送機関、あるいは鉄道貨物輸送と鉄道貨物輸送を結節させることである。特に、鉄道貨物輸送と他の輸送機関との間、また、鉄道貨物輸送と鉄道貨物輸送との間でコンテナやスワップボディー、トラック、トラックシャーシを積み替えることは、ターミナルの最も重要な役割である。発地から着地まで1つの輸送機関によって一貫輸送される場合、他の輸送機関との結節する必要はない。しかし、殆どの場合において鉄道貨物輸送は、トラックや船舶と結節した輸送システムの一部を構成しており、鉄道貨物輸送にとってターミナルは必要不可欠となる⁷。結節という役割から見ると、ターミナルは以下の4つに分類できる。

- (1) 鉄道貨物輸送とトラック輸送を結節するターミナル(Schiene-LKW Umschlagbahnhof: SLU)
- (2) 鉄道貨物輸送と河川輸送を結節するターミナル(Schiene-Binnenschiffs Umschlagbahnhof: SBU)
- (3) 鉄道貨物輸送と海上輸送を結節するターミナル(Schiene-Schiffs Umschlagbahnhof: SSU)
- (4) 鉄道貨物輸送と鉄道貨物輸送を結節するターミナル(Schiene-Schiene Umschlagbahnhof: 2SU)

これらの形態の中で、ドイツにおいて最も多く存在するターミナルが、SLUである。ドイツにおける主要なSLUを示したが図1である。なお、図1に記載されているターミナルのうち、Hamaburg-Billwerderでは海上輸送、Duisburg Ruhrort Hafenでは河川輸送との結合も行われている。

SLUに次いで多いターミナルの形態が、SBUである。ドイツにおいては、ライン川やマイン川、ネッカー川などにおける河川輸送は重要な貨物輸送機関であり、

図1 ドイツにおけるSLU

国内貨物輸送量（トンキロベース）の約10%を担っている。特に、ヨーロッパにおける主要海上港湾であるロッテルダム港やアントワープ港とドイツとの輸送において、河川輸送の役割は大きい。これらの河川沿いには大小多くの河川港湾が存在する。大規模な河川港湾内には線路が敷設され、鉄道貨物輸送と河川輸送の結合が行われている。鉄道貨物輸送と河川輸送が結節している主な河川港湾を示したのが図2である。

ドイツにおいて海に面する地域が限られているため、海上港湾の数は少なく（図2）、海上輸送による国内輸送量も少ないため、ドイツの海上港湾で扱われる貨物の殆どは輸入および輸出の貨物（国際貨物）である。SSUはHamburgやBrenner Hafen、Rostock、Lübeckなどに限定され、これらの中でも、HamburgやBrenner Hafenの取扱量は際立って多い。これらのタ

⁷ 工場内にターミナルが整備されているケースにおいては、鉄道貨物輸送と他の輸送機関が結合されない状況が存在する。しかし、この状況においても、工場内ではフォークリフトやクレーンなどを用いて、コンテナやスワップボディーなどの運搬具が輸送されており、この点を踏まえると、工場内にターミナルが整備されているケースにおいても、鉄道貨物輸送と他の輸送機関との結節が行われていると認識できる。

図2 ドイツにおけるSBUおよびSSU

においては、鉄道貨物輸送とコンテナ船との間で大量の海上コンテナの積み替えが行われるため、SSUの数は少ないものの、1つのSSUにおける利用量（取扱量）は多い。

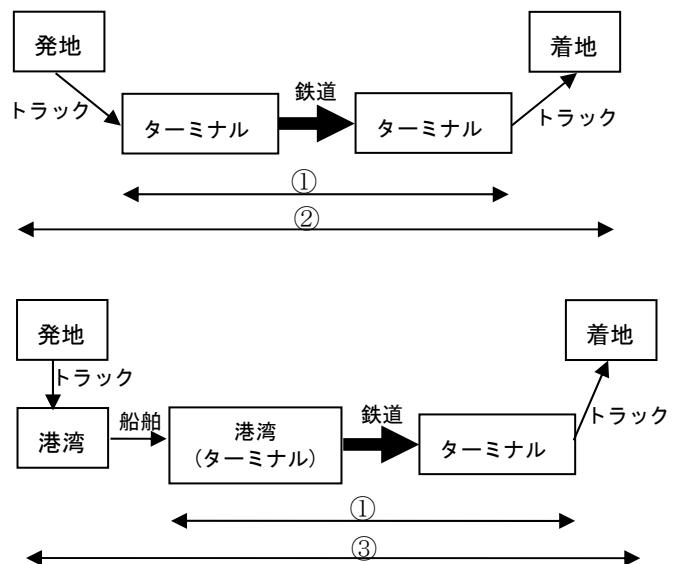
3.2 ターミナルの利用主体から見たターミナルの分類

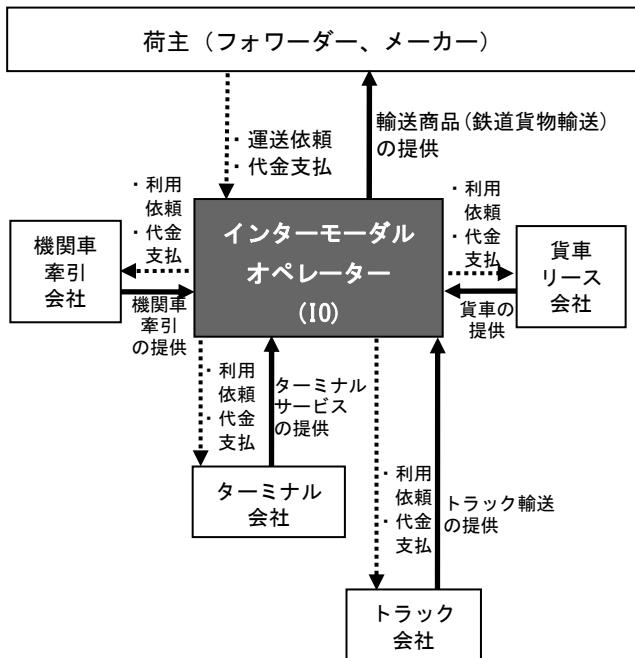
3.2.1 ターミナルの利用者

多くの場合、ターミナルを直接利用する事業者とは、鉄道に特化した利用運送事業者であり、この事業者はインターモーダルオペレーター(Intermodal Operator: IO)と呼ばれている。IOの業務とは、鉄道貨物輸送を用い、自身が運送責任を負った貨物を輸送することで

ある。IOの運送責任範囲には様々なパターンが存在する。

IOに関する輸送責任の範囲を示したのが図3である。運送契約に応じて、IOの運送責任は異なるものの、IOの運送責任の範囲は、輸送の一部（図3の①）と輸送全体（図3の②）に大別できる。国内輸送（発地および着地がドイツ国内）や工場内に整備されたターミナルを用いた輸送において、IOは輸送全体の運送責任を担うことがある。しかし、国際輸送や船舶と結合した輸送においては、船社やフォワーダー⁸が輸送全体の運送責任を負うため（図3の③）、IOの運送責任の範囲は限定される。IOが輸送全体の運送責任を負うケースにおいて、IOの荷主はメーカーをはじめとした製造業であることが多いが、一部の輸送の運送責任を負う場合、IOの荷主はフォワーダーとなる。




図3 IOの輸送責任範囲のパターン

運送責任の範囲に関わりなく、IOは主にターミナル間の鉄道貨物輸送を輸送商品として供給する。この供給を行うため、図4に示したように、IOは鉄道会社から機関車の牽引を、リース会社から貨車を、トラック会社からトラック輸送を、ターミナルを運営する主体から積み替えサービスを調達し、鉄道貨物輸送を輸送商品として自身の荷主（フォワーダーやメーカー）に

⁸ ここでの、フォワーダーとは複数の輸送機関を利用し包括的かつ広範囲な輸送商品を提供する利用運送事業者を指す。

提供する。

図4 IOの業務

3.2.2 ターミナルの利用主体から見たターミナルの分類

ドイツではターミナルを利用する主体に応じても、ターミナルが分類されている。ここでの利用主体とは、不特定多数の利用者あるいは特定の利用者を指す。不特定多数の利用者が利用するターミナルとは、誰もが差別されることなく、公平・公正に利用できるターミナルを意味し、この形態のターミナルは公共ターミナルと呼ばれている。一方、特定の利用者のみが利用するターミナルとは、特定の利用者が専的に利用するターミナルを意味し、この形態のターミナルは専有ターミナルと呼ばれている。

輸送機関および使用主体による分類に基づいて、タ

表1 ターミナルの分類

	鉄道 -トラック	鉄道 -一河川	鉄道 -海上	鉄道 -鉄道
公共	○ (F. Ost)	○ (K. Niel)	○ (Hamburg)	○ (Duisburg)
専有	○ (Volkswagen @Wolfsburg)	○ (Betrich @Duisburg)	○ (H. Süd @Hamburg)	×

ーミナルの形態を整理したものが表1であり、この表が示すように、ターミナルの形態は8つに分類することができる。なお、現実において、鉄道と鉄道を結節する専有のターミナルは存在していない。8つの分類のうち、最も多く見られるのが公共のSLUであり、今回の調査対象の中では、Frankfurt Ostがこれに該当する(図5)。このターミナルでは、どの利用者でも利用することが可能である。専有のSLUとしては、メーカーの工場内に設置されたターミナルが挙げられる。代表的な例がVolkswagenやOpelなどの自動車工場やBASFやOMVなどの化学メーカーの工場に立地するターミナルである。これらの工場には引き込み線が敷設され、工場内で列車に貨物を積み込み/積み卸しが可能となっている⁹。

図5 Frankfurt Ost駅

図6 Köln Niel 港

図7 Betrich 専有ターミナル(Duisburg 港)

⁹ ドイツにおいては、自動車工場や化学工場、鉄鋼工場の中にターミナルが整備されている事例が多い。VolkswagenのWolfsburg工場やOpelのRüsselsheim工場は、その代表例である。

公共の SBU ターミナルとしては、Köln Niel 港や Duisburg 港が挙げられる（図 6）。一方で、専有の SBU としては、Duisburg 港において専ら化成品輸送を行う Betrich¹⁰ が自社の専有ターミナルとして利用しているケースが挙げられる（図 7）。

公共の SSU ターミナルとしては、Hamburg 港や Bremerhafen 港の公共ターミナルが挙げられる。一方で、これらの港湾には、特定の船社が専有している埠頭が存在する。その実例としては、Hamburg 港における Hamburg Süd や Mearsk の専用埠頭が挙げられ、これらは専有の SSU に該当する。現在、Hamburg 港と背後地であるヨーロッパ内陸地との間の輸送において、鉄道貨物輸送が多く利用されている。この輸送を円滑に行うために、船社にとって、特定の埠頭において自社貨物を専有的に積み替えることは、効率的な荷役をもたらす（他の船社の利用に影響を受けないで積み替えを行うことができる）。

4. ターミナルの保有者と管理者・運営者

4.1 ターミナルの構成要素

一般に、ターミナルは形態に拘らず、以下の要素によって構成されている。

- ・土地
- ・保管・管理施設
- ・事務施設
- ・ターミナル内の線路、道路、埠頭
- ・荷役機器（施設）
- ・修理施設

ドイツにおいて、ターミナルを構成する上記の要素を 1 つの主体が保有および管理・運営している事例はなく¹¹、これらの要素は複数の主体によって保有および管理・運営されている。

4.2 ターミナルの保有者と管理者・運営者

4.2.1 土地

公共のターミナルの土地は国や地方自治体、あるいは、それに準じる機関によって保有されている。この背景には、「公共ターミナルは不特定多数の利用者が利用できる」という考え方方が公共ターミナルの基本原則であり、国や地方自治体などの公的機関が提供することにより、「不特定多数の利用者による公平・公正な利用」が担保されようとしている。また、公共ターミナルの整備には莫大の費用が必要となり、この費用を回収する目的でターミナルの利用料金が設定すると、鉄道貨物輸送が利用され難くなる。この考え方は、ターミナルを公共財として捉えていることや、ターミナルの供給と道路の供給と同じ主体が行うこと（イコールフッティング）と軌を一にしている。

表 2 土地保有者の株主と株式保有率

土地 保有者	株主と各株主の株式保有率
DB Netz	DB(100%)
HGK	Köln 市(93.7%)、Rhein-Erft-Kreis 市(6.3%)
DuisPort	連邦政府(33%)、Duisburg 市(33%)、Nordrhein-Westfalen 州(33%)

調査対象とした公共の SLU の土地については、DB Netz や HGK、Duisport によって保有されている。これらの土地保有者の株主と株式保有率を示したが表 2 である。DB Netz とは、上下分離の導入後に旧国鉄が保有していた線路を継承した線路保有会社であり、ドイツに存在する多くの SLU の土地は、DB Netz によって保有されている。現在、DB Netz の株式は全て DBAG（ドイツ鉄道）¹² によって保有され、また、DBAG の株式は全て連邦政府によって保有されている。

¹⁰ Betrich は化成品輸送に特化した利用運送事業者であり、ヨーロッパ全土に化成品輸送のネットワークを構築している。このネットワークにおいて、同社は積極的に鉄道貨物輸送を利用しておらず、ハブとして Duisburg を位置づけ、専有的利用することで他社の都合に影響を受けないで利用できることを確保させている。

¹¹ Volkswagen や BASF の工場内に立地するターミナルについて、工場の所有者である企業がターミナルの要素の殆どを保有および運営している事例が存在する。しかし、これらの事例においても、荷役などは所有者以外事業者によって行われている。

¹² DB は旧国鉄を継承した事業者であり、DB はコンツェルンを形成し、その中心的な役割を担っている。現在、DB コンツェルンの傘下には、DB Fernverkehr（長距離旅客部門）、DB Regio（地方旅客部門）、DB Schenker Rail（貨物部門）、DB Netz（線路部門）が存在する。

HGK は、Köln 市が主体となった河川港湾運営事業者であり、Köln 周辺に複数存在する河川港湾の土地を保有している¹³。HGK の株式の大部分は、Köln 市によって保有されている。DuisPort は、Duisburg 港の土地を保有し、同港の港湾運営を行う事業者である。DuisPort の株式は、連邦政府、Duisburg 市、Nordrhein-Westfalen 州によって、それぞれ 3 分の 1 づつ保有されている。このように、調査対象としたターミナルにおいても、公的機関が土地を保有していることが確認できる。

専有ターミナルの土地については、メーカーなどの民間企業が保有するケースと、公的機関が保有するケースが併存する。Volkswagen や BASF などの工場内に立地しているターミナルにおける土地は、Volkswagen や BASF が保有している。一方で、Duisburg 港における Betrich の専有ターミナルや Hamburg 港における Hamburg Süd の専有ターミナルの土地については、DuisPort や HPA (Hamburg Port Authority AöR) などの港湾管理者が保有している。つまり、Betric や Hamburg Süd はターミナルを専有しているものの、土地を保有しておらず、一定期間において土地を賃貸しているに過ぎない。

4.2.2 荷役機器（施設）、保管・管理施設、修理施設、事務施設

ターミナルの土地は公的機関によって保有される一方で、ターミナルに整備される荷役機器（施設）や保管・管理施設、修理施設、事務施設は、ターミナル会社によって保有・管理されている。この点は、公共、専有を問わず同様である。

ターミナル会社とは、公的機関が保有する土地を一定期間借り上げ、自身で整備および調達した荷役機器や保管施設などを用いて、積み替えや保管などのサービスを主に IO に提供する事業者である¹⁴。今日の調査において調査対象としたターミナルにおけるターミナル会社は表 3 の通りである。

ターミナル会社は自社で荷役機器などを整備する一方で、利用料（ハンドリングチャージ）やスロット配

表 3 各ターミナルの形態と運営・管理者

	Frankfurt Ost	Köln Niel	Duisburg
ターミナル会社 (運営・管理)	DUSS	CTS	DUSS
ターミナルの 使用対象	公共	公共	公共
土地の保有者	DB Netz	HGK	DuisPort

	Ludwigshafen	Duisburg*
ターミナル会社 (運営・管理)	KTL	Bertschi
ターミナルの 使用対象	公共	専有
土地の保有者	BASF	DuisPort

分を決定する権限を有している。そのため、各ターミナルの品質（利用料や荷役の速さ、破損率など）は、ターミナル会社によって左右される。ドイツにおいてはターミナル間の競争が生じているため¹⁵、ターミナル会社は利潤の最大化を実現させるべく、取扱量を最大化させようとする。取扱量の増大は使用料金の低下を実現させ、このことはターミナル会社の競争力を向上させる¹⁶。

ターミナルの土地保有者に視点に立てば、効率的な経営を行うターミナル会社に土地を貸し出したい。そのため、定期的にターミナル会社を変更できるよう、ターミナルの賃貸期間が定められている。これにより、ターミナル会社が高品質なサービスを提供するインセンティブが生じ、結果としてターミナル会社も土地保有者も利潤を増大することが可能になる。海上の港湾においては、埠頭ごとに異なるターミナル会社にターミナルが貸し出されている。この状況は、ターミナル内におけるターミナル会社間の競争を生じさせることを意味し、他のターミナルよりも高い競争力を実現する原動力となる。

¹³ Köln 周辺において HGK が土地を保有する港湾としては、Niel 港や Deutzer 港、Godorfer 港、Rheinnau 港が挙げられる。

¹⁴ 公共の SLU のうち、最も多くのターミナルの運営を行っているターミナル会社が DUSS (Deutsche Umschlaggesellschaft Schiene-Strasse mbH) である。

¹⁵ 例えば、Köln 港と Duisburg 港、Hamburg 港と Bremerhaven 港の競争が挙げられる。特に、近隣に位置するターミナル間では競争が激化し易い。

¹⁶ ターミナルの運営においては大きな固定費が必要となり、平均費用価格形成の下では、取扱量の増大は使用料金の低下をもたらす。

4.2.3 ターミナル内の線路、道路、埠頭

公共のターミナル内に敷設および整備されている線路や道路、埠頭は原則として、各ターミナルの土地保有者が保有し、ターミナル会社がその運営を行っている。言い換れば、これらは公的機関によって保有され、それらをターミナル会社が運営しているのである。

一方で、Volkswagen などの工場内に立地しているターミナルの線路や道路については、各工場の保有者が保有しているが、運営は他の事業者（荷役会社など）が行っている。ドイツにおいて、河川や海に接する広大な土地については原則として個人や企業による保有が認められていないため、ターミナルや埠頭は公的機関によって保有されている。

4.3 ターミナルに関係する事業者間の資本関係

4.3.1 ターミナル会社の株主

公共ターミナルにおいては、不特定多数の事業者による公平・公正な利用が原則に定められている。こうした状況において、ターミナル会社とターミナル利用者である IO との間などに利害関係が発生すると、利害関係を有する利用者が優越的待遇を受ける可能性が生じ得る。また、このことは公平な利用を阻害し得る。

表 4 ターミナル会社の株主と株式保有率

ターミナル会社	株主と各株主の株式保有率
KTL (Ludigshafen)	BASF(42%)、Bertschi(11.5%)*1 Hoyer(11.5%)*1、Hupac(15%)*1 Kombiverkehr(20%)*1
DUSS (Frankfurt Ost)	DB Netz(75%)*2 DB Mobility Logistics(12.5%) Kombiverkehr(12.5%)*1
CTS (Köln)	Neska(62.5%) DB Intermodal Service(22.5%) HGK(15%)*2

*1 : IO

*2 : 土地保有者

調査対象としたターミナル会社の株主に着目すると、ターミナル会社と IO との間、また、ターミナル会社とターミナルの土地保有との間には株式による資本

関係が見られた。この状況をまとめたのが表 4 である。公共のターミナルにおいては、利害関係の構築に伴う差別的待遇が懸念される一方で、現実においては、株式の保有という利害関係が存在しているのである。

4.3.2 ターミナル会社と IO との資本関係 (KTL の事例)

KTL は Ludigshafen に立地するターミナルのターミナル会社である。同社の株式については、化学メーカーの BASF が 42%を、IO の Kombiverkehr、Hupac がそれぞれ 20%、15%を、専ら化成品輸送を行う IO である Bertschi と Hoyer がそれぞれ 11.5%を保有している。つまり、IO が KTL の株主の多くを保有しており、ここでも、ターミナル会社とターミナル利用者との間での資本関係が確認できる¹⁷。

KTL が運営するターミナルにおいて扱われる貨物の殆どは化成品であり、このターミナルは化成品に特化したターミナルと見なすことができる。通常、化成品の輸送には特殊な輸送技術や積み替え技術が必要であり、この輸送は一般貨物と比べ汎用性が乏しい。つまり、このターミナルの資産特殊性は高く、かつ多額の固定費が存在するため、ターミナル会社には潜在的にホールドアップ問題が生じる。そのため、特定の利用者（主に大口の利用者）からの安定した利用量を確保するために、資本関係が構築されているのである。一方で、ターミナル利用者にとっても、資本関係の構築により、より柔軟かつ自社に特化した詳細なサービスや低料金でのサービスを受けることができる。このように見ると、資本関係は、ターミナル会社およびターミナル利用者共に Win-Win の関係を構築し、両者にメリットを生じさせていると考えられる。

4.3.3 ターミナル会社との資本関係 (DUSS の事例)

DUSS の株式については、DUSS が運営するターミナルの土地保有者である DB Netz が 75%、また、ターミナルの大口利用者である Kombiverkehr が 12.5%の株式を保有している。DB Netz が DUSS の株式の多くを保有している理由としては、DUSS が運営するターミナルは旧国鉄から DB Netz が継承したものであることや、DUSS が DB AG コンツェルンの一部であることが挙げられる。つまり、旧国鉄から継承したターミナルは、現在、事実上、DBAG によって土地の保有もターミナルの運営も行われているのである。こうした状況は、ドイツ政府の政治判断が起因しており、経済理

¹⁷ BASF の製品は、このターミナルにおいて多く扱われている一方で、IO である Kombiverkehr や Hupac、Bertschi、Hoyer は BASF などの化学会社から運送依頼を受けた貨物をこのターミナルで積み替えている。つまり、株主は全てターミナルの利用者である。

論の考え方とは一線を画している。つまり、ドイツ政府は、上下分離を行った後においても、旧国鉄が有していた土地や資産を DB コンツェルンに引き止めたい強い意向を有しているのである。

4.3.4 ターミナル会社との資本関係 (CTS の事例)

CTS が運営するターミナルについては、フォワーダーである Neska が CTS の 62.5% の株式を保有している。Neska は IO ではないが、IO を通じて間接的に鉄道貨物輸送を利用しており、ここでもターミナル会社と利用者との間の資本関係が確認できる。一方で、表 4 が示すように、土地保有者である HGK が CTS の株式を保有していることから、この事例では土地保有者とターミナル会社との資本関係も存在する。土地保有者がターミナル会社と資本関係を構築する理由としては、以下の点が指摘できる。すなわち、荷役機器や保管施設に著しく多額の費用が必要である場合（多額の埋没費用を負担する場合）、短期間でターミナルの使用権利が喪失すると、ターミナル会社は投資した機器や施設の費用を回収できないまま退出しなければならない。この点を回避するため、長期での使用権を確保すべく土地利用者と資本関係を構築するのである¹⁸。

土地保有者にとっても、ターミナル会社との資本関係からメリットが生じる。土地保有者は自身の土地が利用されないリスクを常に負っており、ターミナル会社との資本関係の構築により、このリスクを回避することができる¹⁹。また、資本関係の構築により、土地保有者はターミナル会社の運営に自身の意向を反映させ易くなり、この点も資本関係を構築する理由に挙げられる。ターミナル会社と土地保有者との資本関係は、大規模かつ高額な荷役施設が必要とされる港湾において特に発生し易い。

4.3.5 ターミナル会社と資本関係を構築する意義

KTL および CTS の事例を踏まえると、ターミナル会社と利用者との間での資本関係を構築する意義としては、資産特殊性に起因した埋没費用の発生を回避すること、言い換えれば、ホールドアップ問題を回避することができる。これらの対応は、費用最小化のために考案された工夫であり、ターミナルのサービスを安定的に供給する意味において、経済合理性を有すると考え

られる。

ターミナル会社と土地保有者との資本関係においても、資産特殊性は重要な要素を有している。特に、埋没費用が多額であり、使用期間が短い場合において、この資本関係はホールドアップ問題を解決することになる。この点も経済合理性を有する。

いずれの関係の資本関係であっても、当事者同士が Win-Win の関係になっていることは大変興味深い。つまり、資本関係は当事者両方に余剰が発生させ、このことが合理的な行動の結果としてもたらされるのである。但し、DUSS の事例は、政府が介入しているため、他の事例に比べ経済合理性を十分に有しているとは言い難い。

一方で、先に示したように、資本関係の構築は特定の利用者に対する差別的待遇をもたらし、効率的なターミナルを阻害する要因になり得る。資本関係の構築に一定の経済合理性が認められることを踏まえると、差別的待遇の回避と資本関係によるメリットを両立させることが重要となる。

5. ターミナルの使用ルール

5.1 使用規定とターミナルの監視機関

公共ターミナルについては、不特定多数の利用者が公平・公正に利用できるよう、ターミナルの利用に関するルール（規定）を定める必要がある。特に、差別的待遇に対しては留意しなければならない。ドイツにおけるターミナルの使用規定は、連邦法であるネットワーク使用条款（Nutzungsbedingungen:NB）に明記されている。また、この法律の内容は、ドイツにおける鉄道の基本法である鉄道法（Allgemeine Eisenbahn Gesetz: AEG）の内容と呼応している。法律によってルールが制定されている背景には、ドイツにおいては形式上、「全てのコンテナターミナルは公共（物）」との認識が存在する。

公平・公正なターミナル使用の実現には、ターミナルに関する使用規定と共に、使用料金の設定やスロットの配分を監視し、問題を是正する機関が必要となる。ドイツにおいては、連邦行政機関である連邦ネットワーク庁（Bundesnetzagentur: BNAT）がターミナルの使用に関する監視や問題の是正を行っている。ターミナル

¹⁸ 公平なターミナル使用を担保する（どのターミナル会社でも参入できる機会を担保する）ため、使用期間は変更できない。この点を担保しつつ、ターミナル会社の埋没費用リスクを回避する工夫であると指摘できる。

¹⁹ ターミナルの運営を検討する際、ターミナル会社が費用の回収が困難であると判断すると、ターミナルの運営は実施されない。この状況はターミナルの土地保有者にとってのホールドアップ問題となる。

ルの使用料金の設定や変更を行う場合には、BNAT に申請する必要がある。また、ターミナル利用者はその使用について不服がある場合、BNAT に申請し、解決を求めることができる。BNAT が公平・公正な使用に反すると判断した場合、BNAT はターミナル会社に対して、是正命令を出すことができる。

5.2 コンフリクトの発生とターミナルの使用スケジュール

異なるターミナル利用者が、同一時間帯に同一の荷役機器や荷役用線路などの利用を希望した場合、ターミナルの利用を巡る利害の対立（主に積み替えの使用時間帯）、すなわち、コンフリクトが発生する。特に、混雑するターミナルにおいて、コンフリクトは発生し易い。コンフリクトの発生は、荷役機器などの利用時間帯の割り振りを行う前のコンフリクト（スロット配分前のコンフリクト）と行った後のコンフリクト（スロット配分後のコンフリクト）に分類することができる²⁰。

スロットは年 1 回、本線のダイヤ改正と同時に白紙に戻される。そのため、毎年、白紙の状況から新たなスロットの配分が検討され、これにより、コンフリクトを解決する機会が提供されるのである。今回の調査において、現在、深刻なコンフリクトは多発していないことが明らかになった。但し、解決が容易ではないコンフリクトが存在する。ドイツにおいては、今後、貨物輸送量が増大すると予測されており、近い将来において、ターミナル利用が混雑し、それに伴い深刻なコンフリクトが発生することが懸念されている。

5.3 ターミナルにおけるコンフリクトの解決

現状において、ターミナルの利用を巡るコンフリクトが発生した場合、先ず、ターミナル会社が主体となり、コンフリクトの当事者間の利害調整が図られる。ここでは、話し合いを通じ希望時間帯の調整を図り、コンフリクトを解決することが試みられる。一方で、ターミナル会社による調整では解決できないコンフリクトが生じる可能性がある。この状況を想定し、NBにおいては、コンフリクトを解決する手順とその内容が定められている。ターミナル会社が主体となったコンフリクトの調整がターミナル会社の業務の一部として実施される（非公式な対応）ことに対し、NB に従った調整は公式な対応と認識できる。その手順の概要は以下の通りである。なお、このルールは、ドイツ全土の公共ターミナルに適用され、ルールの内容は線路使用に

関するコンフリクト（ダイヤ配分を巡るコンフリクト）の解決においても同様である。

①話し合い（BNAT を交えた話し合い）

②ターミナル会社への支払額（列車運行会社の年間支払額）

③オークション

第 1 段階は、コンフリクトの当該利用者、ターミナル会社、BNAT が参加する話し合いである。ターミナル会社が主体となった話し合いとは異なり、公的機関である BNAT が参加し助言することで、当事者間はより公平・公正な話し合いが実施されていることを認識でき、これにより当事者間での打開点（折り合い）が見つけ易くなる。事実、ターミナル会社が主体となった話し合いで解決できないコンフリクトでも、BNAT が参加した話し合いで解決された案件が多く存在する（ここまで段階で、多くの時間が費やされていることも、この成果を助長していると考えられる）。

第 2 段階は、利用者がターミナル会社に支払っている年間の金額を基準にスロットが配分される。すなわち、ターミナル会社により多く支払っている利用者にスロットが配分されるのである。これは、支払額の多寡に応じて、希少資源であるターミナルのスロットを配分されるメカニズムと理解できる。

第 3 の段階は、オークションである。話し合いで解決できず、かつ、コンフリクト当事者のターミナルへの支払い額が同じ場合においては、コンフリクトの対象であるスロットに対する支払い意思額によって、最終的にスロットが配分される。なお、現実において、コンフリクト当事者間でのターミナル支払額が同じという状況の可能性は極めて低く、現実にオークションによってコンフリクトが解決された事例は存在しない。

5.4 経済理論から見た現行のコンフリクトの解決の問題点

公平・公正なターミナル利用を実現する目的の下、コンフリクトの解決策として NB が設定されているが、この考え方や手順を経済理論からアプローチすると幾つかの問題点が見られる。

1 つは、ターミナルは鉄道ネットワークの一部を構成しているため、1 つのコンフリクトが他のターミナルのコンフリクトに波及する可能性がある。つまり、コンフリクトにおいてスロットを得ることができなかつた利用者が使用時間帯を変更すれば、他のターミナルの使用時間帯も変更することになる。このことは、他のターミナルでのコンフリクトを発生させる原因となり、

²⁰ 現実においてはスロットが既に配分されているため、本稿ではスロット配分後のコンフリクトを取り上げる。

特に、混雑しているターミナルに波及すると問題が複雑化および深刻化し易い。

2つ目は既存の利用者(コンフリクトが発生しているスロットを従来使用していた利用者)がスロットを過大評価し、高い支払い意思を有することである。この状況において、既存利用者はスロットを利用していない利用者よりも効率的に利用できないことが生じる。このことは、情報の非対称性や保有効果、イケア効果によって生じる。

3つ目は、支払い額の多寡に応じてスロット配分を行うことである。支払い額の多寡では事業規模の違いに起因する支配能力の格差によって、スロットが配分されることになり、事業規模の大きな利用者に有利になる(事業規模は小さいが、効率的なターミナル運営のノウハウを有する利用者が利用できない)。この状況では、結果として効率的なターミナル運営が阻害される可能性がある。

以上は、経済理論から見た問題点であり、現実において、これらを考慮するには、定量化・金銭化の実現やオペレーションコストの発生などの問題があり、理論と現実をどのように組み合わせるのかがポイントとなる。

5.5 資本関係の二面性とNBおよびBNATの貢献

前章において、資本関係の構築がもたらす二面性を示したが、資本関係の構築による差別的待遇を回避することに対し、NBやBNATが果たす役割は大きい。特に、BNATによるスロット配分の監視やスロット配分に対する不服の申し立ては差別的待遇を抑制すると考えられる。

一方で、資本関係の構築において、特定の利用者に発生すると想定される差別的待遇がNBやBNATの存在により縮小されると、資本関係の構築のメリットが発生し難くなる。このように、差別的待遇の抑止と資本関係構築のメリットのバランスについては、ターミナルの効率的利用を実現させるための重要なポイントになると思われ、更なる調査および分析を行う意義は大きいと考えられる。

6. まとめ

本稿の執筆に際して実施した調査により、ドイツにおけるターミナルの形態や保有者、管理者、利用者が明確になった。ドイツにおいては、ターミナルの形態が8つ存在する一方で、これらの形態に拘らずターミナルは不特定多数が利用できるインフラであることが原則とされている。また、公共のターミナルにおいては、保有者、管理者、利用者の間に、株式を通じた資

本関係が存在することが明らかになった。資本関係はターミナルの特性、すなわち、高い資産特殊性に起因するホールドアップ問題を回避する合理的な手法である。一方で、資本関係は特定の利用者に差別的待遇をもたらし、効率的なターミナル利用を阻害する要因になり得るため、差別的待遇の回避と資本関係のメリットを両立させることが重要となる。

複数の利用者が同一のターミナルを利用する状況においては、スロットの配分を巡るコンフリクトは潜在的に発生する可能性があり、このコンフリクトに対しては、NBやBNATが解決する主体として機能している。

基礎情報の収集および経済理論を用いたターミナル利用の実態へのアプローチを通じ、効率的なターミナル利用を検証および考察するために、今後、対象とすべき研究のポイントとして以下の点が挙げられる。

1つ目は、コンフリクトの実例を明らかにした上で、NBに基づいたコンフリクトの解決方法が効率的なターミナルの利用を実現しているのかを分析することである。NBによるコンフリクトの解決方法が経済理論と必ずしも合致しない点があることを踏まえ、コンフリクトの解決に関する理論と現実との「擦り合わせ」を考察することは重要であろう。

2つ目は、資本関係のメリットと差別的待遇の両立を検証することである。資本関係がもたらすメリットと差別的待遇の両立の現状を明らかにした上で、両者の両立に必要な事項や両立の限界、政府介入を考察することはターミナルの効率的利用に対して重要な意味を有していると思われる。

3つ目は、利用料の検証である。利用料はターミナルの効率的な利用において極めて重要であるが、今回の調査では、利用料は殆ど調査することができなかった。この点を踏まえ、利用料が経済合理性に裏付けされたプライシングであるのか、また、使用料金を通じた差別的待遇の有無を検証することは、ターミナルの効率的な利用を考える上で、必要不可欠であると思われる。

以上の点を効率的なターミナル利用を考察する上で今後実施すべき研究の対象および内容と捉え、今後、更に詳細な分析や考察に取り組んで行きたい。

参考文献

- 1) Dodgson,J. (1998), *User Charges for Railway Infrastructure* EMCT Press.

- 2) Drew(2009), The benefits for rail freight customers of vertical separation and open access, *Transport Reviews*, 29(2), 223-237.
- 3) ECMT(2005), *Railway Reform & Charges for the Use of Infrastructure*, OECD.
- 4) Ivaldi & McCullough (2001), Density and integration effects on Class 1 U.S. freight Railroads, *Journal of Regulatory Economics*, 19(2), 161-182.
- 5) Nash,C.A.(2005),“Rail Infrastructure Charge in Europe,” *Journal of Transport Economics and Policy*, Vol.39,pp.259-277.
- 6) 小澤茂樹(2007a)「EUにおける鉄道貨物輸送政策の一考察-オープンアクセス政策を中心に-」『公益事業研究』第 59 卷 1 号。
- 7) 小澤茂樹(2007b)「イギリスにおける鉄道のダイヤ配分と調停制度」『国際公共経済研究』第 18 号。
- 8) 小澤茂樹(2008)「上下分離の進展と鉄道貨物輸送」『中央大学経済学研究所年報』第 39 号。
- 9) 小澤茂樹(2013a) 上下分離に起因する鉄道貨物輸送問題の一考察,一橋大学博士論文。
- 10) 小澤茂樹・根本敏則 (2013b)「欧州の鉄道上下分離における線路使用料の役割」,日本交通学会,交通学研究,第 56 号, pp.59-66。
- 11) Remond,T.(2004),"Infrastructure Charging on the French railway network:RFF's experience," *ECMT Workshop on Rail Infrastructure Charge*.
- 12) RFF(2011), *Report on activities and sustainable development(Annual report) 2010*.
- 13) Rothengatter,W (2001), How good is first best? Marginal Cost and other Pricing Principles for User Charging in Transport.

匠の技と伝統技術その可能性と限界について

越前打ち刃物と関の刃物の比較研究

THE possibilities and limitations for craftsmanship and traditional techniques

西崎雅仁*

Masahito Nishizaki

Summary

The "story" to consider in this paper, it is a process of up to life cycle is produced from the design stage of the product is discarded. It is intended to consider the activation of traditional industries by further to create a "story", including the background of products that also includes historical background, geographical requirements and cultural climate in which the product is born.

キーワード：匠の技、伝統技術、越前打ち刃物、デザイン思考

Keywords : craftsmanship, traditional techniques, Echizen beating cutlery, design thinking

1. 「ものづくり」から「ものがたりへ」へ

1.1 フラット化する社会における技術

インターネットの普及により、世界はフラット化しオーブン化してしまった。フラット化することでギリシャ発の金融危機、中国の株価暴落・ブラジル・インド等に見られる新興経済国の経済発展の影響が瞬時に世界中につながるようになった。活動の結果はオープン化されその影響を世界中の企業受けすることになった。日本の中小企業もこうしたグローバル化した競争社会に否応もなく巻き込まれ、新たな社会的価値を創造しなければならない時代に入った。こうしたフラット化した時代において重要なことは、よく言われる「ガラパゴス化」した中での日本の強みである高品質、高度技術の「モノづくり」や伝統産業に見られる「巧みの技」そのものではもはや強みとは言えない。むしろこれらの強みをさらに活かすために、オープン化しフラット化した環境を利用することで、コンテンツの中に「多様性」「異

質性」をその中に取り込むことで次のステージのモノづくりが生まれ、破壊的なイノベーションをもたらすのではないだろうか。黒川清氏は、そのことを『「ものづくり」から「ものがたり」へ』¹⁾の中で以下のように表現している。「世界にはいろいろな人、お客さんがいる。だれに喜んでもらいたいのか、買ってもらいたいのか。人を感動させ、心をつかむことができなければ、いくら技術がよくても成功しない。大切なものは「ものがたり」であり「もの」はその一部にしかすぎない。-中略-Wiiを成功させた任天堂が最優良企業として評価されている。人々に期待を持たせそして期待に応える。ブランド価値はここにある。ソニーの盛田昭夫氏、ホンダの本田宗一郎氏、ヤマト運輸の小倉昌男らが持っていたもの。それは人々への「崇高な思い」、そこから出てくる「ひらめき」、そこへ突き進む「努力」、失敗にめげない、失敗に学ぶ、そこから生まれる実践的な判断のできる「賢慮」。これが成功であろう。」ここでは、成功者の「ものづくり」に携わった人生

*大同大学 情報学部 総合情報学科 経営情報専攻

そのものを「ものがたり」と解釈しているが、本稿で考察する「ものがたり」とは、製品の設計段階から製造され廃棄処分されるまでのライサイクルのプロセスさらにその製品が生まれる歴史的背景・地理的な用件・文化的な風土も含む製品のバックグラウンドを含めた「ものがたり」を創造することで伝統産業の活性化を考察するものである。

1.2 マーケティング戦略の終焉

人を引きつけるものづくりの本質とは何であろうか。エコを標榜することで手仕事、手作りに価値を求める時代からさらに次の次元は、手作りに関しても、ただハンド・メイドによるプロダクトとして捉えるのではなく、ものが生まれてくる原点を知りたいという価値観が生まれつつあると思われる。ものが生まれてくる原点とは、そのものが生み出される風土や歴史的背景や文化的背景、地理的な背景さらには宗教的背景におよぶまで興味・関心が尽きることはない。

戦後を見ても、もの作りのベクトルがマス・マーケティングの時代に向かい、社会的使命と機運によって安くクオリティが高いものを大量に作ることがもの作りである時代があった。しかし、そのもの作りには、商業的色彩が強くもの自体に魅力を感じられない没個性でアイデンティティを感じさせるものではなかった。さらに、経済的に豊かになると、個人が個性に目覚め、どうゆう社会的背景があつてものが生まれくるかとか製造行程におけるハンド・メイド・プロダクトによる不確かさよりも手作りであることに圧倒的な手作りのアイデンティティを見いだしていた。

産業革命以前は、職人自身がデザイナーでありかつ営業マンであった。一人で工程をすべて管理し非常に付加価値が高く高価なものをもの作りしていた。その世界は、売ろうとするマーケティングに支配されることではなく、売れるか売れないかは自己責任であった。手仕事には人間の夢や想い希望が宿っている。しかし、多くの人にモノの所有の平等化をすすめるためには革命が必要で、デザインと手作業を分断させるなど工程の細分化が進み、企業が利益を生み出すために生まれたマーケティングに支配され、いかに安く大量に売るかといった価格競争という戦略がモノの価値をも下げてしまった。

家内工業→大量生産→手作り(ハンド・メイド・プロセス)→ハンド・メイド・アイデンティティのプロセスで変化している。

蓄積された技術を資産として運用するためには、

一つのデザインを提案するのではなく、技術のアーカイブという素材集を作り、発注をもらってからリクエストをもらったものを作る。そして、技術を持ったクリエーター達にその資産を運用してもらう。そうすれば、自分達が伝統参議用の文化を作っているという自負が生まれ、その伝統技術そのものに愛着が沸くことになり、後継者問題もなくなるのではないだろうか。さらに相乗効果として顧客の困難な要求に応えることで新しい技術が生まれ、革新性が創出される。そこに新たな扉が開かれることになる。

2. デザイン思考がイノベーションを創造する理由

2.1 ものづくりにおけるアイデンティティ

工業デザイナー奥山清行氏は、『伝統の逆襲 日本の技が世界ブランドになる日』²⁾の中で日本のものづくりのアイデンティティについて以下のように述べている。「かつて、メイド・イン・ジャパンはその性能のよさと低価格から、世界中の市場でもてはやされ、一時代を画した。今、中国製が日本製に取って代わり、市場を席巻している。安価な「もの」が洪水のように生産されつづけた結果、日本製のものは、その競争力を急速に削がれてしまった。すなわち「価格競争」において敗北したのである。だが価格競争の中で、供給過剰を承知で「もの」をつくりつづけることは、もはやナンセンスだ。なぜなら「もの」の大量生産は、資源をゴミに転化させるという理不尽な行為に他ならず、生産された「モノ」が愛着を持って長く使われることはありえないからである。すなわち安価な大量生産品は、けっして消費者に感動を与えないのだ。したがって日本が舵を取るべきなのは「価格競争」ではなく「価値競争」なのである。—中略— 日本の優れた職人技術を戦略的に結集し、高価値な商品を発信することを根本に据えるべきだと考える。—中略— 日本は自らのアイデンティティの壁にぶつかっているのだと私は考えている。いったい日本製品とは何か。何が日本製品のよさかという部分を日本人は考えずに済んできた。強力な企業文化に頼り切っていたので、わが社に独自なものに誇りは感じても、何が日本の「ものづくり」において独自なものか、強みであるかなどは考えなくてもよかつた。あるいは、考えすら及ばなかったのである。さらに言おう。「自分たちがつくっているものが何であるのか」「自分たちがつくりたいものが何なのか」ということも実はわかつていなかつた。「顧客主義」や「お客様に聞きましょう」を標榜していたのは、自らのアイデンティティ

イの欠如を隠すための方便にすぎない。今、日本の「ものづくり」の現場における最大の悩みがここにある。一中略一 日本の職人が持つポテンシャルはきわめて高い。そこには歴史に裏打ちされた技術、知恵、ノウハウが蓄積されている。「伝統の匠の技」と呼ばれる所以である。一中略一 私がカーデザインを担当したフェラーリは、モデナというイタリアの一地方都市にある従業員3000人の中小企業だ。つまり地場産業である。だが、フェラーリはフェラーリとして世界に名だたるブランドでありつづける。なぜなら「伝統の匠の技」に加えて「ものづくり」におけるアイデンティティが確固として存在するからだ。だからフェラーリに象徴されるイタリア流「ものづくり」の概念を日本に持ち込み、優れた「伝統の匠の技」と結合させれば、日本の「ものづくり」に新たなアイデンティティを与えることができるかもしれない。そう、日本の伝統は逆襲するのである。私は、アメリカとヨーロッパ、そして日本の「ものづくり」の現場で、デザインの責任者を務めてきた。「デザイン」と字面だけ追えば、色と形を決めるスタイルのことだと思う人もいるかもしれないが、それは大いなる誤解である。本来、デザインとは「もの」自体のコンセプトを立案し、開発からマーケティングまで、全体の枠作りをすべき仕事なのである。」

つまり、ものづくりによる地場産業の再生・振興とは、伝統産業を「価格競争」から「価値競争」に戦略を転換することであり、その「伝統に誇りを持つ」ことではなく、「伝統や技術に裏打ちされた独自性」や「強み」を理解し、アイデンティティに魂を吹き込むことである。そのアイデンティティとは、歴史的背景や風土感、地理的、文化的な価値をも含有し、そこから創造されたものが地ブランドとして確立した時に成功するのである。デザイナーは、製品の形状や機能的なデザインを行うだけではなく、実はデザインとは、川上から川下まで製品に魂を吹き込み、命を与える一連の製造プロセスの設計者であり、完成品についてマーケティングをも行うブレイイング・マネジャーの役割も果たす、専門経営者としてマネジメント行為そのものを行っていたのである。

地場産業の再生・振興に工業デザイナーが関与し、成功する事例が報告されるようになってきた。

打ち刃物においても、関の川嶋工業株式会社の、川上元美氏とコラボレートしたMOKA包丁、越前のタケフナイフビレッジでは川崎和夫氏がデザインしたアルタス・クレウス包丁がある。これらは共にグ

ッドデザイン賞を受賞しており、関のMOKA包丁は、デザイン性を重視しただけでなく、オールステンレス素材を使い、バランスや握り具合間に留意し、食器洗浄機への対応なども考慮しており毎日使う道具として「使いやすさ」に重点をおいている。一方越前の打ち刃物は、新しい鋼ハイ・カーボンステンレス鋼を開発し、刀の伝統技術である「鍛造」することにこだわり伝統技術を守り続けている。つまり、越前打刃物はデザイン性を重視しながらも手作りにこだわり伝統技術に裏付けされた製品を消費者に提供していることになり、刀の伝統的な加工技術を守りつづけているのは、越前打刃物であるといえる。ただ「越前打ち刃物」には、残念ながら確固たるアイデンティティが存在していないのが問題である。

2.2 デザイン思考が地場産業を再生する理由

デザイン思考のアプローチの定義とはIDEO CEO兼社長のTim Brown³⁾によれば、「①人々が生活の中で何を欲し、何を必要とするのか。②製造、包装、マーケティング、販売およびアフター・サービスの方法について、人々が何を好み、何を嫌うのか。についての二項目について、直接観察し、徹底的に理解し、それによってイノベーションに活力を与えることである。さらにイノベーションを芸術、技術、科学、事業手腕、さらに顧客と市場に関する慧眼を融合させたことである。デザイナーの感性と手法を用いて、人々のニーズと技術の力を取り持つことこそ、デザイン思考が専門とする領域である。また現実的な事業戦略にデザイナーの感性と手法を取り入れ、人々のニーズにあった顧客価値と市場機会を創造することである。」としている。

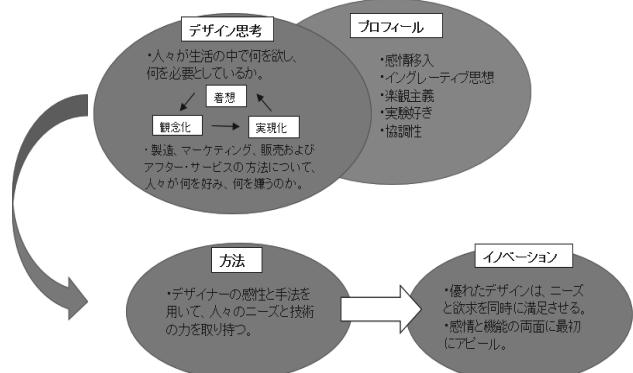


図1 デザイン思考がイノベーションを創造する理由

(筆者作成)

デザイナーの役割は、工業的に行うデザインそのものや、これまで開発されたアイデアを消費者にとって魅力的にすることであった。しかし、デザイナーに求められるのは、こういった戦術的な行為から消費者のニーズやウォンツにマッチしたアイデアを生み出すことを期待され、設計段階のアイデアや製品そのものの価値を市場環境でどう評価させるか戦略的にマネジメントする能力が求められている。こしたデザイン思考のデザイナーが身につけている能力について以下の特徴がある。

①感情移入できる：

同僚、クライアント、エンドユーザー、既存顧客や見込み顧客といった、複数の観点から世界を思い描くことができる。「人間を最優先する」ことで、本質的に望ましい解決策を想像し、具体的なニーズや潜在的ニーズに応える。

ほかの人が見逃していることに気づき、その見識を生かしてイノベーションを生み出す。

②インテグレーティブ思考：

分析—「最終的に何を選択するか」を決めるプロセスである。一だけに頼るだけではなく、これに加えて、複雑な問題のなかで際立った部分、時には相反する部分をもれなく把握して、まったく新しい解決策を創出する能力を発揮する。既存の代替案を凌駕するアイデアをだす。

③楽観主義：

目の前に課せられた制約がいかに厳しくとも、デザイン思考の持ち主は「既存の代替案よりもよい解決策が少なくとも1つはあるはずだ」と考える。

④実験好き：

飛躍をもたらすイノベーションは、微調整の積み重ねから生まれるのではない。デザイン思考の持ち主は、まったく新しい方向に向かう創造的な方法で疑問を投げかけ、制約を徹底的に調査する。

⑤協調性：

一流のデザイン思考の持ち主は、他の専門家と働くだけではなく、複数の専門分野に秀でており、「熱心で学際的に協力し合う集団」である。

偉大なアイデア（デザイン）とは、凡人には計り知れない神業的な想像力によって、天才が不意に完璧なかたちで考え出すものではなく、人間中心の発見プロセスによって創造的に、プロトタイピング、検証、改善のサイクルを何度も繰り返したことの賜物の結果である。

デザイン思考のプロセスには、通過すべき3つのスペースがある。スペースとは、一連の体系的なステップの連続というよりも、「イノベーション」の

連続体を形成する複数の関連活動を類型化するものという意味で用いおり、デザイン・プロジェクトには通過すべき3つのスペースがあり、それら3つを「着想：インスピレーション」「観念化：アイティエーション」「実現化：インプリメンテーション」と呼んでおり、「着想（inspiration）」とは解決のあくなき探求を動機づけることで、「観念化（ideation）」とは、解決策につながりそうなアイデアを生み、発展させ、検証するプロセスである。また「実現化（implementation）」とは、これまでの経験をかたちに表し、ビジョンを実践することである。

2.3 デザイン思考とイノベーションの関係

デザイン思考をイノベーションに生かすための方法としては、解決したい問題に対して、方向性が打ち出される前、つまりイノベーション・プロセスの前から多くのデザイン思考を持った人々を関与させる。そして人間中心のアプローチを取り入れることで、事業や技術について考慮するだけにとどまらず、人間の行動、ニーズ、嗜好も折り込み、直接の観察に基づく調査を取り入れることで、思いがけない洞察が得られ、消費者の欲求をより的確に反映したイノベーションが生まれる。早くから試行錯誤を繰り返すことで実験とプロトタイプの開発を促進し、問題の発見、問題解決の時間が短縮できる。デザイン思考の考察メンバーだけで問題解決するのではなく、顧客や消費者と共に創ることでさらにアイデアを深めることができる。短期のプロジェクトと長期のプロジェクトを織り交ぜイノベーションのペースに合わせて予算を作り、あらゆる人材を活用して、才能発掘にあらゆる手を尽くす。デザイン思考の持ち主が着想から観念化を経て実現化までを担当できるようにし、「着想」「観念化」「実現化」のサイクルを完全に一巡化するように人員を配置し、より優れた意思決定の基盤が整い、組織にとってメリットは大きくなる。

デザイン思考がイノベーションを創造する理由とは、ただ見た目のデザインの見栄えのよさを超越して、優れたデザインがニーズと欲求を同時に満足させ、製品が市場に必ずしも一番乗りしたものではなく、感情と機能の両面に最初にアピールが必要で、製品への思い入れや心に浮かぶイメージによって購買意欲が沸いてくる。

3. 越前打刃物の現状

3.1 現状分析

関市の刃物は多品種で、様々な場面に応じたナイフが販売されており、その他家庭用用品だけでなく、園芸用品や美粧用品など、約2000点もの刃物が販売されている。一方越前打刃物は包丁、ナイフ、家庭用品、はさみ、大工道具等が販売されているが種類、販売数は関の刃物に比べて限定的である。それは2008年の出荷額都道府県別順位で福井県は包丁が唯一4位であるが、岐阜県は理髪用刃物、包丁、ナイフ類、はさみの4部門全て1位になっていることからも分かる。

3.2 歴史的発展過程

越前打刃物は、およそ700年昔、京都の刀匠千代鶴国安が名剣を鍛える水を求め旅の途中、この地に留まり刀剣をつくる傍ら鎌も製作するようになったのが起源とされている。それ以来、武生は農業用刃物の一大産地となり、それらは北陸独特の行商というかたちで販売された。そして江戸時代の中期、越前打刃物、特に越前鎌が全国第1位の生産量を挙げるようになった。しかし明治時代になると、廢藩置県により株仲間の解散や保護政策などの手当てもなくなり、生産量の減少とともに品質の低下もみられるようになった。それでも明治7年当時の全国鎌生産量は第2位の新潟県を大きく引き離し1位であった。昭和初期にかけては、絹織物業の発展によって、養蚕に不可欠の桑切包丁と桑切鎌の生産に拍車がかかり、さらに菜切包丁や稻刈鎌の需要も高まって武生の打刃物業界は、比較的平穏な道を歩んできた。昭和54年1月越前打刃物は全国打刃物業界では初めて、伝統工芸品として国の指定を受けた。指定された打刃物は、包丁、鎌、鉈及び刈り込み鉈である。しかしながら現在の出荷額は、主に廢刀令で全国の刀鍛冶が鍛造を始めたということ、絹織物など地場産業の衰退等によって全国に占める割合は数%に過ぎず、その産地としての地位は低下してしまっている。

一方関市は、約780年前「刀祖」元重が九州から関へ移り住み、刀鍛冶を始めたとされているが、また越前から刀匠が関に移住して始められたという説もある。室町時代の後期頃になると、鍛冶職人の統率などを目的とするため鍛冶座が結成され、関伝日本刀はその名を全国に広めた。戦国時代を迎えると実用的な刀剣に対する需要が飛躍的に高まったが、江戸時代以降、刀の需要も減少し一部の刀匠は包丁、鎌などを打つ農鍛冶に転向した。明治9年に廢刀令

が布かれると、刀鍛冶の殆どが実用的な家庭用刃物の生産に転向し、欧米から紹介されたポケットナイフの生産も始めた。また朝鮮へ打刃物類、カナダへポケットナイフが輸出され、大正には金属洋食器、昭和にはカミソリの生産がはじまり、戦前には大正、昭和を通じて、東南アジアへの輸出も盛んに行われた。戦時中は一時軍刀生産一色に包まれたが、戦後は再び伝統技術を生かして、幾度も技術革新が図られ包丁、鉈、キッチンナイフ、爪切り、カミソリ、アウトドアナイフなどがつくられた。そして現在国内は勿論、アメリカ、ヨーロッパを始め世界各国に輸出され日本一の刃物生産額を誇っている。

4. 越前市、関市刃物の比較

越前打刃物と関の刃物はほぼ同じ時期から始まり、同じ刃物産業であるのにも関わらず、両者は現代においてなぜこのような違いがあるのだろうか。刃物産業全体からみた越前と関刃物の比較を下の図に表し、その違いを要約した。

表1. 越前と関の刃物の比較

越前市	比較項目	関市
伝統的製法	製品	現代的製法
少品種	種類	多品種
2枚広げ、鍛造	技術	型抜き
技術重視	デザイン性のある商品	使いやすさ重視
減少傾向	生産量	減少傾向
包丁部門で4位	国内生産	4部門で1位
少量	輸出	アメリカ・アジア等 増加傾向
農機具	イメージ戦略	刀
消極的	プロモーション	積極的

越前の刃物の種類は先述した通り少品種であるが、関市は包丁・ポケットナイフ・かみそり・つめきりなど多品種で時代に応じて多角化、輸出拡大に成功しており、最近では、産業用・医療用刃物等の成長などがみられ、常に新しい刃物事業の展開を目指している。次に技術の比較については、越前打刃物の技術として、鍛造・2枚広げという特徴があり、一方関の刃物は鍛造しない一般に型抜きと呼ばれる刃物づくりでこの製造工程に違いがある。

またデザイン性のある商品とあるが、伝統工芸品を活性化する方法としてデザイナーとコラボレイトすることで成功する例が多々見られる。その中でデザイン性のある包丁を比べると、重視していることが越前は「技術」関は「使いやすさ」であった。輸出についても越前は少量であるが、関はアジア・ア

メリカ・ヨーロッパなど増加傾向にある。刃物産業に対するイメージは、越前は先述した通り、鎌を中心に発展したという歴史的背景もあり、刀の需要が縮小してからは農機具のイメージがついてしまっている。一方関は関伝の刀と有名で関の刃物は「折れず曲がらずよく切れる」とのイメージが現代でも根付いている。またプロモーションも、それぞれ越前打刃物協同組合、関刃物会館での聞き取り調査によると、越前では資金的な面や人手不足により、越前打刃物組合だけではあまり積極的なプロモーションはできていないというのが現状だが、関では産官が一丸となってのPR活動など積極的なプロモーション活動をされている。

5. 関刃物産業の発展要因

5.1 生産体系

関刃物は戦後軍刀という主力商品を失って危機に陥ったものの、ポケットナイフや洋食器刃物の製造に切り替え、輸出中心に復興を進め、昭和30年代の経済成長による生活水準の上昇から製品の内容も多様化し、固定相場制の中で高い国際競争力を維持し、輸出拡大に成功していった。また昭和5年から、関の刃物は受注生産に頼らず、遠隔地の消費地への供給を企画した見込み生産の形に移行していくことがあげられる。

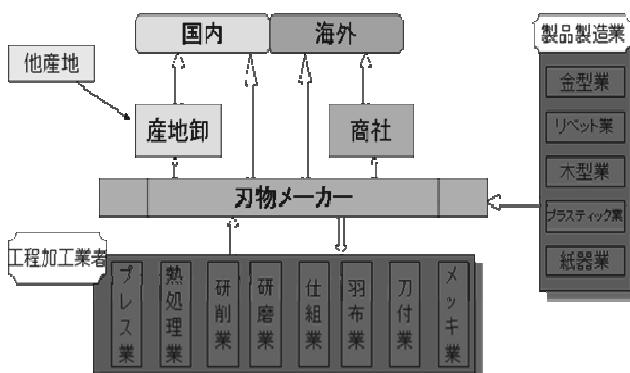


図2 社会的分業組織

出所「平成26年度 関市の工業」

5.2 特徴的なプロモーション活動

関市は積極的なPR活動、また市や旅行会社との連携が取れており、関刃物が世の中に多く送り出せる要因となっている。また多くの刃物メーカーは工程加工業や部品製造業とともに分業体制を確立している。そして産地問屋に集荷された後に最終消費地に出荷され、海外へは商社を経由して出荷されるといった流れが昭和初期の頃から出来上がっている。

また関の刀が「折れず、曲がらず、よく切れる」として有名であり、「刃物の町」としてそのイメージを上手く利用したプロモーション活動によって消費者から高い評価を受けている。そしてそのことが、刀以外の刃物産業全体における発展要因となったと考えられる。

プロモーション活動については、具体的には鍛冶による刀打の実演や和紙職人による手漉きの実演をするイベントである。さらに集客が見込めるイベントとして、関の刃物祭りがあり、約20万人の集客を見込んでいる。その他フェザーミュージアム、関鍛冶伝承館、岐阜県刃物会館、濃州関所茶屋、ナイフ博物館、世界のナイフ博物館等多くの施設がある。工場を公開することや博物館を運営することで、次のような効果を考えられる。

以前付き合いのなかった他分野の企業や人が来るようになり、特に宣伝をしなくても、その取り組みがテレビや雑誌で紹介されたり、口コミで広まるようになったり、地域に貢献する姿勢が企業のイメージアップや商品の売上の向上に繋がる。さらにこのことが一方通行になりがちな製造者と消費者の関係を深める手段になる。顧客とコミュニケーションを図ることで、売れ筋商品のニーズが分かり、いろいろなアイデアが浮かぶようになる。実際、見学者の意見をヒントに作ったものがヒット商品になった例もあるようだ。また作業現場を見られることにより、従業員の勤労意欲が高まり、生産能率が向上する効果も期待される。さらに工場見学等を通して、「何かをつくること」に興味を持った若者が現れることが期待で、その結果、停滞気味の中小企業への雇用を促進することができる。博物館と工場見学を合わせて行うことにより、その商品への関心が高まり、見学後商品を買ってもらえることにもつながる。

5.3 地理的要因

関は中世の関錢徵収を目的とした関所であったと考えられ、飛騨・信濃と近江・伊勢・尾張などを結ぶ幹線道路が交差する交通の要衝であり、人と文化と物資の集散地であった。また、新長谷寺の建国は中世関の町に大きな影響を与えた。関が鍛冶と番匠の町であったことは、この新長谷寺に大工職として補任された鍛冶や番匠が自立し発展したものと考えられる。

5.4 関市刃物産業の弱み

日本だけでなく世界での地位を確立し知名度が高い関市刃物産業だが、鋼材価格の高騰や安価な中国製品との競争のため、厳しい状況が続いている。一部の企業では安価な人件費を求めて、生産を中国に一部又は全面移転している。また、下請を行う個人事業者の多くは定年とともに廃業する傾向にあり、産業の空洞化が懸念されている。

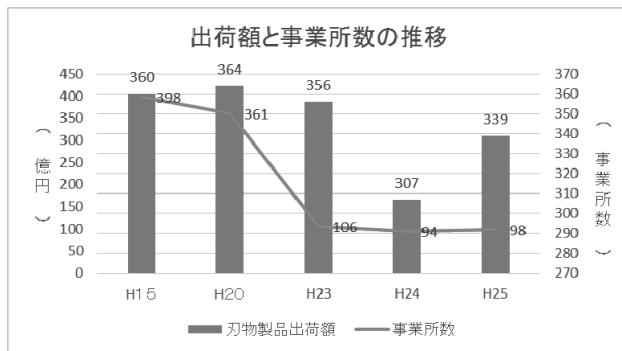


図3 関市の刃物産業の出荷額と事業所数の推移

(出所：平成26年度 関市の工業)

5.5 観光地入場者の減少

平成16年度の入場者数は和紙の里会館が約4万人、フェザー・ミュージアムが約1万9千人、関鍛冶伝承館は約1万6千人となっており、大規模な集客が見込めるコアの施設にはなっているとは言えない。また、入館者数はオープン以来減少傾向にある施設は多く、何か新しい企画を定期的に行い、リピーターを増やすことが課題となっているようだ。大多数の入場者が、土日に集中しているので、社員が休日を返上して対応しなければならない。特に中小企業の場合はもともと、従業員数が少ないため、シフトがきつくなる。人件費を考慮すると、入館料や体験学習、それに伴う商品販売収入はわずかで採算がとれない。これは、「地域に貢献する」という、いわばボランティア精神がなければこのような施設を運営していくことはできない。

また、積極的にPRをして集客数を増加させたいが、一度に大量に来られても処理ができないジレンマがある。

6. 越前刃物の特徴

6.1 技術の優位性

関の包丁は「鍛造」作業はなく一般的に鋼板をプレス機により包丁の型に成型してしまう。一方越前打刃物は、2枚広げと呼ばれる技法があり、鋼材を

2枚重ね厚みが倍にさせることで、ベルトハンマーでの圧縮力がよく働き、温度が下がりにくくなるため、製品の板むらも少なくなるという特徴を持っている。また、刃物用鋼の鍛造前の組織に含まれる白い炭化物は連なっており、その部分から割れやすくなってしまうのだが、「鍛造」することで組織が微細かつ均一になり、割れかけにくく、切れ味がよくなる。

6.2 工場と観光施設の一体化

越前打刃物には、大きく越前打刃物協同組合とタケフナイビレッジがある。タケフナイフビレッジでは越前市の地場産業である本物の打刃物職人の作業を見学できる。単にショーアンド、ある特定の工程を見せるのではなく、実際にこの場を作業所としている職人様々な工程を一貫して見ることができる。この施設の特徴は、共同工場の側面と観光施設の両側面を有している点である。施設が立てられた背景には、地場産業の衰退傾向と刃物業界の後継者不足の深刻な問題があり、地場産業を活性化させるために越前打刃物の伝統を後生に伝える施設が必要だ、という考えがまとまつたからであった。その考えに共感した企業（職人）10社が組合を設立しこの施設を建設した。設計の段階から、作業工程をオープンにすることが考慮され、作業の妨げにならないよう製造現場を眼下に見下ろす形で、見学コースが設けられている。その他、刃物の研ぎ方教室やペーパーナイフ、小刀・ナイフ作りの体験教室も実施している。このように職人と協同組合が独立採算で運営し、ワンストップで製造工程見学から体験学習、およびショッピングまでできる産業観光の施設は全国的に見ても珍しい。現在は、10社が工場を共有し製造に励んでいるが、工場内で働く職人の多くは、国から伝統工芸士に認定された職人である。その職人の技能を見学するために、一般観光客以外にも包丁職人を目指して集まつてくる例も少なくない。事前に予約をすれば、職人と話す機会を設けることができる。入館者数は年間で約2万人以上が訪れる。来館者の年齢層は様々であるが、夏休みは、親子連れが多く、通常時は団塊世代も比較的多い。近隣県から団体バスツアーで来る場合が多く、寒ブリ、甘エビ、越前かに等「食」とセットコースが多い。体験プログラムは6名以上（要予約）が必要で、予算やレベル、時間に応じて各コースが設定してある。鋼を叩いたり、研いだりする本格的なコースもある。一見、危険に見えるが、職人がつ

いて指導するので問題はない。最も人気があるのは手作り鍛造ナイフ教室で、初心者から上級者まで5段階あり、2日間のコースである。小学生には、安全な切れにくい鋼を使ったペーパーナイフ作りコースが人気である。最近は、体験コースの希望者が増加傾向にあるので、体験専用施設の建設を検討中である。

以上で述べてきたタケフナイフビレッジの成功要因を以下で述べたいと思う。施設は、地元にゆかりのあるデザイナーによりアドバイスされ、外観・内装とも、オリジナリティに溢れる施設を作ることができた。建設には、国から高度化資金を借りている。つまり、最初から行政から補助金など得ず、運営に関しても基本的には自立している（特定事業に対する補助金はある）。現在も10社で返済が続いている。1社でも業績が悪化すると迷惑がかかるため連帯感が生まれている。この連帯感こそが、成功には不可欠な要因である。自社の売上だけではなく、観光施設として魅力あるものにするため、皆が努力し相乗効果を生んでいるのである。共同工場のメリットとしては、各社（各職人）それぞれの得意分野があるので、仕事の際に役割分担でき。工場見学のガイドや体験学習の指導など順番で回すことができるのでも、1社単独でやるほど本業に支障がない。観光客が多い土日も、ローテーションで回すことができる。通常の工場と違い、斬新なデザインの工場の中で仕事をしているので、3Kのイメージが薄れるという点もある。そのためか、他県の地場産業企業が人材の確保に苦しむ中、若手の就職希望者が多く、後継者の育成も上手くしている。

6.3 伝統産業を活性化させたデザイン性のある商品
 伝統工芸品を活性化する方法としてデザイナーとコラボレイトすることによって新製品を開発し成功する例が多々みられる。関市でも、工業デザイナー川上元美氏とコラボレイトした包丁MOKA包丁、また越前市では、川崎和男氏がデザインしたアルタス・クレウス丁がグッドデザイン賞を受賞している。関のMOKA包丁はデザインだけでなく、オールステンレス素材を使い、バランスや握り具合等の使用感に留意し食器洗浄機への対応なども考慮しており、毎日使う道具として「使いやすさ」に重点を置いている。一方越前打刃物は新しい鋼、クラッドメタルを開発し、伝統の技で「鍛造」するという点で、切れ味が優れ鋳びにくいという特徴を持ち、伝統技

術を盛り込むことを忘れていない。クラッドメタルとは、メッキや接着剤で接合したものとは異なり、ある金属を他の金属で全面、あるいは部分的に被覆し、かつその接合界面が冶金的接合されているもので、複合化することにより従来得られなかつた性質を得たり、相反する性質の弱点を相補的にカバーできたりすることができる、いわゆる“複合特性”を持つ材料となる。

越前打刃物は、「伝統技術」を継承しつつデザインとコラボレイトしており、デザインを重視した消費者にも伝統技術に裏付けされた製品を提供できるということになる。またこうした点からも、本当に伝統技術を守っているのは越前打刃物だということがいえるのではないだろうか。ただ「越前打刃物」には、残念ながら確固たるアイデンティティが存在していないのが問題である。

7. 越前市と刃物共同組合の戦略

7.1 販売ルート

越前市は観光地との連携や、他県への宣伝活動も行っているが、越前打刃物協同組合の職員によると、県外でPRによる販売、インターネットでの販売による注文は微々たるものであり、ほぼ地域住民の口コミに頼っているのが現状である。

7.2 社会的分業組織

また刃物会社は商社や卸業者にほとんどの商品を出荷し、「越前打刃物」として商品を売るかどうかは商社や卸業社に任せているので、「越前打刃物」として確実に名を刻印して販売しているのは組合（約21社）だけでしかない。つまり、せっかく伝統ある技術で作られた包丁でも、「越前打刃物」と知らずに購入する消費者が存在するということで、この社会的分業組織が越前の刃物としてのブランド力が関よりも確立していない原因の1つと考えられる。

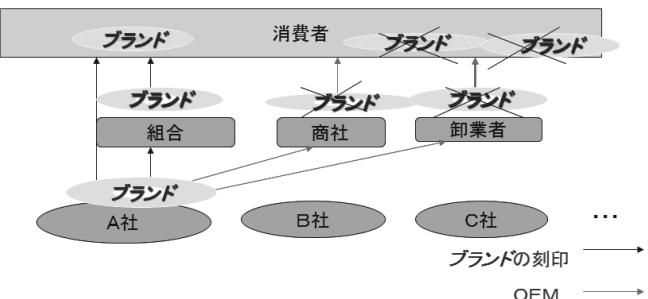


図4 越前打刃物業界の社会的組織(筆者作成)

7.3 越前打刃物の発展疎外要因

越前打刃物の発展疎外要因としては、まず、上の図からも分かるように、越前打刃物の社会的分業組織から、刃物自体のイメージ化・ブランド化・多角化に失敗している点があげられる。さらに越前打刃物は他の産業に依存し、刃物産業自体が自立化しないことで、商品の多角化に失敗してしまった。それらのことが、伝統技術を忠実に守りながらも刀と相乗効果を発揮できず、認知度が低く、伝統的な手作りの本当の価値を理解してもらっていないといった現状につながっている。また後継者問題で新しい製品開発や商品開発が停滞し、生産のライフサイクルにおける効率性(つまり継続的な改善活動の欠如)なども発展疎外要因だと考えられる。

8. 産学官連携

先ほど越前打刃物協同組合での積極的プロモーションは不足していると述べたが、県庁が取り組んでいることがある。

福井県庁が行っている伝統工芸品のプロモーションは、ふくいやまぎわ天下一街道と題したもので、福井に代表される伝統工芸品や食べ物を体験できる場所を8か所指定し、全個所行きスタンプを集めれば、抽選で豪華なプレゼントがもらえるというものである。具体的には、越前打刃物ゾーン、越前和紙ゾーン、越前漆器ゾーン、一乗谷朝倉遺跡ゾーン、大本山永平寺ゾーン、福井県立恐竜博物館ゾーン、白山平泉寺ゾーン、越前おおのゾーンがある。

この天下一街道の特徴としては、福井の伝統工芸品だけではなく、恐竜博物館や永平寺など観光地と連携しているだけでなく、福井で有名な飲食店やご当地ものを食すことのできる場所と連携しているところである。最近の傾向として、体験プログラムなどの人気が高まっていることは事実であるが、ツアーや内容が工場見学や体験学習ばかりでは集客は難しい。魅力あるツアーや「体験」や「学習」プラス「癒し」や「食」などリラックスできる要素を盛り込むことが成功への鍵となってくる。

これによって、食べ物目当てで来た人もしくは、恐竜博物館を目当てに来た人でもスタンプを押すため、伝統工芸品に触れ合う機会に恵まれる。また、それぞれのゾーンに伝統工芸品だけではなく、必ず飲食店や体験コーナーを設けているというところが特徴的である。このことにより、その地域ごとの代表されるスポットの歴史的、文化的背景を肌で実感することができる。例えば、越前打刃物ゾーンには、越前めがねの里、タケフナイフビレッジ、越前市

観光、匠の技案内所、和風レストラン瀧雅、紫式部公園「藤波亭」、万葉聞く花園 喫茶コーナー、万葉そば道場、越前そばの里がある。これにより、越前市には鍛造の技術があるということが分かるだけでなく、越前市自体が匠の技術を持つ所以や、歴史的な背景や地に触れることができる。越前打刃物だけでなく、全体に視野を広げ、地域の人々へプロモーションすることは、打刃物の技術の素晴らしさへの理解にもつながり、高価でもその価値への理解へもつながる。

一方、改善余地としては、次の2点があげられる。まず一つ目は、このふくいやまぎわ天下一街道の認知度の低さである。私も福井県に住んでいるが一度も見たことがなかった。県庁によるとこれらのパンフレットが置いてある場所としては、駅前や天下一街道に含まれるその施設のみだという。私たち消費者が、わざわざそれらの場所へ出向かないと情報を得られず、認知されないのであまり意味がない。大学にもしこのパンフレットがあったとすれば、在学中の県内出身者だけでなく、県外出身者や留学生が存在するので、その人達に福井をアピールすることもできる。また他の大学生にも、地域の文化を知りたいというニーズはあるはずなので、積極的にアピールしたい。

9. 越前打刃物の課題

まず関の刃物が地ブランドと多角化に成功している要因は、「よく切れる」刀のイメージが根底にあるということである。それは刀の製造と他の製品を関連づけて想像させるために、刀鍛冶が実際に伝統技術をみせることにより消費者に強く印象づけているからである。

一方越前打刃物は、刃物全体のイメージが「よく切れる」といったものではなくなっているのが現状である。その要因として刀の需要が減少し、歴史的に農具の販売が主流となってしまったことがあげられる。しかし本来なら、刀の鍛造技術を伝承していくにも関わらず、越前打刃物の方が、鍛造技術を忠実に受け継ぎ、手作りと、手作りのプロセスにおいて優れているという事実を認知してもらい、その高付加価値を理解してもらう必要がある。

10. 今後の越前打刃物

10.1 地域ブランドの確立

このままでは後継者問題や、安価な商品に消費者が流れてしまい、伝統技術が根絶してしまう可能性も低くない。越前打刃物の伝統技術を伝えるために川崎氏のように包丁をデザインし、積極的に海外へも販路を拡大し付加価値をつけることで技術としての差別化を図るだけでなく、これからも伝統技術を伝承できるように伝統工芸士に資金的な援助を享受させたり、組合だけでなく商社や卸業社が「越前打刃物」と刻印したりして製作者を明らかにし、「伝統技術+デザイン+ブランド」商品を販売し地域ブランドを確立する。デザイン思考で越前打刃物のアイデンティティを確立する。さらに、製品の設計段階から製造され廃棄処分されるまでのライサイクルのプロセスを明らかにする。その製品が生まれる歴史的背景・地理的な用件・文化的な風土も含む製品のバックグラウンドを含めた「ストーリー」を創造することで伝統産業の活性化を図れるのではないだろうか。

10.2 アイデンティティの確立

新たな具体的な戦略として、製造段階から消費者の意見を聞き、職人、卸業者、消費者が三位一体となって製品に関する意見交換を行い、新たな製品作りをしたらどうだろうか。越前打刃物の中には洋食系のシェフに向けた包丁 BLAZEN があるが、これを洋食系のシェフに卸業者が売るだけでなく職人を交えた直接販売を行う。

さらに越前の刃物の良さを理解したシェフがその包丁を使い、料理教室を行うことで料理を作る楽しさ、切れ味を料理教室に参加した人々（主婦やこだわりのある男性など）に体験してもらう。包丁自体の歴史的、文化的価値を理解してもらうことでより包丁に対する理解や関心が高まり、料理教室に参加した消費者によっても口コミなどで包丁のよさを広めることができる。

また包丁職人が消費者（シェフ）から直接意見を取り入れることで商品を改善でき、新たな製品の開発、消費者層の確立を模索できる。

さらに直接消費者が製品の特徴や付加価値を聞くことで職人自身の意識も向上するといった相乗効果が生まれる。このようなシステムを確立することで安価な商品が消費者に流れるのを防ぎ、地域ブランドを確立するための高付加価値化を促進することが可能となり地域ブランドの確立、高付加価値製品の理解、越前打刃物のアイデンティティの確立が可能となる。

11. まとめ

越前打刃物を調べる上で関の刃物産業を調べたところ、関の現在の成功要因は次の大きく3つに集約された。1つめは、関は刀をどの製品にも根底にイメージさせ時代、時代にあった新製品を即座に開発することで多角化に成功したということである。2つめは、関は刃物の産業の集積地において絶えず刃物が主体となり主導的な役割を果たしてきたというところである。そして3つめに、関は地理的、歴史的な背景を利用し関の刃物のアイデンティティを確立し、刃物産地としてのブランド化に成功したのである。

一方、越前は、越前打刃物は刀の伝統的技法を忠実に伝承しており、加工技術のレベルは関よりも高い。そこでこの越前打刃物の伝統を守るために、デザイン思考により、イノベーションを創出し、地域ブランドとしてのアイデンティティを確立することで越前打刃物が存続する仕組みを考えることが不可欠である。そのため組合の組織・職人・消費者との関係を有機的に結合させ変化させることが求められている。さらに、現在取り組まれている産学官連携についても、県と組合が連携を深めて、単なる提案をするだけでなく、私達消費者や地域住民の人々に、認知され、直接的にPRすることが今後地域全体としての重要な課題である。

参考文献

- 1) 黒川清著『「ものづくり」から「ものがたり」へ 文芸春秋オピニオン 2013 年の論点』文芸春秋、2013 年。
- 2) 奥山清行著『伝統の逆襲 日本の技が世界 ブランドになる日』洋伝社、2007 年。
- 3) Tim-Brown『デザイン思考が世界を変える』ハヤカワ・ノンフィクション文庫、2014 年。
- 4) 斎藤 嘉造著『槌の響 越前武生の打刃物』武生市工場試験場、1986 年。
- 5) 関市教育委員会「神官 関市氏 刃物産業編」関市、1999 年。
- 6) 経済産業省『2008 我が国の工業 着実な回復を続ける製造業』経済産業政策局調査統計部編、2008 年。

催事販売型インターンシップ・プログラムの開発と検証

Development and Verification of a Retail Management Internship Program to acquire managerial capabilities

村松俊明* 西崎雅仁**

Toshiaki Muramatsu, Masahito Nishizaki

Summary

The purpose of this article is to develop internship program for university students to acquire managerial capabilities. In this program, they set up the virtual-company, and experience a general meeting of shareholders, market research, purchase of goods, sales activities, closing of accounts, a dividend. Finally, we verify the effect of this program by conducting one-group pretest-posttest design and questionnaire survey(personality test, questionnaire, sociometry).

キーワード：催事販売型インターンシップ・プログラム，問題解決型学習

Keywords : Retail Management Internship Program, Problem-Based Learning

1. はじめに

1.1 研究の目的

経済成長を前提としない定常型経済への社会変化にともなう大学生等の雇用環境の悪化を背景に、社会的・職業的自立を図るために必要な能力である就業力の育成が大学に求められている。ここでいう就業力とはどんな問題に直面しても、解決できる強い意志、思考方法、対応力を指しており、態度・行動様式レベルのコンピテンシーである。その能力は、学校における正課教育による学習の他、クラブ活動やサークル活動、アルバイトといった正課教育以外の経験からも身につくと推察される。大学は、社会的要請から教育改善が求められているものの、その取り組みと就業力改善との結びつきは十分とは言い難く、試行錯誤している段階といえよう。本研究の目的は、このような状況を改善し、重要な能力で

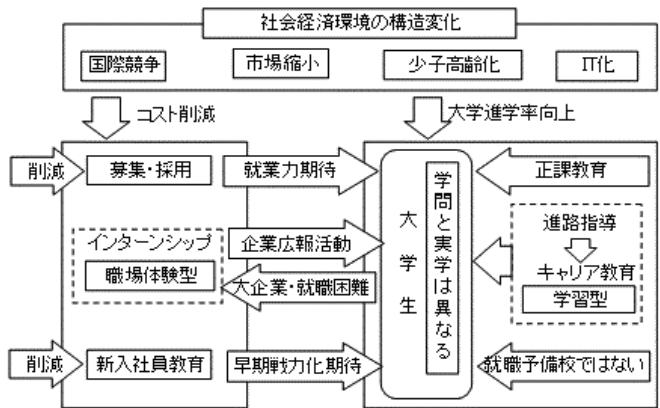
ある就業力を育成する新たな人材育成プログラムのあり方を提案することにある。そこで、本研究では問題解決型学習 (Project Based Learning, 以下 PBL) の手法を導入した催事販売プログラムとして、受講者である学生全員が出資し模擬の会社を設立、株主総会の開催、市場調査による販売商品の企画、売上高分析、商品の仕入れ、商店街での販売から決算までの経営体験を通して能力開発につなげていく。検証については、就業力、性格適性検査、アンケート調査、ソシオメトリー分析から得られた結果について分析・評価を行った。

1.2 研究の背景

本研究は、文部科学省・平成 24 年度「産業界のニーズに対応した教育改善・充実体制整備事業」の首都圏に立地する連携 18 大学の各テーマの 1 つである「産業界との連携による人材育成プログラムの開発」について

* 大同大学 情報学部 総合情報学科 経営情報専攻

**大同大学 情報学部 総合情報学科 経営情報専攻


教育手法の開発、教育改善を目的として、法政大学を幹事校とする連携 7 校から著者が経営する人材派遣会社（以下「X社」という）に依頼を受け実施結果をまとめたものである。具体的に同事業は国公私立大学を通じた大学教育改革の支援であり、学生の社会的・職業的自立に資する教育の改善・充実を図る。地域別では、北海道・東北、関東甲信越、中部、近畿、中国・四国、九州・沖縄の一つの都道府県域を超えた広域の大学・短期大学が国公私立の枠組みを超えて大学集団を形成し、地元の産業界、経済団体、自治体等との協力体制の下、インターンシップの高度化やキャリア教育の改善・充実等、設定した共通の取組テーマを推進し、それらの成果を共有するものとしている。

1.3 他事業との連携

催事販売プログラムでは、上記の委託事業の他に「平成 24 年度 東京都地域支え合い体制づくり事業」との一部連携があったため、その概要について補足する。東京都では、高齢者や障害者等、地域社会とのつながりや支援が必要な方々を地域で見守り、支える体制を構築するため、地域支え合い体制づくり事業を策定し、地域の支え合い活動の立ち上げ支援事業、地域活動の拠点整備、人材育成、東日本大震災による被災者生活支援等、都内で広域的に実施される取り組みを支援している。第 2 回のプログラムでは、中井商工会の商店街活性化の支援策として進行していたプロジェクトである「中井商工会ナンバーワンPOP Project」に参画し「デジタルサイネージによるプッシュ型情報配信」の支援のため、受講者は商店街の実態調査と資料作成を行った。

1.4 研究の基本構成

図 1.1 は、社会経済環境の構造変化の概念をまとめたものである。日本経済は、国際競争、市場縮小、少子高齢化、IT 化などの構造変化の中で、従来の日本型長期雇用慣行と連動し、大学生を学校から職業生活に安定的に移行させてきたシステムが機能を失いつつある。大学生の就職難は、この変化の結果として顕在化してきたものだととらえられる。企業は、社会経済環境の構造変化からくる景気の先行き不透明感から、新規採用を抑制している。また、従来の企業内の新入社員教育や従業員の能力を引き出す長期的な訓練計画がコストカットの対象となり、体系的な従業員訓練が削減されている。そして、募集採用では、即戦力が重視され、新卒者にも即戦力として役立つ人材であることが求められている。企業が大学生の教育に関わるのがインターンシップであるが、その形態は、企業広報活動の意味合い

が強く、大学生の教育に結びついているとは言いがたい。

出所：各種資料、インターネット検索をもとに作成

図 1.1 社会経済環境の構造変化の概念図。

図 1.2 は、キャリア教育における過去・現在の変遷を表したものである。文部科学省は「一人一人の社会的・職業的自立に向け、必要な基盤となる能力や 態度を育てる通じて、キャリア発達を促す教育」であると定義している。大学の位置づけも大きく変化している。従来の正課教育と進路指導に加えて、以前は企業内で行われていた社会人としての基礎教育を大学が担うことが求められるようになっている。多くの大学教員は、大学は就職予備校ではないと思いつつも、企業が求める即戦力志向の要請を無視できないという状態に戸惑いをみせている。いわゆる就職指導に熱心な大学では、大学生の就職率の向上を目的とした就職のためのスキル教育を重視し、大学教育の質の低下を引き起こしている。このような社会環境の中で教育を受けている大学生たちは、大学での勉強は働く上で役に立たないと漠然と思っており、大学教育の本当の価値がわかつっていない。大学に通いながら資格取得のために専門学校に通うというダブルスクールの大学生も多々存在する。また、仕事が経験につながると考えてアルバイトに励んだり、企業が提供するインターンシップを盲目的に信じ、応募したりしている。これらの状況は、それぞれの主体が、何をすれば良いのか、何をすることが最も必要なのかを見失っていることを示している。大学教育は、就業する中で必要とされる能力の育成に寄与してきたし、これからも寄与し続けることができる教育である。この基本認識を出発点として、この研究を組み立てている。

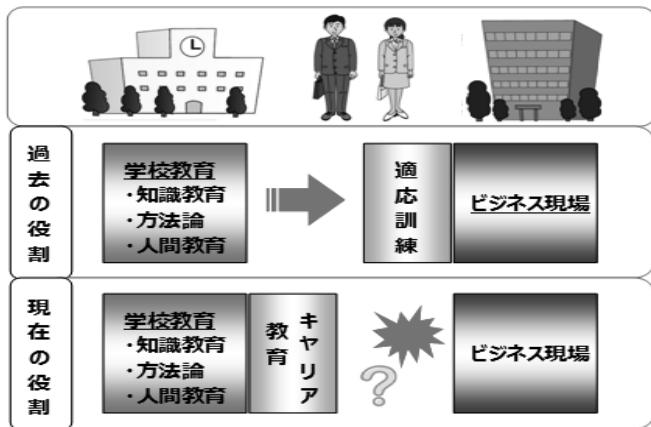


図1.2 キャリア教育（過去・現在の変遷）。

1.5 従来型の大学教育の現状

大学生からヒアリングすると、「大学で学んだ知識が、実際の社会の中でどのように生かされているのか学ぶことができない。」「実学は大学で学ぶことができないのではないか。」という意見が多い。この現実をジョン・デューイ（John Dewey）は、学生の多くは学習したことが学校以外の生活の場とは無縁であると感じ、反復練習によって特殊な熟練を習得する一方で、新しい場面に応じての知的行動力が制限を受けていると表現している。つまり、大学での勉強と働くようになって必要とされる能力とのつながりを実感できていない状態である。そこで、現状の課題と問題解決についてそのイメージを図1.3に示した。従来型の大学教育とキャリア教育のかかえる課題を左側の「学校が陥り易い落とし穴」として、催事販売を実施することの効果も含め課題が解決された状況を右側の「目指すべき姿」として図示している。具体的に「学校が陥り易い落とし穴」は、大学生のかかえる課題である大学の授業で必要とされる知識が社会の中で活かされておらず、正課教育とキャリア教育が分離しており、大学教育が就業力養成に貢献できていない状態を教育と就業力の関連性の弱さとして表現している。また、「目指すべき姿」については、実学として学んでみたいという能力を従来型の大学教育で十分高めることができることを前提に、キャリア教育を含み、社会人としての基礎的能力養成の一環として催事販売を実施することで、就業力の関連性を強めることを表現している。

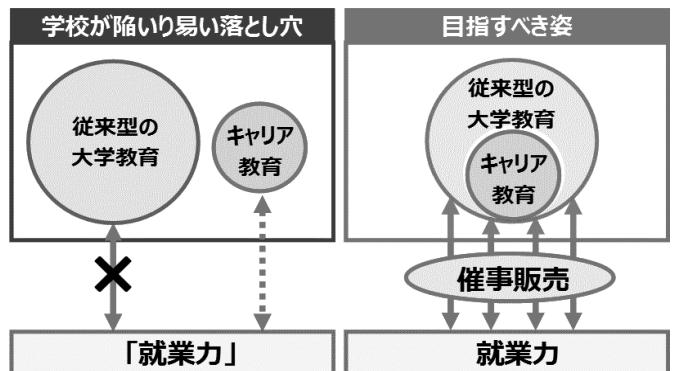
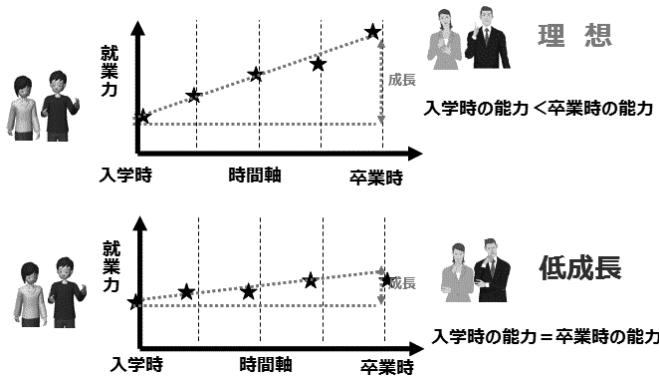


図1.3 催事販売の実施による効果のイメージ。

1.6 催事販売の基本的考え方

大学生は、高校までの学校教育において、与えられた課題をいかに正確に速く解くかを求められてきた。学校で良い成績をとるために、与えられた課題を忠実にこなすことが重要だった。しかし、社会に出て働くようになると、何が課題かに気づくことが重要になる。催事販売では、まずこの部分を体験させる。催事場所と期間は決まっているが、そこで何を売るかは大学生たちが決定することになる。決定するためには、情報収集しなければならない。どのような人たちが顧客になるのか、その人たちの好みは何か、周囲の競合店でどのようなものが売られているかなど、収集すべき情報は多岐にわたる。既存のデータが使えば良いが、それがない場合は自分たちで情報を集めなければならない。ある程度、情報が集まると、それを使って何を売るかを考えることになる。考える途中で不足している情報があれば、追加で収集しなければならない。情報は、顧客に関することだけにとどまらない。どこから仕入れるかも重要な考慮要素である。天候によって売上は変わるので、売れ残りが出そうになったときどうするか、あるいは売れ残りを出さないようにするにはどうすれば良いかについてもあらかじめ考えておかなければならない。宣伝方法の検討もこの段階の課題である。そして、最後に来るのが、実際に売るという段階である。ただ売り場に立っているだけではものは売れない。売れ行きを見ながらレイアウトを変えたり、ポップを作り替えたりといった工夫が必要になる。自分が当事者として売上に責任を持つという緊張感が、大学生にさまざまなことを考えさせ、そこから多くの気づきが得られるのである。この催事販売プログラムには、X社が関わる。その役割は、催事販売の運営を調整する機能である。必要に応じて事前教育を実施することもその役割である。大学生のレベルや条件に応じて就業力を高める企画を提案する。また、複数の関係者を横断的に調整し、リスクを未然に回避

するなど催事目標を達成するためのスケジュール管理により円滑な運営をはかる。具体的には、参加する大学生の性格適性検査からはじめ、個人面談を実施し、意識や能力に応じて、実行可能な催事販売の設計を大学に対して提案する。大学生の能力が高い場合には、大学生の意見を優先した商品開発やオリジナルの店舗構成なども可能となるが、時間の確保が難しい場合や未経験で補助が必要な場合には、一定のパッケージの中から選択方式をとる。また、業者や商品の選択などへの助言や関係者への情報提供と協力要請など、大学生の運営する業務に支障のないよう黒子としての活動が中心となる。大学の役割は、催事販売の運営に関する事前の学習やフォローアップを実施することである。これまでのインターンシップとはまったく異なるアプローチをとるため、事前に大学生が学習する必要がある。それを大学の教員とキャリアセンターに依頼する。大学生を主体とした催事販売の計画、実施、統制を学習アプローチによって学問の分野から大学生をフォローしつつ事業計画など経営体験として必要な助言を行う。ここでいう学習アプローチとは、新しい知識や考え方を体系的に学ぶことである。催事場所を提供する商店街関係者などは、大学生のキャリア教育を支援するために指導・助言するという立場をとってくれるとは限らない。通常、商店街での催事販売は、少しのミスが大きなクレームになりやすい。そこで、商店街側の協力の度合いを見極めながら、X社が関係をコントロールする必要がある。商店街という業界は地域性から特有の慣習もあり、業界知識がなく取引をすることは困難である。また、催事販売を商店街で実施する場合、接客方法や店舗での扱いは、大学生だからといって特別扱いはしてくれない。一般の業者同様、必要に応じて行政への手続きが必要となる。また、商品の卸業者との関係についても同様のことが言える。


1.7 まとめ

以上、研究の背景には、大学生等の雇用環境の悪化により、就業力の育成が大学に求められるようになったことが挙げられる。社会的・職業的自立を図るために必要な能力を育成し、その取り組みとして人材プログラムの開発ならびにその評価をおこなう意義を述べた。また、研究のきっかけとなった平成24年度「産業界のニーズに対応した教育改善・充実体制整備事業」のテーマ4である「産業界との連携による人材育成プログラムの開発」および「平成24年度 東京都地域支え合い体制づくり事業」の概要をもとに、研究の基本構成と、従来型の大学教育の現状として、キャリア教育のかかえる課題である「学校が陥り易い落とし穴」を示し、課題解決に向けた「目指すべき姿」を目標とする催事販売プログラムについての基本的な考え方を述べた。

2 就業力の概要

2.1 大学のキャリア教育と社会的価値

就業力は正課教育で十分育成できるものと考えている。大学教育の核心とは、論知的に考え方を通して理解を深めることであり、その学ぶ中心は論文を書くことにある。論文を書くとは、問題意識として解くべき課題を設定する。仮説設定として、課題設定した事象の発生理由を推察する。資料収集として、仮説の正否を確認するための情報収集や先行研究の読破、整理などがある。そして仮説検証として、収集した資料から仮説の正否を確定する。最後に、残された課題の確定検証の結果を整理することである。そして、働くようになって初めて、論文を書く際に必要な能力が生きてくる。商品が売れなかつた流れを例にしてみると、売れなかつた理由について仮説を立てる。商品自体または売り方に問題があったのか。情報収集に他の商品の売れ方、顧客の意見、小売店の意見がある。どの仮説が最も適切かを推定し売れなかつた原因を確定する。最後に解決策の提示として、原因がわかれれば対策も明らかになる。上記の例からも、就業力は正課教育で十分育成できる。そして、真の大学の価値は大学生の主体性を喚起し、学習に効果・成長を実感させ4年間にどれだけ付加価値を身につけさせることができるかである。図2.1は、大学の入学から卒業にいたるまでの能力成長イメージである。大学生の能力は、入学時と卒業時の差が少なく、正課教育や課外活動、学外講義や学外活動が有機的に結びついていないのが現状である。理想は、主体性及び学習・成長意欲があり就業力が向上している状態である。低成長の場合は、基礎知識は養成されているが、自己鍛錬の機会がなく就業力の変化は少ない状態である。

出所：raise.I Inc 「レイズアイ ソリューション説明資料」、2011. をもとに作成

図 2.1 大学の入学から卒業までの成長イメージ.

2.2 就業力の定義

就業力とは、働くために必要とされる力であって就職する力ではない。平成 22 年 2 月に改正され、平成 23 年度から施行された大学設置基準では、「大学生が卒業後自らの素質を向上させ、社会的・職業的自立を図るために必要な能力」を就業力と定義している。文部科学省は、大学にキャリア教育の実施を義務づけており平成 22 年から平成 26 年度までの 5 年間を大学生・大学院生の「就業力」向上の重点期間と位置づけ、キャリア教育に積極的な大学・短大の取り組みを財政支援している。本研究では、法政大学の提唱する就業力の指標を採用した。就業力を「文書作成力」、「情報収集・分析・発信力」そして「状況判断・行動力」の 3 つの尺度から構成される 19 項目からとらえた。大学教育は、就業力養成にこれまでも寄与してきたし、これからも寄与できる。ただし、正課教育を補う仕組みが必要となる。就業力を構成する 3 つの尺度と、その項目は下記の通りとなる。

A 「文書作成力」

「要点メモ力」「記録作成力」「文意把握力」

「文章構成力」「文章力」

B 「情報収集・分析・発信力」

「情報源把握力」「仮説構築力」「信頼関係構築力」

「資料批判力」「取捨選択力」「対象者確定力」

「情報媒体選択力」「情報伝達力」

C 「状況判断・行動力」

「状況対応力」「情報対応力」「自己変革力」

「環境変革力」「説得力」「共同行動力」

2.3 就業力の概念

就業力(働く上で必要とされる能力)を重層的にとらえることで取り組むべき課題が見えてくる。図 2.2 の

上になるほど見えやすい能力であり、教育プログラムで育成しやすく、必要によって入れ替え也可能な能力である。他方、下になるほど幼児期からの生活の積み重ねの中で育成されるもので、変化しにくいものである。この中段にある「能力・行動様式」レベルの能力がコンピテンシーであり、就業力である。この能力は教育を通じて形成・変容されうるが、知識ほどには可変的でないため、不斷に形成していく必要がある。本研究では、物事に対する姿勢を性格適性検査で把握する他、生育歴の中での社会的経験の欠落が問題となる場合や、精神疾患をかかえた人も含まれるため、対象者の就業力のレベルとそのキャリア形成の道筋について事前に予測することで、大学生の状況に合わせた就業力の育成を検討している。

出所：法政大学「就業力」G P 推進研究・藤村博之

「就業力を構成する要素」をもとに作成

図 2.2 就業力の概念図.

2.4 社会人基礎力の定義

社会人基礎力とは、「職場や地域社会の中で多様な人々とともに仕事する上で必要な基礎的な能力」をあらわす概念で、経済産業省が 2006 年から提唱している。学問で得られる専門知識やスキル以外に、仕事をする上で必要になる基本的な力のことである。この社会人基礎力は、大きく分けると「前に踏み出す力（アクション）」「考え方（シンキング）」「チームで働く力（チームワーク）」の 3 つの能力があり、さらに 12 の能力要素として、「主体性」「働きかけ力」「実行力」「課題発見力」「計画力」「創造力」「発信力」「傾聴力」「柔軟性」「情報把握力」「規律性」「ストレスコントロール力」に分かれる（表 2.1）。企業や若者を取り巻く環境変化により、「基礎学力」「専門知識」に加え、それらをうまく活用していくための「社会人基礎力」を意識的に育成していくことが今まで以上に重要なとなってきている。

表2.1 社会人基礎力の3つの能力・12の要素.

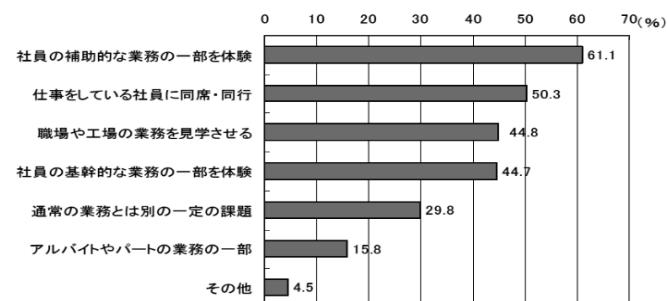
分類	能力要素	内容
前に踏み出す力 (アクション)	主体性	物事に進んで取り組む力
	働きかけ力	他人に働きかけ巻き込む力
	実行力	目的を設定し確実に行動する力
考え方 (シンキング)	課題発見力	現状を分析し目的や課題を明らかにする力
	計画力	課題の解決に向けたプロセスを明らかにし準備する力
	創造力	新しい価値を生み出す力
チームで働く力 (チームワーク)	発信力	自分の意見をわかりやすく伝える力
	傾聴力	相手の意見を丁寧に聴く力
	柔軟性	意見の違いや立場の違いを理解する力
	情報把握力	自分と周囲の人々と物事との関係性を理解する力
	規律性	社会のルールや人との約束を守る力
	ストレスコントロール力	ストレスの発生源に対応する力

出所：経済産業省「社会人基礎力」育成のススメ より引用

2.5 就業力を選択する理由

大学教育において、働く力の育成を考えるとき、文部科学省が推奨する「就業力」と経済産業省の「社会人基礎力」が挙げられる。本研究では、文部科学省の提唱する就業力を基本に考える。その理由は、大学教育との関連性の強さにある。経済産業省の提唱する社会人基礎力は、大学教育との連動性よりも、「企業側から見て、このような人材がほしい」といった観点での人材教育が目的になっている。本研究は、大学教育との関連を強く意識しているので、「就業力」を基礎に置くことが望ましい。また、本研究は文部科学省平成24年度「産業界のニーズに対応した教育改善・充実体制整備事業」における「首都圏に立地する大学における産業界のニーズに対応した教育改善」の「産業界との連携による人材育成プログラムの開発」が命題であることからも文部科学省の就業力を選択した。

2.6 まとめ


以上、大学のキャリア教育と社会的価値、就業力の概念とその必要性を示した。また、本研究の指標として、就業力は正課教育で十分育成できることを前提として、大学の入学から卒業にいたるまでの能力成長イメージに近づける大学教育の意義を述べた。文部科学省の提唱する就業力を用いるための定義として、法政大学の作成した3尺度であるA文書作成力、B情報収集・分析・発信力、C状況判断・行動力の概要に触れ、次に経済産業省が提唱する3つの能力と構成される12の能力要素から構成される「社会人基礎力」の定義づけと比較した。最後に催事販売プログラムとして、就業力を選択する理由を述べた。

3 インターンシップの概要

3.1 インターンシップの現状

大学生は、インターンシップを利用し、希望職種

の仕事すべてを体験や内定に結び付けることを期待する場合がある。しかしながら、現実的に受入れる企業にとって、仕事の重要な部分を教える時間や人材が確保できない場合にアルバイト同様の雑用やその職種ならではの仕事を与えない企業もあるため、仕事のすべてを知ることができる場所ではないことが多い。図3.1は、受入大学生に提供するインターンシッププログラムの内容を示したものである。企業自体の教育費を削減する状況において、インターンシップの自由度をあげることは様々なプログラム内容としては、社員の補助的な業務の一部が61.1%（複数回答）と最も多いが、企業、受入部署等により、社員の基幹的な業務の一部、通常の業務とは別の一定の課題から、仕事をしている社員の同行・同席、職場・工場の業務見学、アルバイトやパートの業務の一部まで多岐にわたる。企業の立場での大学生受入れの目的としては、大学生の就業意識向上(67.6%)に加え、大学や大学生の自社の認知度向上、指導に当たる若手社員の成長、地元の大学等との交流の深化、職場全体の活性化など、自社の経営上のメリットが挙げられる。

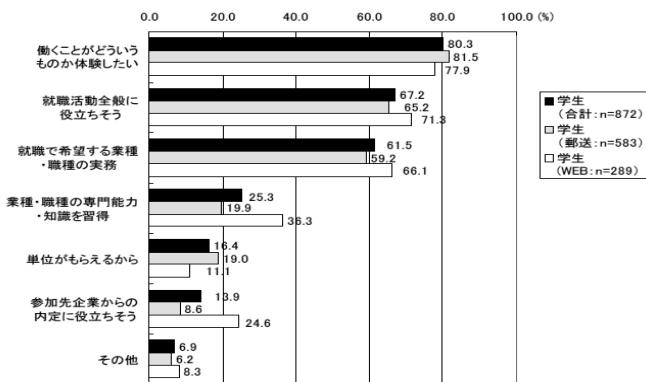

出所：厚生労働省『インターンシップ推進のための調査研究委員会 報告書』をもとに作成

図3.1 受入大学生に提供するインターンシッププログラムの内容.

3.2 インターンシップの目的と課題

図3.2は、インターンシップに参加した目的を示したものである。大学生は特定の職務内容に関してというだけでなく、働くことの体験や、就職活動の一環として、参加先企業からの内定につなげたいという目的が推察される。インターンシップの実施期間・企業が受け入れやすいとする期間は1週間から2週間程度であり大学生が高い実習効果を得るには1か月程度必要と、企業、受入担当者、大学のいずれも認識している。また、事前の就労経験は、職業イメージが内在化している場合には大きな影響力をもち、イメージを強化する場合と、反対に大きな葛藤をともないイメージを崩壊する場合とがある。後者の場合、葛藤状況から

なかなか抜け出せない場合もある。また、就労経験に際して、適切な助言者に出会えないために不安や葛藤をともなう場合もある。このような葛藤に対しては就労的経験に対する事前・事後の助言や、葛藤時の相談の必要性があり、良きモデルやメンターが得られるような教育的支援が必要となる。

出所：厚生労働省『インターンシップ推進のための調査研究

委員会 報告書』をもとに作成

図 3.2 インターンシップに参加した目的.

3.3 インターンシップの事例

百貨店における接客販売では、接客マナー、身だしなみ、言葉遣いなど接客業として高度な対応が求められるため、アルバイトや、テナントの従業員も含め販売の基礎から応用に至る様々な研修コースを準備している。表3.1はインターネットで掲載されている百貨店のインターンシップの事例をまとめたものである。Y百貨店、Z百貨店の内容は、仕事をしている社員に同席・同行しながら、一週間程度の社員の補助的な業務の体験が中心となることから、学生の就業力育成が目的となってはいないことがわかる。Y百貨店では企画提案からレポート作成や発表会の時間は確保しているものの、提案を検証する機会は与えられていない。また、Z百貨店の売場実習では、店頭販売、ディスプレイほかオペレーション業務が中心となっていることから、本研究で提案する就業力の育成を目的とした催事販売プログラムとは異なる設計といえる。

表 3.1 インターンシップの事例.

企業	実施内容
Y百貨店	<p>◎職場体験プログラム 幅広い事業内容の理解、働くこと、仕事の魅力を体験</p> <p>【1日目】 ・オリエンテーション ・Yグループの事業内容紹介 ・グループワーク（チーム討論、企画提案、発表） ・ビジネスナー学習</p> <p>【2日目～5日目】 ・職場体験</p> <p>【6日目】 ・グループワーク（職場体験レポート作成、発表会） ・インターンシップの振り返り 報酬・交通費の支給無し</p>
Z百貨店	<p>◎百貨店ビジネスを体験する「少人数制」のプログラム ・売場実習（店頭販売、売場管理、情報分析） ・販売研修 ・グループワーク (1)夏休みインターンシップ 手当2,000円/日 傷害保険当社負担 (2)秋の平日インターンシップ 手当1,000円/日 傷害保険当社負担 (3)秋の土日インターンシップ 手当2,000円/日 傷害保険当社負担</p>

出所：「リクナビ インターンシップ&キャリア」をもとに作成

3.4 まとめ

以上、受入大学生に提供するインターンシップの事例と、参加目的の調査結果、そして、Y百貨店とZ百貨店のインターンシップの事例を示した。調査結果から企業のインターンシップに関する認識は、教育機会よりも企業広告活動の意味合いが強く、職場体験を中心としたプログラムを提供となっており、大学生も同様に職場体験を通じて、就職活動に期待していることを述べた。また、実施期間についても、大学生が高い実習効果を得るには3か月程度必要となるが、企業が受け入れやすいとする期間は1週間から2週間程度であることからも、就業力の育成など本研究で提案する催事販売プログラムとは異なる設計であることを述べた。

4 催事販売プログラムの設計

4.1 大学教育における課題

表4.1は、学校経験の職業生活への役立ち度について調査結果をまとめたものである。「役立っている」=1、「まあ役に立っている」=2、「あまり役に立っていない」=3、「役に立っていない」=4、としたときの相加平均を示している。小杉礼子 [2010]によると、大学短大高専を卒業した学卒定着社員の意識で有意差のある項目は学校経験が「役立たない」と考えており、大学の教育は就業力開発の貢献度が低いことを示している。

表 4.1 学校経験の職業生活への役立ち度. (単位 : %)

	男性			女性				
	高校普通 学科	高校専門 学科	大学短大 高専	専門学校	高校普通 学科	高校専門 学科		
学卒者定着社員	2.24	2.18	2.23	2.05	2.27	2.04	2.21	1.97
中途正社員	1.12	1.05	1.12	0.93	1.01	0.95	0.96	1.18
アルバイト等後正社員	1.09	1.26	1.04	0.92	1.06	0.68	1.08	0.93
アルバイト・パート	1.21	1.23	1.35	1.16	1.17	0.99	1.17	1.17
派遣	1.27	1.42	1.09	1.32	1.03	1.04	1.04	1.18
請負	1.27	1.35	1.18	1.10	—	—	—	—
求職中	1.30	1.15	1.05	0.72	1.13	1.22	1.02	0.66
無業	1.32	1.17	1.18	1.24	1.21	1.10	1.17	1.07

出所 : 小杉礼子 [2010] 『若者と初期キャリア』ミネルヴァ
書房 P135 表 5-7 をもとに作成

表 4.2 は、学校教育において何が足りないと思われているのか。どんなことを教えてくれればよかったですと思うかについて示している。小杉礼子 [2010] によると、多くの者があげるのは、「職業的知識・技能・資格・免許」や「社会人としてのマナー」である。日々の職場に必要とされていることを、学校教育を通じては学べなかつたことが「役にたっていない」という評価につながっている。学校教育で教えてほしかったことは「職業知識・技術・資格」「社会人マナー」他、実務体験が役に立つと考えていることから、正課教育とキャリア教育が分離していることが一つの課題ととらえることができる。そこで、上記の課題を解決するために、経営体験を通じて就業力の開発をおこなう。具体的に催事販売プログラムの構成を、企画書の作成から、決算までの一連の流れを経験できる催事販売プログラムに「職業知識・技術・資格」「社会人マナー」などが含まれている。

表 4.2 学校教育で教えてほしかったこと. (単位 : %)

	職業知識 技術資格	社会人 マナー	各職業 の内容	職業の 選び方	労働者の 権利等	各職業の 勤務条件	就職活動 「ハウ	基礎学力	フリーター 無業リスク	職安 利用方法	先輩の 就職先
学卒者定着社員	58.3	35.4	35.1	31.6	25.1	17.7	14.5	7.4	7.0	5.3	4.3
中途正社員	58.2	33.6	35.0	33.6	29.5	19.5	16.4	8.2	6.4	5.9	4.5
アルバイト等後正社員	60.9	40.9	30.9	32.7	30.9	24.5	15.5	2.7	5.5	10.0	5.5
アルバイト・パート	53.2	41.7	29.5	30.2	34.5	15.1	21.6	10.8	13.7	12.2	4.3
派遣	52.4	38.1	35.4	34.0	30.6	19.0	21.1	5.4	9.5	10.2	0.7
請負	29.8	31.9	23.4	29.8	17.0	4.3	17.0	8.5	17.0	4.3	12.8
求職中	62.2	43.2	38.1	47.1	29.9	19.4	32.4	8.3	21.2	18.7	7.6
無業	58.9	43.5	29.9	33.6	27.5	17.4	26.4	10.8	16.7	20.5	6.6

出所 : 小杉礼子 [2010] 『若者と初期キャリア』 ミネルヴァ
書房 P136 表 5-8 をもとに作成

図 4.1 は岡本によるアイデンティティの「らせん式モデル」を参考に就業力の成長をイメージしたものである。階段型に上昇してゆくイメージをもとにプログラムを設計している。X社は後方支援として、主要な業務の指導・フォローがある。また、同行営業などフィールドワークや、遠隔授業方式で教育用のクラウドサイトやスカイプを利用遠隔による大学生指導、インターネットによる大学生の専門技術個別指導、催事リー

ダーの特別研修、商店街・ショッピングモール、食品メーカーへの調整およびフォローなど、裏方として就業力の育成を支援する役割となる。

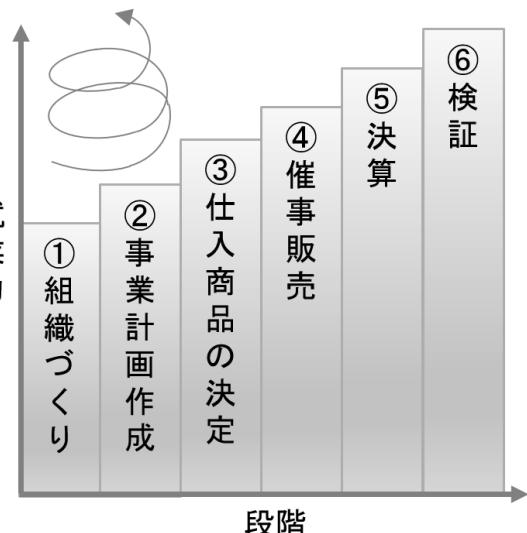
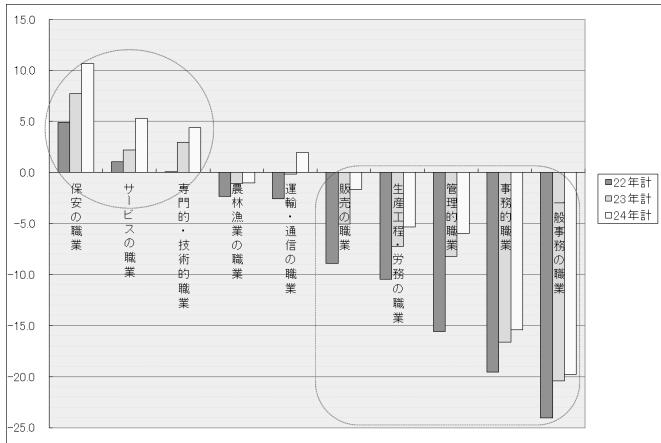



図 4.1 就業力の成長イメージ.

4.2 ビジネス業種の選定

図 4.2 は平成 22 年から 24 年の 3 年間の厚生労働省の職業安定業務統計をもとに、職業別有効求人数と有効求職者数の差を就職件数で除した値を、対就職者比率として示している。円の点線で囲っている事業は、労働力市場で超過需要、楕円の点線は超過供給となる業種を示している。事業の選定に際して、労働力市場で超過需要の傾向にある第 3 次産業「サービスの職業」および「販売の職業」の業種を選択した。その理由としては、超過供給である「一般事務の職業」「事務的職業」「管理的職業」等の業種は競争倍率が高く、一部の人間が対象となることや、一連の業務を短期間で経験することは難しいからである。情報技術の進展と高等教育をうけ、IT リテラシーが向上し、業務の質についても二極化の進行がすすみ、専門知識や専門的技能を要するいわゆる「高スキル」業務と同時に、特別な専門知識や技能は必要としない「低スキル」業務のうち、機械化されにくい手仕事の業務も増え、逆に中間的な業務が減少している。供給超過の傾向は、「一般事務の職業」「事務的職業」「管理的職業」の順で供給超過となっている。このような現状の中で、供給超過である職業よりも、需要超過である「サービスの職業」および「販売の職業」が将来的にも増加傾向にあることから、催事販売プログラムとして選定した。

出所：厚生労働省『職業安定業務統計』をもとに作成

図 4.2 職業別有効求人から有効求職者数の差の
対就職者比率（平成 22 年, 23 年, 24 年）。

4.3 店舗の立地と課題

図 4.3 は、第 1 回と第 2 回のプログラムで活動した十条銀座商店街の外観で、図 4.4 にある右側の建物の一階部分が、同商店街で利用した店舗である。同商店街は、東京都北区最大の全蓋式アーケード商店街で、JR 埼京線十条駅前から 200 軒以上の商店で構成されている。周辺地域の特徴として、同商店街は十条駅の往来、地元客で活気があるものの、対象店舗が繁華街から外れる為、店舗から通行客への入店促進が課題となる。

図 4.3 十条銀座商店街の外観。

図 4.4 催事販売の実施店舗（十条銀座商店街）。

図 4.5 は、第 1 回のプログラムで活動した中井商工会の外観で、図 4.6 は、利用した店舗である。中井商工会は西武新宿線と都営大江戸線の乗換えルートに立地しており、2013 年 12 月現在、114 軒の商店で構成されている。比較的広範囲に商店が立ち並んでいるものの、立地によって通行量は異なる。店舗は、西武新宿線中井駅に近い川沿いに面し、目白大学に通う学生の比率が高く平日は学生など約 12,000 人/日の通行量がある。土日は、学校の休日にともない通行量がなく閑散としている為、十条銀座商店街と同様に店舗から通行客への入店促進が課題となる。

図 4.5 中井商工会の外観。

図 4.6 催事販売の実施店舗（中井商工会）。

4.4 各参加主体の役割

表 4.3 は各参加主体の役割をまとめたものである。1 行目にある事前準備として、大学と X 社は綿密な打合せをおこなう。催事販売プログラムは、ビジネス経験のほとんどない大学生に自由度の高いプログラムを提供し、X 社は性格適性検査の分析と面接結果から、レベルに応じプログラムの修正をおこなう。2 行目 「A 文書作成力」では、事業計画書や実施報告書などの指導を通して学生の能力向上をはかる。3 行目 「B 情報収集・分析・発信力」については、商店街での市場調査や情報収集を実践することで受講者の成長を促す。また、仕入れ商品の選定を重点に X 社が大学生に対して指導するとともに、関係者との関わりにより成長を促す。最後に、4 行目の 「C 状況判断・行動力」では、経営の一連の流れを体験してもらう。催事販売の基本的な考え方で述べた催事の場所と期間は決まっているが、学生たちが市場調査等情報収集し、商品の選定、仕入先の選定など主体的な取り組みが求められる。最後に、実行である。正課教育では、大学と大学生との 2 者間で決定されるが、催事販売では実際のビジネスとして、保健所への申請、商店街関係者や、仕入れ業者など利害関係者との交渉や、消費者への接客販売など、その成果が問われる場面である。結果にはあらゆる不確実性が存在し、立地・商品力・販売力・気温・天候など、売上は予測に反した影響を受ける。販売が予測を上回れば、在庫切れから機会損失となる。また、下回った場合には、不良在庫となり在庫処分方法が必要になるなど、事前にリスクシナリオへの準備をおこなうが、実行には予測できない様々な問題が発生するため、受講者は一つ一つの問題と向き合い解決をはかり乗り越えることで、就業力の成長をはかる。受講者の要件として、催事販売プログラムを体験してもらうためには、事業計画書の作成から実現に向

けた様々な問題解決に耐えうる知的基礎能力を有した大学生が望ましいが様々なレベルの学生が参加することから、会社 X がその進行をみながら学生に適宜助言をおこなうことで途中棄権者の減少をはかる。

表 4.3 各参加主体の役割。

	事務局	学生	会社 X
事前準備	講座日程調整 参加者受付	就業力・性格適性 ソシオグラム	学生・集団分析 催事レベル判断
A 文書作成力	進捗確認	事業計画書作成 実施報告書作成	業界指導
B 情報収集・分析・発信力	進捗確認	市場調査 情報収集	催事準備指導
C 状況判断・行動力	進捗確認	仕入・販売 関係者との交渉	催事現場指導

4.5 プログラムのポジショニングによる比較

図 4.7 のポジショニングマップは、催事販売プログラムの教育方法における特徴を示している。軸の設定として、縦軸は体験型、横軸は自由度とし、今回の催事販売プログラム、キャリア教育講義型、キャリア教育体験型との違いを明確にしている。キャリア教育講義型は、L B L が中心一般的なプログラムであらかじめ解答が用意されている。講師の一方的なレクチャーは、居眠りをしていても支障なく進行する。そして、終了すれば忘れてしまう内容もある。また、キャリア教育体験型は、L B L と P B L を組み合わせたプログラムが一般的である。大学生にとって、インターンシップを利用して希望職種の仕事すべての体験や、内定を期待する場合も多い。しかし、現実的に受入れる企業にとって、仕事の重要な部分を教える時間や人材が確保できないことも多く、アルバイト同様の補助業務やその職種ならではの仕事を与えない企業もあるなど、仕事のすべてをイメージできないことが多い。最後に、催事販売プログラムの効果については、大学生の企画を実現するための自由度を高くすることによって一連のビジネスを企画・立案し体験することが可能となる。準備期間は大学生の確保できる時間や能力に応じて設定できるとともに、実施期間は 3 か月程度のなかで一連のプロセスを体験できるため教育効果が高いといえる。

図 4.7 ポジショニングマップ.

4.6 組織設計

図 4.8 はプログラムの組織図を図示している。その役割は、「役員」「事業部長」「事業部員」の群から構成される。■色の枠で示す「役員」及び「事業部長」を「責任者」とし■色の枠で示す「事業部員」を「責任者以外」である。責任者の内訳としては、社長と副社長以下 4 名の役員の計 6 名から役員群は構成される。その担当業務は、財務（第 2 回は広報）、企画、総務、店舗とした。図の左側の列の副社長以下の事業部長は 1 事業部あたり 1 名で第 1 回実施では 4 名、第 2 回は 5 名であった。事業部員は図に示す担当役員の縦と事業部長の横の矢印の接点である。マトリックス組織として、事業部員は事業部長と担当役員からの 2 つの役割分担により調整が複雑になるなど実際には機能しにくい面もあるが、活動に参加の機会を増やし関係性の強化を優先した。役割の選考は、責任者は立候補を優先し、応募者多数の場合には選挙により行った。責任者以外の配属は、責任者の裁量に任せることとした。

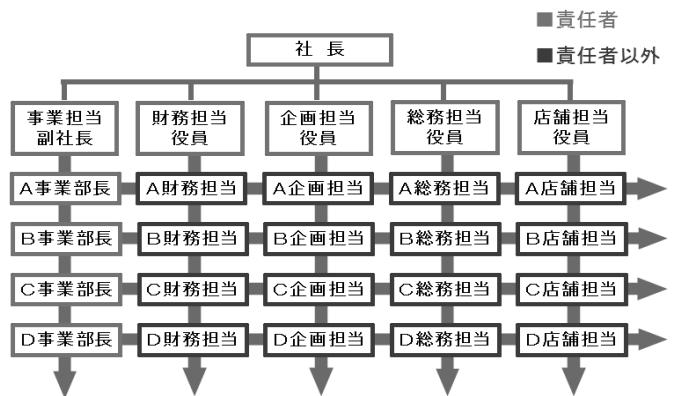


図 4.8 組織構造.

4.7 まとめ

以上、催事販売プログラムの設計の根拠となる考え方を示した。キャリア教育にかかわる先行研究として、大学における教育と、大学生の求める教育との認識のギャップの根拠となる調査結果を示すことで新たなインターンシップによって補うべき課題を明確にするとともにプログラムの組織設計について述べた。

5 催事販売プログラムの実施

5.1 プログラム日程

本プログラムは、受講者の異なる 3 か月程度の日程で 2 回行った。対象者は文化系の大学生 72 名（男 25 名、女 47 名）の大学 1 年から 4 年生であり、6 名程度の集団が週 1 回の講座をうけるとともに、商店街の店舗を利用した販売を 3 日間体験した。商店街は、東京都北区では最大規模の商店街である「十条銀座商店街」と西武新宿線の駅近くの閑静な住宅街に立地する「中井商工会」にある商店街の店舗を活動拠点とした。受講者の役割は役員、事業部長、事業部員とし、役員と事業部長を「責任者」、事業部員を「責任者以外」と表記している。責任者は、希望者を優先し希望者が多数の場合には選挙による決定とした。第 1 回の実施では大学生 35 名（男 13 名、女 22 名）、有効回答数 35 名、内訳は責任者（男 6 名、女 4 名）、責任者以外

（男 7 名、女 18 名）であった。第 2 回では、大学生 37 名（男 12 名、女 25 名）、有効回答数 35 名、内訳は責任者（男 7 名、女 4 名）、責任者以外（男 5 名、女 21 名）であった。表 5.1 は第 1 回、表 5.2 は第 2 回プログラムの講座の内容を示している。受講者には、PBL の意味合いから、知識の伝授よりも、個々の学生に適した方法論の習得と確立を重視するために、講座では講義形式型授業（Lecture Based Learning、以下 LBL）は、運営上の注意事項や補足説明を中心に講座の 25% 以下にとどめ、細かな指導よりも学生が主体

性に配慮し個別の質問には講座の時間外に対応した。組織形態は、事業別、職能別のマトリックス組織を採用し、受講者が2つの役割を通して幅広い人間関係の構築ができる工夫を行った。

表 5.1 第1回催事販売プログラム日程.

第1回	2013.1.12 (土)	13:00～17:00	オリエンテーション・適性検査・市場調査の説明
第2回	2013.1.19 (土)	13:00～17:00	担当業務決定・株主総会・取締役会の実施
第3回	2013.1.26 (土)	13:00～17:00	ビジネスモデル検討・事業計画作成・発表会
第4回	2013.2月初め～10日間程度		商店街の市場調査・情報収集・各担当打合せ
第5回	2013.2.23 (土)	13:00～17:00	株主総会・取締役会・事業計画作成と進捗確認
第6回	2013.3.1 (金)～3.4 (月)		第1店舗販売
第7回	2013.3.8 (金)～3.11 (月)		第2店舗販売
第8回	2013.3.21 (木)	15:00～19:00	最終決算・プログラム体験発表会・打ち上げ

出所：法政大学 学務部 教育支援課

第1回催事販売プログラム募集案内付属資料.

表 5.2 第2回催事販売プログラム日程.

第1回	2013.5.18 (土)	13:00～17:00	オリエンテーション・適性検査・商店街調査の説明
第2回	2013.5.25 (土)	13:00～17:00	商店街調査報告の発表(十条)・ビジネスプラン作成説明
第3回	2013.6.1 (土)	13:00～17:00	商店街調査報告の発表(中井)・ビジネスプラン作成説明
第4回	2013.6.8 (土)	13:00～17:00	個人別ビジネスプランの発表
第5回	2013.6.15 (土)	13:00～17:00	担当業務決定・株主総会・取締役会の実施
第6回	2013.6.22 (土)	13:00～17:00	株主総会・取締役会・事業計画発表と進捗確認
第7回	2013.6.29 (土)	13:00～17:00	株主総会・取締役会・事業計画発表と進捗確認
第8回	2013.7.5 (金)～7.7 (日)		店舗販売(十条銀座商店街和山スペース)
第9回	2013.7.15 (月)	13:00～19:00	就業力検査・満足度調査・事業別成果発表・最終決算プログラム体験発表会・打ち上げ

出所：法政大学 学務部 教育支援課

第2回催事販売プログラム募集案内付属資料.

5.2 第1回・第2回催事販売プログラムの概要

表 5.3 は、第1回の催事販売プログラムにおける販売実績を示している。行に示す事業部は、事業部の名称、第1回はAからDの4事業部、第2回はAからEの5事業部である。列の左側にある「当初企画」と「最終企画」は、進行途中における事業内容の変化である。例えば、第1回C事業部は、活動拠点であった商店街「中井商工会」は、「天才バカボン」など代表作をもつ漫画家の故赤塚不二夫先生のゆかりの地であったことから、バカボン弁当を企画し赤塚不二夫のプロダクションである株式会社フジオ・プロダクションとの交渉をすすめるも、時間の制約から「リサイクルショップ」に事業内容を変更した。「企画変更度合」は、企画変更にともなう難易度で、「事業難易度」は、各事業部の企画・実行した事業内容の難易度。「事業応用点」は、事業の特徴ある内容。「商店街貢献度」は、商店街に対する貢献度、「事業内貢献度」は、催事販売受講者のソシオグラムにおいて矢印で示される凝集の度合に応じて「高」、

「低」とした。「就業力3尺度の成長度合」は、就業力の事前・事後調査の差の程度による評価結果が有意でなかったため、弱い判断となるが、「高」「中」「低」と3段階にわけ、特に「高」については■で示した。最後に、「売上高」、「利益」は売上総利益、「利益率」は実績を示した。

第1回 平成25年1月12日～3月11日

事業部	当初企画	最終企画	企画変更度合	事業難易度	事業応用点	商店街貢献度	事業内貢献度	就業力3尺度の成長度合			売上高	利益	利益率
								A:文書	B:情報	C:状況			
A 錦糸販売	クリッキー	低 低 無	高 低 中 中 中	中 中 中 中 中	105,400 10,382 9.3%								
B 震災支援	演劇:巾着	高 高 日本文化支援	高 高 低 低 低	高 高 高 高 高	41,540 17,065 41.1%								
C ハカボン弁当	リサイクルショップ	高 中 オリジナル性	低 高 高 高 高	中 中 中 中 中	75,639 88,271 90.3%								
D 雑祭り桜餅販売	同上	無 中 地域団体連携	高 低 低 低 低	高 高 高 高 高	82,750 16,903 20.4%								

表 5.3 第1回催事販売プログラムの実績.

表 5.4 は、第2回の催事販売プログラムにおける販売実績を示している。特徴として、第1回と第2回を比較すると、第1回が売上高および利益が高いことが読み取れる。この理由として、第2回よりも、事業部ごとの市場調査・事業計画の作り方など、企画に割り当てる時間が全7講座中の2講座多く時間を確保したことが影響したものと思われる。

第2回 平成25年5月18日～7月8日

事業部	当初企画	最終企画	企画変更度合	事業難易度	事業応用点	商店街貢献度	事業内貢献度	就業力3尺度の成長度合			売上高	利益	利益率
								A:文書	B:情報	C:状況			
A 稲荷すし	同上	低 低 無	高 低 中 高	低 低 中 中 高	21,250 5,950 28.0%								
B 飲料:油揚げ巻子	油揚げ巻子	低 低 無	高 低 低 低 低	高 低 低 低 低	19,800 6,555 33.1%								
C ブックカバー	同上	低 中 オリジナル性	高 低 中 低 中	高 低 低 低 中	13,250 6,115 46.2%								
D お茶 団子	お茶	低 低 無	高 低 高 低 高	低 低 高 高 高	14,420 -387 -2.7%								
E シフォンケーキ	同上	低 低 無	高 低 高 低 高	高 低 高 高 高	47,950 11,950 24.9%								

表 5.4 第2回催事販売プログラムの実績.

図 5.1 は、表 5.3 のデータをもとに、グラフ化した第1回の販売実績を示した。売上高を■、利益を■に色づけしている。列は金額、左の列の数字は金額、下の行にある1Aから1Dは第1回のAからDの4グループの売上高および利益の実績を示す。

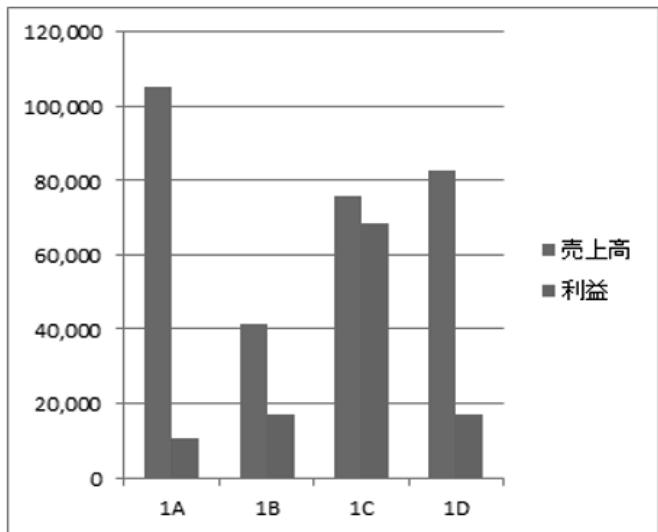


図 5.1 催事販売プログラムの実績（第1回）。

図 5.2 は、表 5.4 のデータをもとに、グラフ化した第2回の販売実績を示した。図 5.1 と同様に売上高を■、利益を■に色づけしている。左の列の数字は金額、下の行にある 2A から 2E は第2回の A から E の 5 グループの売上高および利益の実績を示す。

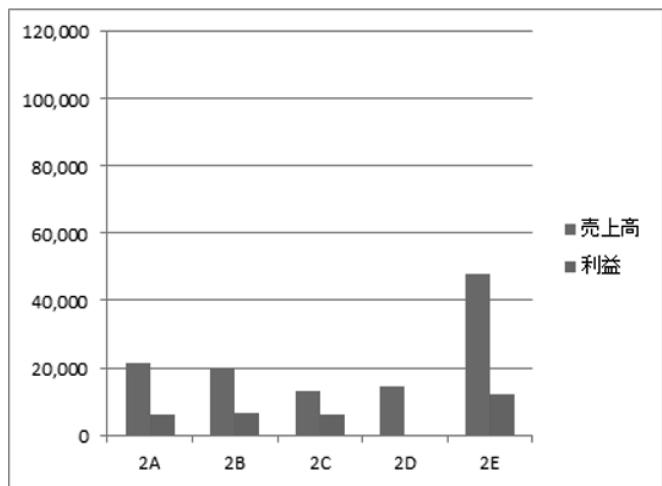


図 5.2 催事販売プログラムの実績（第2回）。

5.3 モチベーションとストレスの管理

図 5.3 は、第1回と第2回の催事販売プログラムの設計にあたって、プログラム期間中に変動する組織のモチベーションとストレスの変化をイメージしたものである。表に示す青色の点線はモチベーションの上限値、赤色の点線は組織のストレスの限界値のイメージである。縦軸は、ゼロを中心とするプラス方向をモチベーション、マイナス方向をストレスの程度として示した。横軸は講座回数として7回、催事販売の実施期間、成果発表会である。流れとして第1に、活動の動機付けをはかることで、モチベーションが上昇する。

第2に、理想と現実のギャップからストレスからモチベーションが下降する。第3に、小集団のチームワークの醸成とともに、再びモチベーションが上昇していく。上記のようにモチベーションとストレスを繰り返しながら、受講者を導いていく。注意点は、第4のモチベーションの抑制である。その上昇を放置すると、モチベーションは小集団の限界値を超える、急速に低下するリバウンドを示し、集団が崩壊する可能性がある。また、モチベーションを抑制しすぎることも同様の傾向を示すため、集団の状況を見ながらモチベーションおよびストレス管理をおこなうタイミングが重要なとなる。

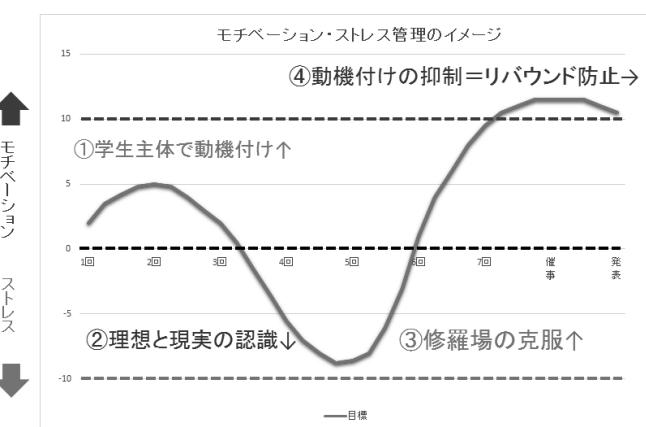


図 5.3 モチベーション・ストレス管理のイメージ。

5.4 営業許可書の取得

第2回の催事販売プログラム実施では学内での実施と異なり、学外で食品を扱うために食品衛生責任者を設置し営業許可が必要となる。申請にあたり、受講者が事業内容を事前に調査し、保健所に申請手続きをおこない飲食店営業許可を取得した。

5.5 まとめ

以上、催事販売プログラムの実施スケジュール、第1回に実施したAからD事業部までの4事業部、第2回に実施したAからE事業部までの5事業部の実績について、項目別に評価結果を示した。次に、催事販売プログラムの設計にあたり、受講者に対するプログラム期間中に変動する組織のモチベーションおよびストレスの流れをイメージとして示した。最後に保健所から営業許可にいたる流れについて述べた。

6 就業力分析と考察

6.1 プログラムの介入効果の評価結果

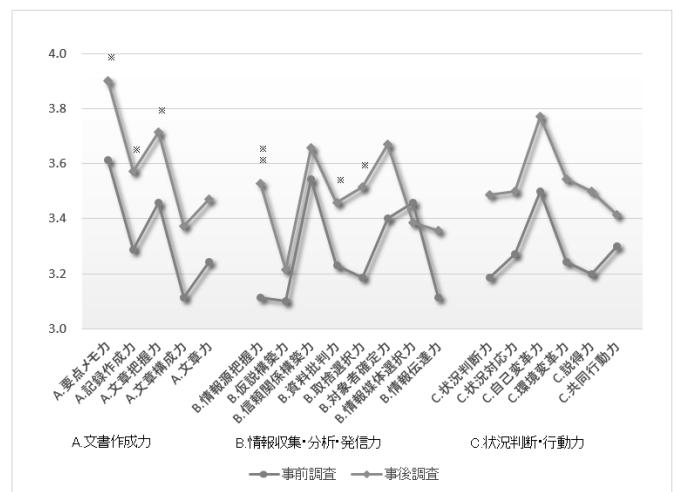
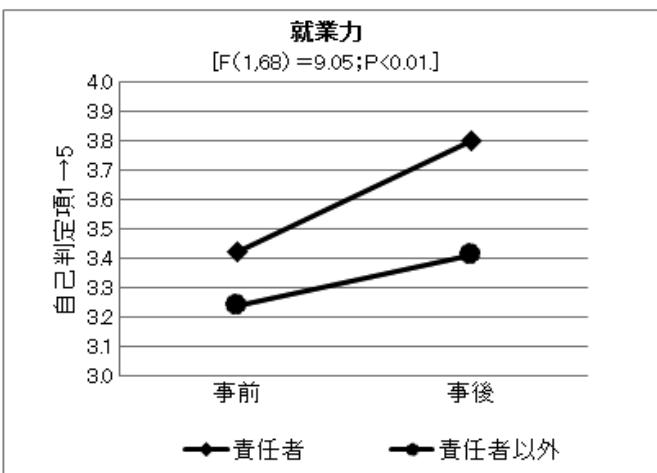

表 6.1 および図 6.1 は就業力開発の結果として、受講者に対しプログラム介入効果の評価結果を就業力の尺度ごとに示したものである。列は 5 段階の自己判定による評定尺度、行は事前・事後調査の結果を就業力の伸び率として示す。独立変数を就業力の 19 項目に対する「事前調査」および「事後調査」、従属変数は、就業力の伸び率とした。繰り返しのある二元配置の分散分析を行った結果、就業力の 19 項目のうち、1 項目が 1% 水準、5 項目が 5% 水準で有意に向上した。

表 6.1 就業力の結果（事前調査・事後調査）。

項目	尺度・能力項目	事前調査	事後調査	差
A 文書作成力	要点メモ力	3.61 (0.82)	3.90 (0.81)	0.29 *
	記録作成力	3.29 (0.76)	3.57 (0.84)	0.29 *
	文章把握力	3.46 (0.69)	3.71 (0.76)	0.26 *
	文章構成力	3.11 (0.80)	3.37 (0.93)	0.26
	文章力	3.24 (1.02)	3.47 (0.81)	0.23
B 情報収集・分析・発信力	情報源把握力	3.11 (0.78)	3.53 (0.84)	0.41 ***
	仮説構築力	3.10 (0.72)	3.21 (0.83)	0.11
	信頼関係構築力	3.54 (1.05)	3.66 (0.88)	0.11
	資料批判力	3.23 (0.72)	3.46 (0.82)	0.23
	取捨選択力	3.19 (0.72)	3.51 (0.82)	0.33 *
	対象者確定力	3.40 (0.71)	3.67 (0.84)	0.27 *
	情報媒体選択力	3.46 (0.87)	3.39 (0.82)	-0.07
	情報伝達力	3.11 (0.69)	3.36 (0.81)	0.24
C 状況判断・行動力	状況判断力	3.19 (0.99)	3.49 (0.84)	0.30
	状況対応力	3.27 (1.16)	3.50 (0.94)	0.23
	自己変革力	3.50 (0.84)	3.77 (0.94)	0.27
	環境変革力	3.24 (0.95)	3.54 (0.94)	0.30
	説得力	3.20 (0.94)	3.50 (0.86)	0.30
	共同行動力	3.30 (0.90)	3.41 (0.78)	0.11

数字は平均評定値、()内は SD *P<.05 ***P<.01


次に、就業力の 3 尺度の 19 項目について信頼性の検討を行った。信頼性の指標としては、Cronbach の α 係数を用いた。「A 文書作成力」の 5 項目の結果は、 $\alpha = .59$ と 0.8 を割り込んでいる。したがって「A 文書作成力」を測る質問としては整合性がとれていないことがわかる。次に、「B 情報収集・分析・発信力」の 8 項目は、 $\alpha = .82$ であり、「C 状況判断・行動力」の 6 項目も $\alpha = .85$ と、 α 係数が 0.8 以上であることから、一貫性があるといえる。

※P<.05 ***P<.01

図 6.1 就業力開発の結果（事前調査・事後調査）。

図 6.2 は責任者、責任者以外とプログラムの介入効果の評価結果を就業力の尺度ごとに示したものである。列は 5 段階の自己判定による評定尺度、行は事前・事後調査の結果を就業力の伸び率として示している。独立変数を「責任者」および「責任者以外」、従属変数は、就業力の伸び率として繰り返しのある分散分析を行った結果、「就業力 ($F(1,68) = 9.05, P < 0.01$)」、「A 文書作成力 ($F(1,68) = 12.01, P < 0.01$)」、「B 情報収集・分析・発信力 ($F(1,68) = 6.75, P < 0.05$)」から、C 状況判断・行動力を除き有意であった。尺度別に、A 文書作成力は、責任者の能力開発が極めて高く能力の開発効果が認められた。B 情報収集・分析・発信力も左記の A と同様に開発効果が認められた一方で、責任者以外の能力開発が極めて低い傾向は課題である。C 状況判断・行動力は、責任者と責任者以外と同様の傾向となっている。両群とも弱い判断となるが能力開発の差はわずかであった。

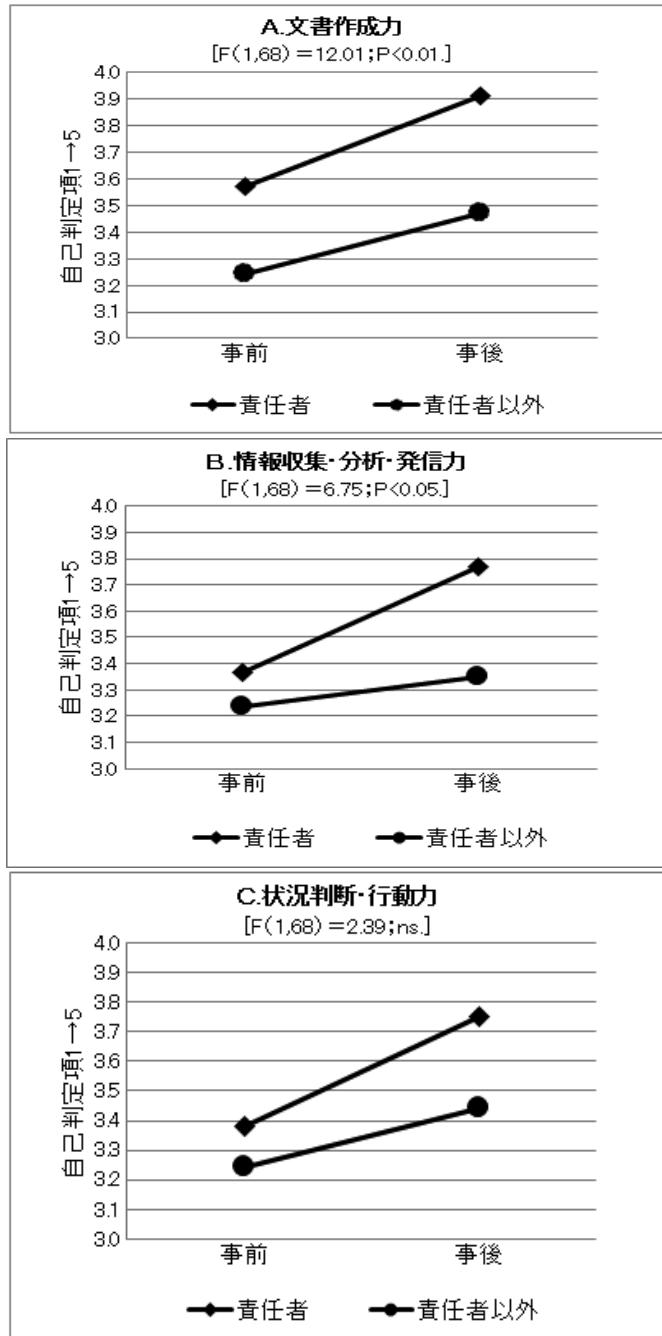


図 6.2 プログラムの介入効果の評価結果。

6.2 責任者・責任者以外の就業力開発の特徴

表 6.2 は責任者および責任者以外の就業力開発の特徴を示す。独立変数を「責任者」および「責任者以外」、従属変数は、事前調査と事後調査の差を就業力の伸び率である。左側は、責任者の就業力開発の特徴である。列の左側にある能力項目の順位は、右側にある平均値の差（表中に□で囲んである）に基づき、事前・事後調査の平均値の差の降順に配列している。行の数値は、能力項目の平均値で、表中の（ ）内は標準偏差の値、右横には事前・事後調査における t 検定の有意水準を示している。平均値の差が顕著（表中※印）であるのは、B 情報収集・分析・発信力を構成する「情報源把握力」および「取扱選択力」であり、責任者の特徴として B 情報収集・分析・発信力に高い開発効果が示されている。次に表 5.2 の右側は、「責任者以外の就業力開発」の能力項目における平均値を示している。責任者以外で、事前・事後調査の平均値の差が（表中※印）認められるのは、「A 要点メモ力」と「C 状況判断力」である。B 情報収集・分析・発信力の値が極めて低いことが特徴である。

※印）であるのは、B 情報収集・分析・発信力を構成する「情報源把握力」および「取扱選択力」であり、責任者の特徴として B 情報収集・分析・発信力に高い開発効果が示されている。次に表 5.2 の右側は、「責任者以外の就業力開発」の能力項目における平均値を示している。責任者以外で、事前・事後調査の平均値の差が（表中※印）認められるのは、「A 要点メモ力」と「C 状況判断力」である。B 情報収集・分析・発信力の値が極めて低いことが特徴である。

表 6.2 責任者・責任者以外の就業力開発の特徴。

尺度・能力項目	事前調査	事後調査	差	尺度・能力項目	事前調査	事後調査	差
順位				順位			
1 B 情報源把握力	3.19 (0.59)	3.95 (0.90)	0.76	1 A 要点メモ力	3.47 (0.67)	3.82 (0.72)	0.35
2 C 環境変革力	3.05 (1.21)	3.81 (1.05)	0.76	2 C 状況判断力	3.10 (0.89)	3.45 (0.73)	0.35
3 B 取扱選択力	3.00 (0.62)	3.76 (0.92)	0.76	3 A 文章力	3.04 (0.97)	3.35 (0.74)	0.31
4 A 文章構成力	3.10 (0.92)	3.81 (1.10)	0.71	4 A 記録作成力	3.20 (0.78)	3.47 (0.73)	0.27
5 B 對象者確定力	3.48 (0.91)	4.14 (0.89)	0.67	5 C 説得力	3.20 (1.01)	3.47 (0.79)	0.27
6 B 資料批判力	3.29 (0.76)	3.90 (0.87)	0.62	6 B 情報源把握力	3.08 (0.85)	3.35 (0.74)	0.27
7 B 情報伝達力	3.14 (0.35)	3.77 (0.88)	0.57	7 B 仮説構築力	3.00 (0.61)	3.22 (0.84)	0.22
8 A 文章把握力	3.62 (0.79)	4.10 (0.81)	0.48	8 C 自己変革力	3.38 (0.80)	3.55 (0.90)	0.20
9 C 自己変革力	3.76 (0.87)	4.19 (0.91)	0.43	9 C 状況対応力	3.18 (1.02)	3.37 (0.85)	0.19
10 C 説得力	3.19 (0.73)	3.57 (1.00)	0.38	10 A 文章把握力	3.38 (0.63)	3.55 (0.67)	0.16
11 A 記録作成力	3.48 (0.66)	3.81 (1.01)	0.33	11 B 取扱選択力	3.27 (0.75)	3.41 (0.75)	0.14
12 C 状況対応力	3.48 (1.40)	3.81 (1.05)	0.33	12 B 信頼関係構築力	3.41 (1.05)	3.53 (0.86)	0.12
13 C 状況判断力	3.38 (1.17)	3.57 (1.05)	0.19	13 C 共同行動力	3.24 (0.85)	3.35 (0.74)	0.10
14 C 共同行動力	3.43 (1.00)	3.57 (0.85)	0.14	14 B 對象者確定力	3.37 (0.60)	3.47 (0.73)	0.10
15 A 要点メモ力	3.95 (1.00)	4.10 (0.97)	0.14	15 C 環境変革力	3.33 (0.79)	3.43 (0.86)	0.10
16 B 信頼関係構築力	3.86 (0.99)	3.95 (0.84)	0.10	16 B 情報伝達力	3.10 (0.79)	3.20 (0.73)	0.10
17 A 文章力	3.71 (0.98)	3.76 (0.87)	0.05	17 B 資料批判力	3.20 (0.70)	3.27 (0.72)	0.06
18 B 情報媒体選択力	3.67 (0.64)	3.52 (0.96)	-0.14	18 A 文章構成力	3.12 (0.75)	3.18 (0.77)	0.06
				19 B 情報媒体選択力	3.37 (0.84)	3.33 (0.74)	-0.04

数字は平均評定値、（ ）内はSD *P<0.05 **P<0.01

図 6.3 は、責任者と責任者以外の就業力開発の特徴を図示したものである。表 5.2 の値に基づき、事前・事後調査の平均値の差（表中に□で囲んである）の評定値が有意と認められた能力項目を降順に示している。左側の実線の円で囲まれた能力項目の左側に表記された A, B, C は就業力の 3 尺度である A 文書作成力、B 情報収集・分析・発信力、C 状況判断・行動力の下位項目を示している。図 5.2 に図示する左側の円の内部は責任者の能力項目を、右側は責任者以外を示している。顕著な特徴としては、責任者と責任者以外で開発された能力項目について共通点がなく、その傾向も大きく異なることである。この傾向は、責任者が新たな事業の企画立案ために情報収集をおこなう必要性がある一方、責任者以外は、事業部の決定事項を遂行するなど役割に応じて能力開発が相互補完関係にあることが示唆された。また、責任者の能力項目が 7 つに対して責任者以外が 2 つと相対的に少なく、平均値の差の値も極めて小さいことから、責任者と比較して責任者以外の行動範囲が限定的で、能力開発に影響を及ぼしているものと思われる。

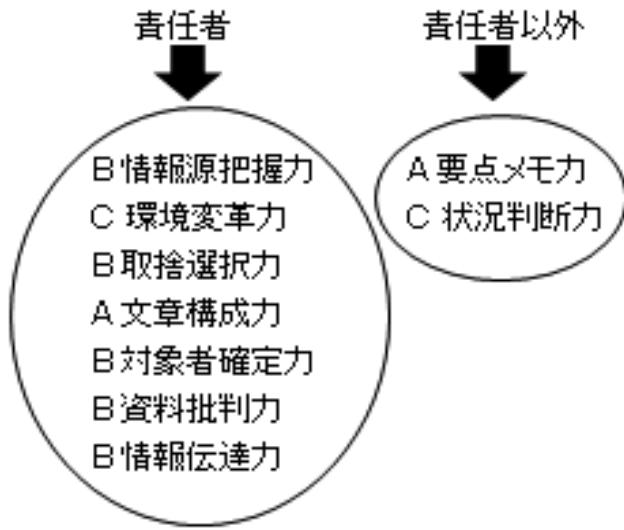


図 6.3 責任者・責任者以外の就業力開発結果.

6.3 男子学生・女子学生の就業力開発の特徴

表 6.3 は男子学生および女子学生の就業力開発の特徴を示している。独立変数を「男子学生」および「女子学生」、従属変数は、事前調査と事後調査の差を就業力の伸び率としている。表 6.3 の左側は、男子学生の就業力開発の特徴を示している。列の左側にある能力項目の順位は、右側にある平均値の差（表中に□で囲んである）に基づき、事前・事後調査の平均値の差の降順に配列している。行の数値は、能力項目の平均値で、表中の（ ）内は標準偏差の値、右横には事前・事後調査における t 検定の有意水準を示している。平均値の差が顕著（表中※※印）であるのは、B 情報収集・分析・発信力を構成する「情報源把握力」および「取捨選択力」であり、男子学生の特徴として B 情報収集・分析・発信力に高い開発効果が示唆された。この項目は表 6.1 に示す責任者と同じ項目であることから、責任者と同様に情報を強く意識していることが推察される。男子学生と同じように表 6.3 の左側は「女子学生の就業力開発」における能力項目の平均値を示している。責任者以外で平均値の差が（表中※印）認められるのは、「C 状況判断力」、「A 要点メモ力」および「A 記録作成力」であることが示唆された。

表 6.3 男子学生・女子学生の就業力開発の特徴.

尺度・能力項目	事前調査	事後調査	差	尺度・能力項目	事前調査	事後調査	差
順位							
1 B 情報源把握力	3.13 (0.88)	3.83 (0.90)	0.71	1 C 状況判断力	3.08 (0.90)	3.54 (0.8)	0.46
2 B 取捨選択力	2.96 (0.68)	3.67 (0.94)	0.71	2 A 要点メモ力	3.52 (0.77)	3.93 (0.8)	0.41
3 C 環境変革力	3.17 (1.14)	3.71 (1.17)	0.54	3 A 記録作成力	3.33 (0.84)	3.70 (0.8)	0.37
4 B 対象者確定力	3.54 (0.87)	4.00 (1.00)	0.46	4 C 説得力	3.20 (0.82)	3.54 (0.7)	0.30
5 B 資料批判力	3.25 (0.83)	3.71 (0.84)	0.46	5 C 自己変革力	3.46 (0.71)	3.74 (0.8)	0.28
6 A 文章把握力	3.42 (0.64)	3.83 (0.85)	0.42	6 C 状況対応力	3.26 (0.97)	3.54 (0.9)	0.28
7 A 文章構成力	3.08 (0.88)	3.50 (1.19)	0.42	7 B 情報源把握力	3.11 (0.73)	3.37 (0.8)	0.26
8 A 文章力	3.38 (1.22)	3.67 (0.94)	0.29	8 B 情報伝達力	3.09 (0.72)	3.35 (0.8)	0.26
9 C 説得力	3.21 (1.12)	3.50 (1.08)	0.29	9 C 共同行動力	3.24 (0.84)	3.43 (0.7)	0.20
10 C 自己変革力	3.58 (1.04)	3.93 (1.18)	0.25	10 A 文章力	3.17 (0.89)	3.37 (0.7)	0.20
11 B 情報伝達力	3.17 (0.62)	3.58 (0.86)	0.21	11 A 文章把握力	3.48 (0.71)	3.65 (0.7)	0.17
12 B 信頼関係構築力	3.54 (1.22)	3.71 (1.02)	0.17	12 B 対象者確定力	3.33 (0.59)	3.50 (0.7)	0.17
13 C 状況対応力	3.29 (1.46)	3.42 (1.04)	0.13	13 C 環境変革力	3.28 (0.83)	3.46 (0.8)	0.17
14 A 記録作成力	3.21 (0.58)	3.33 (0.80)	0.13	14 A 文章構成力	3.13 (0.77)	3.30 (0.7)	0.17
15 B 伝説構築力	3.06 (0.86)	3.21 (1.08)	0.13	15 B 取捨選択力	3.30 (0.72)	3.43 (0.7)	0.13
16 A 要点メモ力	3.79 (0.87)	3.83 (0.80)	0.04	16 B 資料批判力	3.22 (0.66)	3.33 (0.8)	0.11
17 C 状況判断力	3.38 (1.11)	3.38 (0.86)	0.00	17 B 伝説構築力	3.11 (0.63)	3.22 (0.7)	0.11
18 B 情報媒体選択力	3.46 (1.04)	3.42 (0.85)	-0.04	18 B 信頼関係構築力	3.54 (0.95)	3.63 (0.8)	0.09
19 C 共同行動力	3.42 (1.00)	3.38 (0.86)	-0.04	19 B 情報媒体選択力	3.46 (0.77)	3.37 (0.7)	-0.09

数字は平均評定値、（ ）内はSD *p<0.05 **p<0.01

図 6.4 は、図 6.3 と同じように男子学生と女子学生の就業力開発の特徴を図示したものである。表 6.3 の平均値の差に基づき、事前・事後調査の平均値の差（表中に□で囲んである）が有意であった能力項目を降順に示している。顕著な特徴としては、男子学生の能力開発が認められた B 情報収集・分析・発信力と女子学生の C 状況判断・行動力および A 文書作成力に共通点がなく、男子学生と女子学生の認識は大きく異なることがある。この傾向から、男子学生と女子学生は、相互補完関係にあることが示唆された。

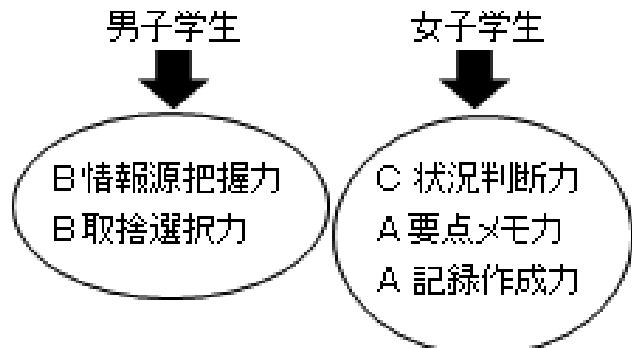


図 6.4 男子学生・女子学生の就業力開発結果.

6.4 まとめ

以上、就業力開発におけるプログラムの介入効果の評価結果を示した。まず、「責任者」と「責任者以外」における「A 文書作成力」、「B 情報収集・分析・発信力」および「C 状況判断・行動力」に比較を行った。責任者は顕著な開発が認められたものの、責任者以外の成長が限定的であり、責任者に依存し、意識が低いことが推察される。次に「責任者」および「責任者以外」の就業力開発の特徴では、上記の 3 つの尺度から構成される 19 項目についての特徴として、責任者以

外が項目においてもB情報収集・分析・発信力の値が極めて低いことが示唆された。また、双方の群における能力開発は能力項目に細分化すると明確にわかっているといえる。そして、男子学生と女子学生の比較においては、男子学生がB情報収集・分析・発信力に開発の特徴がでる一方、女子学生がC状況判断・行動力とA文書作成力が開発されるなど異性の違いにより棲み分けがなされていることが明らかになった。

7 性格適性検査の分析と考察

7.1 性格適性検査の概要

性格は層をなしていると考えられており、中心となる核には生理的なものと密接な関係にある遺伝的な層、次に発達の過程で形成された層、そして一番外側の層には現在置かれている状況によって規定される行動傾向の層がある。性格適性検査の結果は、催事販売プログラムの基礎データとして分析により多面的に性格をとらえデータを計数化することで過去の分析だけでなく、人材の現状分析、将来のキャリア予想、キャリア計画の妥当性の分析などが可能となる。今回の催事販売プログラムで使用したマークシート方式による性格適性検査は、第一部が144問、第二部が36問から構成され、受講者にプログラム開始前に実施し分析を行った。具体的に、第一部は、職務適応性として、社会的内向性、内省性、身体活動性、持続性、慎重性、達成意欲、活動意欲、敏感性、自責性、気分性、独自性、自信性、高揚性、の適応性の10つの評価尺度として、第二部は、性格類型で、興味関心の方向、ものの見方、判断のしかた、環境への接しかた、についての4つの評価尺度から構成されている。今回、性格適性検査を使用する目的は、参加する学生の適性を事前に把握し、事前に企画したプログラムをカスタマイズするため、大学生個人や出身大学、プログラムでの小グループごとの組織特性をあらゆる切り口から分析を行った。その理由としては、直接指導の多い講義形式型授業と異なり、間接指導が中心となる問題解決型学習では短期間で受講者の本質を把握して、プログラムをそのレベルに合わせることで、教育効果を高めることができる。例えば、持続性の高い適性をもつ受講者は、困難に直面しながらも努力し乗り越える意欲がある一方、低い場合は学ぶことや努力することから逃避しやすい傾向があるため、状況判断を誤ると離脱者の増加をうながし、組織の急速なモチベーション低下につながる。図5.3のモチベーションとストレスの管理の項で述べた通り、プログラム進行上で上下するモチベーションやストレスを管理する上で、性格適

性検査による分析結果をもとに、個別に面接によって限られた時間でより確信に近い人間の本質をとらえる情報として重要な役割を果たす。例として離脱防止を考えてみると、プログラムを個人や集団の適性に合わせて微調整することで、人間関係のコンフリクトからくるトラブルや離脱を未然に防止することが可能となる。今回、催事販売プログラムでは異なる受講者で2回実施したが、実施項目と日程の変更は、分析結果を参考にしている。

7.2 性格適性検査の分析結果

7.2.1 性格適性比較分析（責任者・責任者以外）

図7.1は、第1回と第2回に参加した学生の「責任者（n=21）」および「責任者以外（n=54）」について性格適性検査の指標で比較したものである。独立変数を「責任者」および「責任者以外」、従属変数は、左記指標の平均スコアの差としている。具体的に左側の表は「責任者」および「責任者以外」の平均スコア、右側のグラフは差を表している。グラフ上の、■ (**p<0.01) 又は、■ (*p<0.05) で塗られているのは、その差が統計的に有意であることを示している。責任者の分析としては「自信性」、「達成意欲」、「活動意欲」の順番でスコアが責任者以外よりも相対的に高く、「社会的内向性」はスコアが低い傾向を示しており、この指標が責任者の性格適性に関係が深いことが明らかとなった。

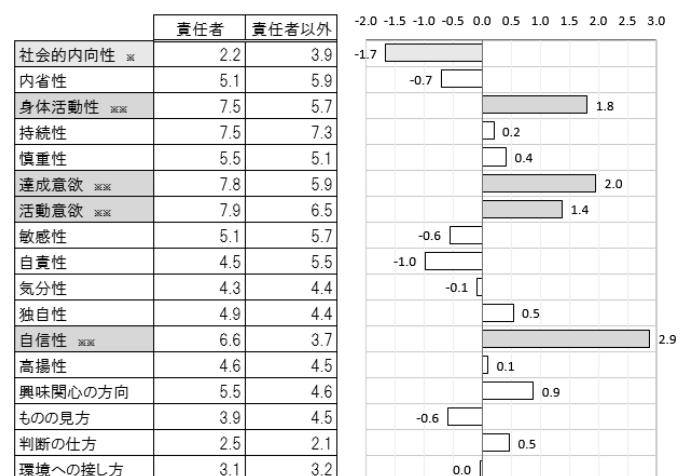


図7.1 性格適性比較分析（責任者・責任者以外）

7.2.2 性格適性比較分析（受講者・棄権者）

図7.2は、第1回と第2回に参加した学生の「受講者（n=75）」および「棄権（n=19）」について性格適性検査の指標で比較したものである。独立変数を「受講者平均」および「棄権者」、従属変数は、左記指標の

平均スコアの差としている。図 6.2 と同じようにグラフ上、■ (*p<0.05) で塗られているのは、その差が統計的に有意であることを示しており、「棄権者」の特徴は「高揚性」のスコアが高く、その差が有意であることがわかる。感情の高まりやすさの指標であり、自分の高揚した感情を抑えることが苦手で、その場の雰囲気に流されてしまう傾向がある。有意でなかったため弱い判断となるが、棄権者は「身体活動性」、「興味関心の方向」、「活動意欲」は高いものの「持久性」、「環境への接し方」が弱いと思われる。

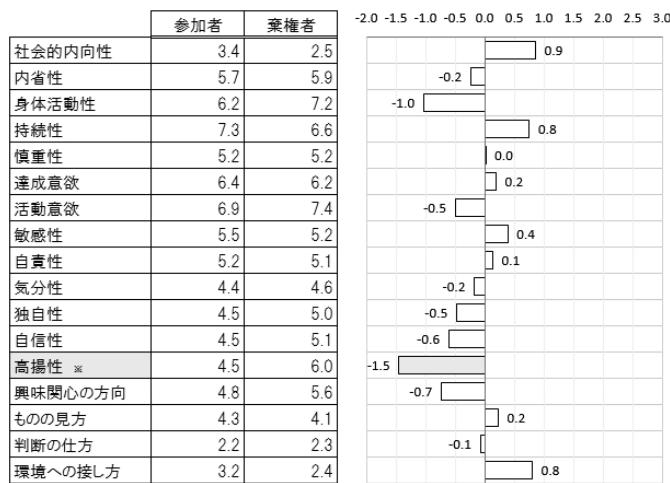


図 7.2 性格適性比較分析（受講者平均・棄権者）。

7.3 まとめ

以上、性格適性検査について分析の必要性とその意義を述べた。また「責任者」と「責任者以外」および「受講者平均」と「棄権者」についての比較分析を行った。分析結果から責任者は事業を実現するために必要な自信性、達成意欲、身体活動性のスコアが高く、有意性が認められ責任者以外との性格適性に違いがあることが明らかになった。また、「受講者平均」と「棄権者」の分析としては、棄権者の「高揚性」のスコアが高く、有効性が認められた。有意でない弱い判断となるが、「身体活動性」や「環境への接し方」は「受講者平均」と比較して高いものの、一過性の勢いで持続しないことが読み取れた。

8 アンケート内容の分析と考察

8.1 アンケートの内容

学習効果を高めるには振り返りが有効となる。効果的な復習をおこなうため、各講座の終了後に表 8.1 に示すアンケートの記入を行った。受講者は、講座の終了毎にアンケートの記入を教育機関向けのクラウドサービスを使用して入力をおこなった。第1回と第2回の実施ではともに7講座であることから受講者一人当たりが7回記入している。表に示す「6-1」から「6-3」の内容は、就業力の3つの項目の「A文書作成力」、「B情報収集・分析・発信力」、「C状況判断・行動力」の進捗を確認する項目である。アンケート内容を通じて理解度や要望を把握し、その内容に応じてプログラムの修正を行った。振り返りの場をつくることで、X社は受講生の能力や進捗に応じてコメントをつけ個別にフォローを行った。

表 8.1 アンケート内容.

1. 集中して取り組むことができましたか？
2. 素直に自分の思っていることを表現できましたか？
3. 楽しく取り組むことができましたか？
4. 説明を真剣に聞くことができましたか？
5. 他人の気持ちを考える場面はありましたか？
6-1. 自分の「文章作成力」について向上したと思う部分はありますか？それは具体的にどんな部分ですか？
6-2. 自分の「状況判断・行動力」について向上したと思う部分はありますか？それは具体的にどんな部分ですか？
6-3. 自分の「情報収集・分析・発信力」について向上したと思う部分はありますか？それは具体的にどんな部分ですか？
7. 感想（その他記入したい事項があれば記載して下さい）

8.2 アンケート抽出語の結果

図 8.1 は、第1回講座の終了後のアンケートを抽出語に分解した語数の推移である。列は、アンケートの抽出語の語数、行は講座の回数を示している。講座の回を追うにしたがって抽出語が減少している。当初の講座では、自己紹介や、責任者の選出、株主総会などイベントを提示するが、回を追うごとにグループワークが増加する。L B Lに慣れ受動的な学生にとっては、P B Lによる課題発見と解決の工程に慣れないとめか、キーワードの抽出が減少している。

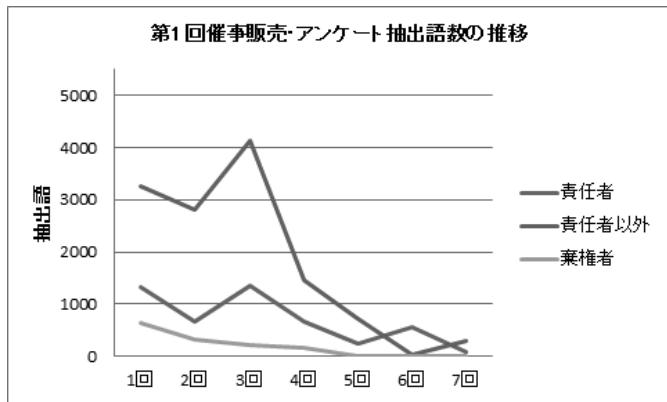


図 8.1 性別による就業力開発結果（第1回講座）。

図 8.2 は、第2回講座の終了後のアンケートを抽出語に分解した語数の推移を図示したものである。講座の回を追うにしたがって抽出語が減少している傾向は第1回と同様である。第1回と第2回を比較すると、第1回はアンケートの記入が特に少なかったこともあり、改善策として第2回には振り返りの重要性を伝えるとともに、X社から全てのコメントを記入することで動機付けを高めアンケートの記入率を高めることで改善をはかった。

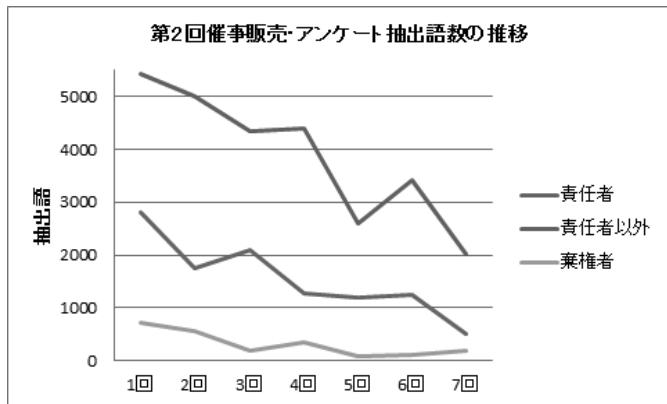


図 8.2 性別による就業力開発結果（第2回講座）。

8.3 第1回講座のアンケート分析

第1回の7回の講座で実施の終了後に受講者が記入したアンケート結果について「責任者」と「責任者以外」に分類し分析を行った。目的として、就業力の3項目についてのアンケートから成長の要素を読み取るために、アンケートからサンプルをとりあげた。その3項目は、表8.1に示すアンケート項目から抽出している。6-1はA文書作成力、6-2はB情報収集・分析・発信力、6-3は状況判断・行動力であり、成長につながる内容を項目別に最大3つ取り上げている。次に、表8.1に示すアンケートの全ての項目から抽出した単語を出現する順番に品詞ごとに置き換え学生の興

味・関心を講座ごとに分析した。行にある（）内は総抽出語数、右側の列にある「No」は上位10のランキング、「抽出語」は、アンケートに含まれる単語を示している。

8.3.1 第1回講座・1週目のアンケート分析

下記は、平成25年1月12日（土）13時から17時に実施した1週目のプログラムの内容を示す。第1回目のオリエンテーションでは対象となる各大学から受講生が集まり期待と不安が感じられた。チームビルディングの前段階として各自の紹介に十分な時間をとった。責任者の立候補をおこない選挙により役員の群を決定し、事業部の群や事業部員の群についての役割分担を学生が主体となり決定していった。

1 プログラム概要説明

- (1) 参考資料（学生資料・企業資料）
- (2) 概要説明（全体説明資料）

2 チームビルディング

- (1) 紹介シート記入・個別に自己紹介
- (2) ※第1希望グループ・各自情報交換
- (3) ※第2希望グループ・各自情報交換
- (4) ※第3希望グループ・各自情報交換
- (5) 役員の選出と決定
- (6) 役割の個別交渉と決定

3 クラウド型教育支援システムの説明 (※情報共有を目的としたシステム)

表8.3.1は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示したものである。第1回目はオリエンテーションとしての説明から自己紹介と情報交換が中心となったため、プログラムになれることが優先され個別の成長の実感は少なかったものと思われる。責任者のA文書作成力と責任者以外のB情報収集・分析・発信力については、回答が成長に関連する記述はなかった。

表 8.3.1 就業力の項目別・アンケートサンプル
(第1回講座・1週目)。

A文書作成力「第1回責任者」のサンプル	A文書作成力「第1回責任者以外」のサンプル
自己紹介の時に相手のひとりをメモして書き留めた	
B情報力「第1回責任者」のサンプル	B情報力「第1回責任者以外」のサンプル
情報の発信力が向上した	
C判断・行動力「第1回責任者」のサンプル	C判断・行動力「第1回責任者」のサンプル
毎回の発表	話し合いの場で、状況判断・行動力共に向上した
知らない人に積極的に話しかけた	立候補できた
	役割を決めるため、思考・人柄・言動を数分で見極めた

表8.3.2の単語ランキングの特徴として、責任者は「人」、責任者以外は「自分」が上位にきていることから、責任者は自分自身よりも、集団への意識が高く、責任者以外は、「自分」や「自己」が上位にきており、オリエンテーションで仲間とのかかわりを模索している。そして、棄権者は「未だ」、「異なる」などの否定語や「インターナシップ」や「時間」などプログラムを客観的に観察していると思われる。

**表8.3.2 アンケート単語ランキング
(第1回講座・1週目)**

責任者(1327)			責任者以外(3,248)			棄権者(643)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	13	思う	動詞	34	思う	動詞	4
2	人	名詞	10	自分	名詞	33	未だ	副詞	4
3	部分	名詞	10	人	名詞	23	インターナ	名詞	3
4	自分	名詞	9	自己	名詞	15	バックグラ	名詞	3
5	感じる	動詞	8	特に	副詞	14	異なる	動詞	3
6	向上	名詞	8	集中	名詞	13	感じる	動詞	3
7	聞く	動詞	6	感じる	動詞	12	具体的	名詞	3
8	活動	名詞	5	楽しい	形容詞	11	経験	名詞	3
9	考える	動詞	5	考える	動詞	10	時間	名詞	3
10	今回	名詞	5	取り組む	動詞	10	自分	名詞	3

8.3.2 第1回講座・2週目のアンケート分析

下記は、平成25年1月19日(土)13時から17時に実施した2週目のプログラムのスケジュールである。第2回目は会社設立や個人の集団における役割を決定する重要な場面である。自己紹介の方法としては、紹介カードをつくり、全員に挨拶をしながら特徴を聞き出すものである。社会人になると、学生のように気の合う友人通しとは限らないため、多くの人と意思疎通をはかることが求められる。その訓練として、積極的な意思疎通をはかるよう促した。

- 産学共同企画説明
- 各種会議説明 (副社長)
- 出資説明 (副社長)
- 株主総会：会社設立 (社長)
- 所信表明 (社長)
- 配属先決定 (副社長)
- 工程表説明 (副社長)
- 取締役会、事業部会議 (社長：事業部長)
- 部門別会議 (財務部・企画部
・総務部・店舗部
・事業部長)

表8.3.3は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示したものである。第2回目は役職の決定から、個人に与えられる役割が明

確になり期待と不安が入り混じっており、個別の役割にそって成長を実感している。就業力の3項目の特徴について、A文書作成力は書類作成も割り当てが決まりわかりやすく相手に伝えることによる成長を実感している。B情報収集・分析・発信力は、受講者間での価値観の共有について、C状況判断・行動力は、勇気を出して役職に立候補したこと、積極的に受講者と意思疎通を図った行動に成長を実感している。列の責任者と責任者以外の比較については、責任者のサンプルが少ないものの、与えた役割分担から集団全体と個人的な視野の違いと思われる。

**表8.3.3 就業力の項目別アンケートサンプル
(第1回講座・2週目)**

A文書作成力「第1回責任者」のサンプル	A文書作成力「第1回責任者以外」のサンプル
毎回ラインのやりとりで言い回しは文章力の作成力向上した	相手に伝わりやすく、具体性を高める点が向上した
総務のマニュアルを作った	説事録の作成をしたときに、メモ書きを文章に出来た
部門別会議で事前に資料を作成してみんなに配布した	自分の考えをどうわかりやすく伝える能力が向上した
B情報力「第1回責任者」のサンプル	B情報力「第1回責任者以外」のサンプル
一番いい案を考えた	関係者との話から自分の価値観以外の部分が見えてきた
	情報収集、分析をし、メンバー間に発信する事がでた
	市場調査ではほかの人の視点が、勉強になった
C判断・行動力「第1回責任者」のサンプル	C判断・行動力「第1回責任者」のサンプル
毎回最後の判断ができた	立候補することができた
	皆との交流で経験などを聞き出し、また聞く方に敵意した
	判断が必要なとき、意見を出し合い、いい判断ができる

表8.2.2の単語ランキングの特徴として、責任者は「思う」「決める」「考える」など能動的な姿勢があり、「集団」「活動」などから、個人よりも集団を優先し、その役割を模索していることが推察される。責任者以外は、個人の能力向上を含め集団よりも個人を優先しながら事業へのかかわりを考えていることが推察される。最後に、棄権者は「商店」「下見」「企画」など内容の確認のほか「未だ」などプログラムに對して客観的な見方であることが推察される。

**表8.3.4 アンケート単語ランキング
(第1回講座・2週目)**

責任者(667)			責任者以外(2,811)			棄権者(316)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	8	思う	動詞	35	考える	動詞	3
2	聞く	動詞	6	自分	名詞	21	商店	名詞	3
3	グループ	名詞	5	意見	名詞	19	未だ	副詞	3
4	意見	名詞	4	事業	名詞	14	下見	名詞	2
5	活動	名詞	4	特に	副詞	14	頑張る	動詞	2
6	感じる	動詞	4	向上	名詞	12	企画	名詞	2
7	決める	動詞	4	考える	動詞	12	決める	動詞	2
8	考える	動詞	4	聞く	動詞	11	行く	動詞	2
9	事業	名詞	4	感じる	動詞	10	今回	名詞	2
10	特に	副詞	4	人	名詞	9	市場	名詞	2

8.3.3 第1回講座・3週目のアンケート分析

下記は、平成25年1月26日(土)13時から17時に実施した3週目のプログラム内容である。第3回目は企画を

まとめ、事業計画をたてる段階である。事業計画作成に必要な基本的な考え方を伝えた。

- 1 株主・株式会社の補足
- 2 商圏分析の概要
- 3 出資金回収 (社長)
- 4 工程表確認 (副社長)
- 5 市場調査報告 (調査者)
- 6 部門別会議 (財務部・企画部
・総務部・店舗部
・事業部長)
- 7 取締役会、事業部会議 (社長・事業部長)
- 8 株主総会 (社長)

商圏分析やマーケティングの内容を伝えたことから、全体としてその内容が中心となっている。表8.3.5に示す、就業力の3項目の特徴について、A文書作成は市場調査作成の方法について成長の実感が推察される。B情報収集・分析・発信力は、市場調査を中心とした受講者間での価値観の共有について、C状況判断・行動力は、限られた時間の中で積極的に受講者と意思疎通を図る行動に成長を実感している。列の責任者と責任者以外の比較については、責任者は、マーケティングや資金回収など事業の大枠の部分の調査や実施について、責任者以外は、市場調査を題材にして個人的な意思疎通や行動など成長の項目に違いが推察される。

**表8.3.5 就業力の項目別アンケートサンプル
(第1回講座・3週目) .**

A文書作成「第1回責任者」のサンプル 自分の言葉で書いたテキストを作った	A文書作成「第1回責任者以外」のサンプル 読みやすいようワンセテンスを短く書くよう意識した 市場調査のアンケート作成で、目的と柔軟性を考えた 自分の考えた企画を文章が、相手にしっかり伝わっていた
B情報力「第1回責任者」のサンプル マーケティングについて先生に聞いてテキストにまとめた 連絡の取りあい 何が大切か、何を書くべきか考えて書いた	B情報力「第1回責任者以外」のサンプル 他事業部のプレゼンのフィードバックを考えた 市場調査を行い、他の事業部との情報交換の案も出た 市場調査で、自分が見えた部分が改めて見えた
C判断・行動力「第1回責任者」のサンプル 資金の回収など、効率良く出来るよう提案した	C判断・行動力「第1回責任者」のサンプル 「発信しないと置いていかれる」から「発信したい」に意識変化 企画に参加するにあたって、正しいと思う行動をとった 少ない時間の中で適切な判断ができるようになってきた

表8.3.6の単語ランキングの特徴として、企画が講座の中心テーマであったことから責任者は「企画」「事業」に高い意識が読み取れ「発表」「今後」「財務」などから、到達目標が明確で学習への動機付けが高まることが推察される。責任者以外は、個人の能力向上を含め集団よりも個人を優先しながら事業へのかかわりを考えていることが推察される。最後に棄権者は「商店」「下見」「企画」など内容の確認のほか「未だ」など客観的な表現を使用する傾向がある。

**表8.3.6 アンケート単語ランキング
(第1回講座・3週目) .**

No	責任者(1348)			責任者以外(4,132)			棄権者(223)		
	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	企画	名詞	16	思う	動詞	47	人	名詞	3
2	事業	名詞	14	企画	名詞	25	はじめ	名詞	2
3	意見	名詞	11	考える	動詞	24	議論	名詞	2
4	感じる	動詞	9	事業	名詞	23	欠席	名詞	2
5	発表	名詞	8	意見	名詞	21	事業	名詞	2
6	今後	名詞	5	欠席	名詞	19	社長	名詞	2
7	財務	名詞	5	自分	名詞	17	申し訳	名詞	2
8	思う	動詞	5	時間	名詞	13	能力	名詞	2
9	時間	名詞	5	書く	動詞	12	必要	名詞	2
10	出す	動詞	5	感じる	動詞	11	連絡	名詞	2

8.3.4 第1回講座・4週目のアンケート分析

下記は、平成25年2月2日(土)13時から17時に実施した4週目のプログラム内容である。第4回目は商店街の活性化の成功事例である富士宮焼きそばの事例をあつかい企画立案と実行のポイントを説明した。また、企画書作成のひな形を提示し、企画書作成においてMM(マーケティングミックス)とS T Pの簡単な説明を行った。経営学部に在籍する学生も参加しているため、大学の先生や図書館、インターネットなどから情報収集を積極的におこなうよう伝えている。また、期限の重要性や具体的な事業の流れとして市場調査の進め方を講座の内容に含めた。

- 1 富士宮焼きそばの事例
- 2 マーケティング手法
- 3 期限の重要性
- 4 工程表説明 (副社長)
- 5 市場調査報告 (調査者)
- 6 部門別会議 (財務部・企画部
・総務部・店舗部
・事業部長)
- 7 取締役会、事業部会議 (社長・事業部長)
- 8 株主総会 (社長)

表8.3.7に示す、就業力の3項目の特徴について、A文書作成は企画書作成の方法について成長の実感が推察される。B情報収集・分析・発信力は、企画書作成においてMM(マーケティングミックス)とS T Pを企画書内に入れることを伝えていたため、各所から情報収集をおこない責任者以外への伝達をおこなっている様子が推察される。C状況判断・行動力は、前回に引き続き積極的に受講者と意思疎通を図る行動に成長を実感している。列の責任者と責任者以外の比較については、責任者は、積極的に情報を収集して責任者以外への情報伝達の役割、責任者以外は理解して

実行するという役割分担がなされている。また、その役割から責任者は全体の事業の流れを調整について、責任者以外は、実行段階について成長を実感するなど役割の違いから成長の実感の差異が推察される。

**表8.3.7 就業力の項目別アンケートサンプル
(第1回講座・4週目) .**

A文書作成力「第1回責任者」のサンプル	A文書作成力「第1回責任者以外」のサンプル
意味を理解してから発信するようこころがけるようになった MMやSTPの報告について提出するよう呼びかけた	みんなで分担して企画書を書く事ができた グループ全体で整理するよう心掛け、紙に書き出した 事業部会議の時に、すぐに意見をメモできるようになった
B情報力「第1回責任者」のサンプル	B情報力「第1回責任者以外」のサンプル
この一週間で、教育用共有サイトに多くの資料を挙げた グループの件を超えて、情報収集ができた	マーケティングの考え方を踏まえ、会議で積極的に取り組んだ 情報を準備してプロジェクト内の話し合いに使用できた 市場調査から自分たちの推測がステータス感じた
C判断・行動力「第1回責任者」のサンプル	C判断・行動力「第1回責任者」のサンプル
気持ちを表現の仕方に工夫を加えられるようになった 司会を経験した	周囲との意見の疎通・問題への取り組み。 実際に商店街について調査を行う際には、向上 自分のやらなければいけない事がわかった。

表8.3.8の単語ランキングの特徴として、企画が講座の中心テーマであったことから責任者は「企画」「集団」に対する意識が高い。また、「発表」「今後」「財務」などから、到達目標が明確で学習への動機付けが高まることが推察される。責任者以外は、「事業」や「企画」の意識が高まってきたものの、時間の調整が難しいことから欠席の報告が増加している。最後に、棄権者は「集団」への意識があるものの「企画」への意識が低くプログラムの参加に消極的であることが推察される。

**表8.3.8 アンケート単語ランキング
(第1回講座・4週目) .**

責任者(651)			責任者以外(1,459)			棄権者(148)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	5	欠席	名詞	20	思う	動詞	6
2	自分	名詞	5	思う	動詞	17	グループ	名詞	3
3	企画	名詞	4	事業	名詞	15	意見	名詞	3
4	グループ	名詞	3	書く	動詞	11	考える	動詞	3
5	考える	動詞	3	企画	名詞	9	考え	名詞	2
6	情報	名詞	3	自分	名詞	8	自分	名詞	2
7	前回	名詞	3	考える	動詞	7	アイディア	名詞	1
8	通る	動詞	3	出来る	動詞	7	一つ	名詞	1
9	意見	名詞	2	楽しい	形容詞	6	何事	名詞	1
10	意味	名詞	2	グループ	名詞	5	楽しむ	動詞	1

8.3.5 第1回講座・5週目のアンケート分析

下記は、平成25年2月9日(土)13時から17時に実施した5週目のプログラム内容である。第5回目は企画も実施に向けて詳細を決めていく段階で学生主体の活動が中心となる。役員と4つの事業部に分かれ集団での話し合いをすすめていった。

- 企画の具体化
- 工程表説明 (社長)
- 事業部別進捗報告 (各事業部長)
- 取締役会、事業部会議 (社長・事業部長)

表8.3.9に示す、行にある就業力の3項目の特徴について、A文書作成力は企画書作成の方法についてMM(マーケティングミックス)とSTPを責任者が責任者以外にも情報の共有がすすみ、理解から相手に伝わりやすい企画書の作成に向けて一つの達成感が成長の実感となっていることが推察される。B情報収集・分析・発信力は、企画書作成において情報収集をおこなっている様子が推察される。C状況判断・行動力は、役割分担がなされ個別に役割を遂行し情報交換と共有をおこないながら一つにまとめて成長を実感している。列の責任者と責任者以外の比較については、責任者は、情報収集がテキストや先生、インターネットであることに対して、責任者以外は商店街の関係者や、受講者間の情報伝達から成長を実感していることから、役割分担が明確であることが推察される。

**表8.3.9 就業力の項目別アンケートサンプル
(第1回講座・5週目) .**

A文書作成力「第1回責任者」のサンプル	A文書作成力「第1回責任者以外」のサンプル
テキストを参考しSTPとマーケティングミックスを企画書に入れた どのようにすれば相手に伝わりやすいのかわかった メールのやりとり	どのように書けばわかりやすいかを考えた 企業向けの企画書を書くとき
書記で、どのように書けばわかりやすいかを考えた	
B情報力「第1回責任者」のサンプル	B情報力「第1回責任者以外」のサンプル
テキスト、先生、インターネットなどを参考に書類を作成した 教育用共有サイトに連絡を上げたり 役員と部長とのやりとり	代替案を考える際に向上した 協力店舗のメリットの調整について、情報を集め発信できた 事業の集まりがない日も商店街に足を運び情報収集した
C判断・行動力「第1回責任者」のサンプル	C判断・行動力「第1回責任者」のサンプル
ゼミの先生に意見を聞くことが出来た 時間が押したときにタイムテーブルを変更した	プロジェクトの代替案を考え、提案する事ができた 意見を求められた際に、すぐに自分の考えを言葉にできた 人生で初めて、自分自身でアドバイスを行った

表8.3.5の単語ランキングの特徴として、企画が講座の中心テーマであったことから責任者は「企画」から新たに「広報」の単語が表れ事業が対外的な告知の段階にきていることが推察される。責任者以外は、

「企画」から「店舗」のキーワードも出現しており店舗運営への意識が高まっている。役割分担として責任者が事業全体の流れをつくり、責任者以外が実務的側面などの意識の高くプログラムの工程が後半の確認段階にきていることが推察される。最後に、棄権者はプログラムに参加しなくなったこともあり記入はなかった。

**表8.3.10 アンケート単語ランキング
(第1回講座・5週目)**

責任者(249)			責任者以外(725)			棄権者(0)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	企画	名詞	5	思う	動詞	10			
2	広報	名詞	3	企画	名詞	6			
3	出来る	動詞	3	考える	動詞	6			
4	聞く	動詞	3	自分	名詞	6			
5	ゼミ	名詞	2	取り組む	動詞	6			
6	テキスト	名詞	2	意見	名詞	5			
7	意見	名詞	2	事業	名詞	5			
8	考える	動詞	2	出来る	動詞	5			
9	参考	名詞	2	店舗	名詞	4			
10	自分	名詞	2	聞く	動詞	4			

8.3.6 第1回講座・6週目のアンケート分析

下記は、平成25年2月16日(土)13時から17時に実施した6週目のプログラム内容である。第6回は、不測の事態に対して、被害を最小限にするための手段を考える時間とした。事業部での打ち合わせが中心となっている。

- 危機管理とは
- リスク洗い出しシート
- 工程表説明 (社長)
- 事業部別進捗報告 (各事業部長)
- 取締役会、事業部会議 (社長・事業部長)

表8.3.11に示す責任者の就業力の3項目の特徴について、A文書作成力は企画書から実行段階の内容に移行しており、金銭管理マニュアルいることが推察される。B情報収集・分析・発信力は、教育支援システムを利用して積極的に情報発信をしていることや、講座で使用していたホワイトボードを有効活用し、打合せの方法についても工夫をしながら、情報共有の効率化をはかっていることが推察される。C状況判断・行動力は、地域イベントを主催する団体活動に積極的に参加することで地域との連携から達成感を実感している。着物団体主催の地域イベントに協力したお礼として催事販売時に衣装として着物を無償で貸与していただき、販売が華やかなものになった。当初から意図したつながりではなかったが、ビジネスとして重要な結びつきを学んでいるといえよう。また、責任者以外は成長にかかわる有効な単語は見当たらなかったため空白としている。

**表8.3.11 就業力の項目別アンケートサンプル
(第1回講座・6週目)**

A文書作成力「第1回責任者」のサンプル 金銭管理マニュアルで貯め金も取り入れた	A文書作成力「第1回責任者以外」のサンプル
B情報力「第1回責任者」のサンプル 教育支援システムに連絡を上げたり役員と部長とのやりとり ホワイトボードを積極的に活用するようになった	B情報力「第1回責任者以外」のサンプル
C判断・行動力「第1回責任者」のサンプル 地域イベントの事前研修に参加して学んだ	C判断・行動力「第1回責任者」のサンプル

講座も終盤となり打合せが中心であるためか講座アンケートの記入が少なかった。表8.3.6の単語ランキングの特徴として、責任者は「企画」のランキングが後退し「事業」が上位に戻るなどプログラムも完成に近づき最終確認段階にある。責任者以外は、抽出した単語が30語と少なく、棄権者の記入もない。

**表8.3.12 アンケート単語ランキング
(第1回講座・6週目)**

責任者(567)			責任者以外(30)			棄権者(0)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	欠席	名詞	5	名詞	欠席	名詞	3		
2	思う	動詞	4	責任	名詞	1			
3	事業	名詞	4	体調	名詞	1			
4	部長	名詞	4	不良	名詞	1			
5	上げる	動詞	3						
6	話	名詞	3						
7	メモ	名詞	2						
8	感じる	動詞	2						
9	企画	名詞	2						
10	研修	名詞	2						

8.3.7 第1回講座・7週目のアンケート分析

下記は、平成25年2月23日(土)13時から17時に実施した7週目のプログラム内容である。第7回は、各事業部の事業計画を株主総会で発表し催事販売の最終確認を行った。なお、実行可能性の低い事業内容については、時間を延長し事業の修正を行った。

- 報告・連絡・相談とは
- 事業部別進捗報告 (各事業部長)
- 株主総会 (株主)
- 企画書内容確認 (X社→各事業部)

表8.3.13に示す、責任者以外の就業力の3項目の特徴について、A文書作成力は広告の表現について。B情報収集・分析・発信力は、お客様に対しての情報発信について。C状況判断・行動力は、自分で考えて行動について成長を実感している。また、責任者は、成長にかかわる有効な単語は見当たらなかったため空白としている。

**表8.3.13 就業力の項目別アンケートサンプル
(第1回講座・7週目) .**

A文書作成力「第1回責任者」のサンプル	A文書作成力「第1回責任者以外」のサンプル 店頭に貼りだす広告の表現を考えた
B情報力「第1回責任者」のサンプル	B情報力「第1回責任者以外」のサンプル お客様への発信の仕方を考えられた
C判断・行動力「第1回責任者」のサンプル	C判断・行動力「第1回責任者」のサンプル 今まで考えていなかった事態も、自分で考えて行動できた

最終の講座となり打合せが中心であるためか講座アンケートの記入が減少傾向にある。表8.2.7の単語ランキングの特徴として、企画が講座の中心テーマであったことから責任者は「お客様」や「レジ」などの店舗業務の最終確認段階にある。責任者以外も同様に、「お客様」のキーワードも出現している。最後に、棄権者はプログラムに参加しなくなつたこともあり記入はない。

**表8.3.14 アンケート単語ランキング
(第1回講座・7週目) .**

1-7	責任者(79)		責任者以外(280)		棄権者(0)		
	No	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	行う	動詞	2	お客様	名詞	5	
2	お客様	名詞	1	考える	動詞	5	
3	レジ	名詞	1	感じる	動詞	4	
4	円	名詞	1	自分	名詞	4	
5	完売	名詞	1	それぞれ	名詞	3	
6	高齢	名詞	1	フレ	名詞	3	
7	最終	名詞	1	開催	名詞	3	
8	最初	名詞	1	良い	形容詞	3	
9	商品	名詞	1	チーム	名詞	2	
10	状態	名詞	1	意見	名詞	2	

8.4 第2回講座のアンケート分析

第2回の7回の講座で実施の終了後に受講者が記入したアンケート結果について「責任者」と「責任者以外」に分類し2つの分析を行つた。目的として、就業力の3項目についてのアンケートから成長の要素を読み取るために、アンケートからサンプルをとりあげた。その3項目は、表8.1に示すアンケート項目から抽出している。6-1はA文書作成力、6-2はB情報収集・分析・発信力、6-3は状況判断・行動力であり、成長につながる内容を項目別に最大3つとりあげている。次に、表8.1に示すアンケートの全ての項目から抽出した単語を出現する順番に品詞ごとに置き換え学生の興味・関心を講座ごとに分析した。行にある()内は総抽出語数、右側の列にある「No」は上位10のランキング、「抽出語」は、アンケートに含まれる単語を示している。

8.4.1 第2回講座・1週目のアンケート分析

下記は、平成25年5月18日(土)13時から17時に実施した1週目のプログラム内容である。受講者は、第1回の口コミもあり目的意識をもつた学生が多い。第1回目はオリエンテーションとしてプログラムの概要説明をおこない各種の調査を実施した。第1回と異なる点は、責任者の選出を1週目にせず意思疎通を深めるために十分な時間を確保したことである。第1回では、第1週目より責任者を順次決定し事業部の振り分けも早かったため、集団になじめず棄権者が発生した可能性があることから、当初から責任者や役割を理解する時間を確保して、意思疎通がはかれた段階での決定とするよう変更した。

- 1 プログラム概要説明
- 2 適性検査・就業力事前調査
- 3 受講者紹介カード記入
- 4 十条銀座商店街・中井商店街調査表の説明
- 5 クラウド型教育支援システムの説明
(※情報共有を目的としたシステム)

表8.4.1は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示したものである。1週目の就業力の3項目の特徴について、A文書作成力はプログラムの説明に対してのメモや、自己紹介時にメモをとることを成長として表現している。B情報収集・分析・発信力は、プログラムの情報を事前に収集や、受講者間の情報交換を整理している様子が推察される。C状況判断・行動力は、普段であれば交流しない受講者に対しても積極的に意思疎通をはかろうとする行為に成長を実感している。列の責任者と責任者以外の比較については、自己紹介という同じ行為であつても、責任者が能動的に集団に意思疎通をはかろうとすることに対して、責任者以外は、積極性はあるものの熟慮して行動に移す傾向が見受けられ、集団全体と個人的の視野に違いのあることが推察される。

**表8.4.1 就業力の項目別アンケートサンプル
(第2回講座・1週目) .**

A文書作成力「第2回責任者」のサンプル わからないことや疑問に思ったことをメモした	A文書作成力「第2回責任者以外」のサンプル 説明を聞きながら要点はうまくメモできた
自己紹介の際に内容を頭の中で組み立てて話すことができた	自己紹介で、自分について発信することができた
商店街を簡単に説明してとされた時、表現を考えた	家に帰ってから、聞いた内容の記憶などを整理した
B情報力「第2回責任者」のサンプル 自己紹介の際、多くの情報をやり取りできるように努めた	B情報力「第2回責任者以外」のサンプル インターネットの情報を収集してから臨むことができた
聞きなれない単語をメモし、その情報を集め分析した	相手のPRから何が好きでどんな性格か自分なりに分析した
内容が難しかったが、考えながら話を聞くことができた	プロフィールを簡潔に、分かりやすく伝え方を考えて発信した
C判断・行動力「第2回責任者」のサンプル 自己紹介は苦手でしたが、多くの人に話しかけようとした	C判断・行動力「第2回責任者以外」のサンプル 自己紹介時、普段なら話しかけない雰囲気の人とも話した
他人のアピールから話を聴かせたり、積極的に話しかけた	説明会後帰宅してどういったことを企画しようかと考えていた
笑顔で接することを意識し、たくさん会話をした	自己紹介で話しかけるタイミングを見り見て判断した

表8.4.2の単語ランキングの特徴として、責任者は「自分」や「楽しい」が上位にきており、積極的に集団への関わりが推察される。責任者以外も責任者と同様に「自分」が上位にきており、単語からは大きな差は読み取れなかった。また、棄権者については、表8.3.2に示す第1回の傾向と同様に「聞く」が「思う」よりも上位にきており受動的な姿勢は共通点であろうことが推察された。

**表8.4.2 アンケート単語ランキング
(第2回講座・1週目) .**

責任者(2,803)			責任者以外(5,420)			棄権者(720)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	45	思う	動詞	85	聞く	動詞	10
2	自分	名詞	25	紹介	名詞	62	自己	名詞	9
3	自己	名詞	17	自己	名詞	48	紹介	名詞	9
4	紹介	名詞	17	自分	名詞	47	自分	名詞	8
5	人	名詞	13	人	名詞	30	思う	動詞	7
6	楽しい	形容詞	10	聞く	動詞	27	人	名詞	6
7	参加	名詞	10	インターナン	名詞	22	話	名詞	6
8	考える	動詞	9	参加	名詞	20	インターナン	名詞	4
9	聞く	動詞	9	メンバー	名詞	19	考える	動詞	4
10	メンバー	名詞	8	相手	名詞	19	出来る	動詞	4

8.4.2 第2回講座・2週目のアンケート分析

下記は、平成25年5月25日(土)13時から17時に実施した2週目のプログラム内容である。アンケート結果として、第1回は、商店街の調査について、任意としたため「市場調査で他の人の視点が参考になった」など、試行錯誤の取り組みであった一方、第2回は、「毎日通っている商店街でもこんなに考えたのは初めてだった」など、事前の準備を行ったため余裕のあるアンケート結果となった。第1回は、企画を意識しながら、現地での商店街の関係者に慣れることを目的として商店街の調査を任意としていたため、企画はできたものの事業計画への落とし込みの段階で理想と現実の乖離から企画の変更が多く受講者の自信喪失につながっていた。第2回は変更点としてプログラムに2か所の商店街の市場調査を追加している。平成24年度東京都地域支え合い体制づくり事業の社会実験と連携をはかり具体的に商店街の活性化に向けた最先端の取り組みを学び、商店街の現状を共通認識として理解を深めた。

- 1 商店街・プロジェクト説明
- 2 商店街・調査発表
- 3 ビジネスプランの作成説明
- 4 選挙・出資・棄権理由書
- 5 社長候補説明・受講者紹介

表8.4.3は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示したものである。1週目はオリエンテーションとして、自己紹介の時間を増やしている。就業力の3項目の特徴について、A文書作成力はプログラムの説明に対してのメモや、自己紹介時にメモをとることを成長として表現している。B情報収集・分析・発信力は、プログラムの情報を事前に収集したり、受講者間の情報交換を整理している様子が推察される。C状況判断・行動力は、普段であれば交流しない受講者に対しても積極的に意思疎通をはかろうとする行為に成長を実感している。列の責任者と責任者以外の比較については、自己紹介という同じ行為であっても、責任者が能動的に集団に意思疎通をはかろうとすることに対して、責任者以外は、積極性はあるものの個人的な見地からの考えなど集団全体と個人的な視野の違いがあることが推察される。

**表8.4.3 就業力の項目別アンケートサンプル
(第2回講座・2週目) .**

A文書作成力「第2回責任者」のサンプル	A文書作成力「第2回責任者以外」のサンプル
調査報告はわかりやすく書くように努めた	市場調査の報告を行ふ際、要点のみを簡潔に書いた
自分が一番伝えたいことをみんなにわかつてもらえた	話すために利用しやすい文書の作り方を考えた
	商店街調査の発表を自分の言葉で伝えることができた
B情報力「第2回責任者」のサンプル	B情報力「第2回責任者以外」のサンプル
調査報告ではわかりやすく説明、よううと心掛けた	商店街に足を運び、自分の目で見て肌で感じ、情報を収集した
毎日通っている商店街でもこんなに考えたのは初めてだった	調査した商品の改善点を分析し、皆の前で言葉にし発信した
調査発表で、用意していた内容をそざ落とし端的にした	市場調査の内容は私にとってためになる情報収集であった
C判断・行動力「第2回責任者」のサンプル	C判断・行動力「第2回責任者以外」のサンプル
多くの人と連絡先を交換し調査活動でインスピードした	商店街調査で、理事長を紹介してもらい、アドバイスをもらった
行動力については常に自分の中で意識した	取材のシミュレーションは難しいことだと思ったが、対応できた
	商店街を調査する際に、状況判断し説明することができた

表8.4.4の単語ランキングの特徴として、責任者は「報告」の単語など調査後の準備としての先行した意識が見受けられるものの、責任者以外と比較して単語からは大きな差は読み取れなかった。表8.3.4に示す第1回目では、2週目の段階で責任者の役割を明確にしていたものの、第2回のこの段階では確定していないことから、役割が明確でなく同じ目的であった場合に大きな差がないことが推察される。また、棄権者については、第1回の傾向と同様に「発表」や「調査」といったプログラムの参加姿勢よりも「商店」「質問」「説明」など内容の確認のほか「悪い」など否定語も含まれプログラムに対して客観的な見方であることが推察される。

**表8.4.4 アンケート単語ランキング
(第2回講座・2週目)**

責任者(1,756)			責任者以外(5,011)			棄権者(545)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	21	思う	動詞	90	思う	動詞	9
2	発表	名詞	16	発表	名詞	42	説明	名詞	7
3	調査	名詞	12	調査	名詞	41	理解	名詞	6
4	人	名詞	11	聞く	動詞	37	商店	名詞	5
5	自分	名詞	10	人	名詞	28	質問	名詞	4
6	考える	動詞	9	商店	名詞	27	話	名詞	4
7	聞く	動詞	8	考える	動詞	22	悪い	形容詞	3
8	報告	名詞	7	自分	名詞	19	多い	形容詞	3
9	話	名詞	7	中井	名詞	17	大事	名詞	3
10	今回	名詞	6	時間	名詞	16	部分	名詞	3

8.4.3 第2回講座・3週目のアンケート分析

下記は、平成25年6月1日(土)13時から17時に実施した3週目のプログラム内容である。F商店街の調査発表と責任者である役員と事業部長の立候補者の受付と演説がこの講座の柱となっている。

- 1 役割・選挙・配属等の補足説明
- 2 商店街・調査発表
- 3 選挙演説 ⇒ 開票
- 4 社長・役員・事業部長決定 ※事業部員の選考

表8.4.5は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示したものである。就業力の3項目の特徴について、A文書作成力はF商店街の市場調査の発表の文書の書き起こしを成長として表現している。B情報収集・分析・発信力は、立候補者の選定について受講者間で情報交換を整理しており注目と期待感が推察される。C状況判断・行動力は、責任者と責任者以外のそれぞれの目的に応じた行動に對して成長を実感している。列の責任者と責任者以外の比較については、責任者は立候補に意識が集中していることが読み取れ、立候補から演説、そして就任という過程を通してその達成感を成長として実感していることが推察される。立候補と就任の過程を第1回は1週目の講座で実施したため、オリエンテーションなど情報が多くアンケートからも整理がつかない状態での立候補であったが、第2回では、受講者間でのコミュニケーションのとれた3週目の実施であったため、責任者は意識が集中し、責任者以外の注目度も高く期待感がうかがわれた。プログラムの期間に変更はないため、責任者の選任が第1回よりも遅れることで、集団ごとの企画の時間の短縮が懸念されたが、アンケート評価の結果からみると組織化の時期としては成功であったといえる。また、責任者以外についても、個人の能力や経験の範囲で成長は実感している。C状況判

断・行動力のサンプルにある、市場調査など、今までなら誤魔化していたという受講者のコメントもあり、活動に自らの意思で参加したということは、本人にとては大きな成長である。X社で非正規社員と日々接する著者にとっては、非正規社員も同様な状態が多く見受けられるが、外部的な助言や自らの意思をもっても行動の変容につながらないことが多い。今回、集団の中で行動の変容を促したように、集団によって個人の成長も促されることが示唆された。

表8.4.5 就業力の項目別アンケートサンプル

(第2回講座・3週目)

A文書作成力「第2回責任者」のサンプル 演説の際、大まかな文章を頭の中で作成した 売りたい商品についてのプレゼン資料を作成した	A文書作成力「第2回責任者以外」のサンプル 商店街の取材で実際に一番ふさわしい言い回しを考えた パワーポイントを作成する際に要点を簡潔に書こうと思いました 調査発表では短時間で伝えられる文章を意識して作成した
B情報力「第2回責任者」のサンプル 後員演説の際に思っている内容をしっかりと伝えられた 調査発表がありましたので、情報の発信力が向上	B情報力「第2回責任者以外」のサンプル 立候補者の意見を聞いて、ふさわしいのかどうかを考えた 具体的に表現するのは難しいが、確実に向かっている みんなと売ってみたいという気持ちが伝わった
C判断・行動力「第2回責任者」のサンプル 後員に立候補することで行動力と自信がついた 演説、調査発表など、人前で話すことが良い経験になった	C判断・行動力「第2回責任者以外」のサンプル 前回の発表よりも緊張しなかった 紹介カードを埋める際に、自ら話しかけに行く事ができた 市場調査を行った。今までなら多分行かずに誤魔化していた 迷いの末、事業部長を引き受けようとしたこと

表8.4.6の単語ランキングの特徴として、前回では責任者以外と比較して単語からは大きな差は読み取れなかったものの、今回は明確な違いとして表れている。責任者に「事業」および「立候補」の単語が出現していることから、双方の意識が高く、立候補から選挙そして就任後に、事業への意識の転換がはかられていることが推察される。責任者以外は、「調査」と「発表」の単語が上位に出現している。今回の講座では、商店街の調査発表を個人に課していることから、その意識の表れであるが、責任者に「調査」がなく「立候補」があることから、その意識として「立候補」の意識が優先されていることがわかる。そして、責任者以外は「調査」に注目していることから、表8.3.6に示す第1回と比較して双方の群にとって目指している方向性が明確になってきたことがわかる。棄権者については、サンプルが少なく弱い判断となるが「頑張る」の出現するものの「調査」がないことからプログラムに対して義務的かつ客観的な見方であることが推察される。

**表8.4.6 アンケート単語ランキング
(第2回講座・3週目) .**

責任者(2,104)			責任者以外(4,345)			棄権者(180)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	37	思う	動詞	62	頑張る	動詞	2
2	自分	名詞	16	発表	名詞	38	思う	動詞	2
3	事業	名詞	13	調査	名詞	24	中井	名詞	2
4	人	名詞	10	聞く	動詞	23	発表	名詞	2
5	部長	名詞	10	自分	名詞	22	聞く	動詞	2
6	発表	名詞	9	中井	名詞	20	聞ける	動詞	2
7	立候補	名詞	9	今回	名詞	18	方々	名詞	2
8	聞く	動詞	8	商店	名詞	17	予定	名詞	2
9	役員	名詞	8	考える	動詞	15	立候補	名詞	2
10	考える	動詞	7	人	名詞	15	話	名詞	2

8.4.4 第2回講座・4週目のアンケート分析

下記は、平成25年6月8日(土)13時から17時に実施した4週目のプログラム内容である。この段階から、責任者を中心として企画立案にはいる段階である。第1回では2週目からであったことから集団の決定にともない企画立案の時間が2週間の短縮となった。

- 1 催事販売・進め方の説明
- 2 取締役会・事業部会議
- 3 部門別会議(広報・企画・総務・店舗)
- 4 事業部別進捗発表

表8.4.7は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示したものである。表8.3.7にある第1回の4週目と比較して責任者以外の積極的な参加意欲があり第1回は、トップダウン、第2回は、ボトムアップの構図が推察される。全体の意思疎通を優先して事業部への配置を第2回は、第1回よりも2週間の遅らせることで、全体の時間に対する意識が高まりレバレッジを効かせる結果と推察される。就業力の3項目の特徴について、A文書作成力は企画立案に向けた取り組みが組織化とともに急速に増え、個別に割り当てられた役割をこなすことを成長として表現している。B情報収集・分析・発信力も役割に対して、積極的な情報収集があり期待感が推察される。C状況判断・行動力も、責任者と責任者以外のそれぞれの目的に応じた行動に対して成長を実感している。列の責任者と責任者以外の比較については、責任者は、目に見えた成長の実感が得られず成長に関する単語が出現していないことが推察される。責任者以外については、積極的な関わりの中で、個別の役割をもつて成長の実感が得られやすいことが推察される。

**表8.4.7 就業力の項目別アンケートサンプル
(第2回講座・4週目) .**

A文書作成力「第2回責任者」のサンプル	A文書作成力「第2回責任者以外」のサンプル
記事作成によって文章作成能力は上がった	自分の役割を持って動き始め文章を作成する機会が増えた できていると思っていた文章作成の改善点が見つかった 意見をまとめ、理解しながら、自分の考えを話すことができた
B情報力「第2回責任者」のサンプル	B情報力「第2回責任者以外」のサンプル
やることをうまく伝えようがんばった	自発的行動として自分が感じたことは積極的に発信した メンバーの話しを聞きメモを取るなど、自分なりに情報収集した 清掃・接客のチェック項目を、アルバイトで得た経験から挙げた
C判断・行動力「第2回責任者」のサンプル	C判断・行動力「第2回責任者以外」のサンプル
店舗役員のやることをできる限り考えた	自分の案をみんなに伝えるために時間を割いて行動した 発表のとき、突然自分になったが、内容を伝えることができた 知らない方々の写真撮影は得意でなかったが挑戦した

表8.4.8の単語ランキングの特徴として、責任者は「事業」に意識があるものの、限られた時間の中で明確な企画の方向性が見いだせずその焦りから「時間」「今」「今回」などの単語が出現していることが推察される。責任者以外は、責任者を下支えするように「事業」「出来る」など事業に対する意識が高い。また、「グループ」「楽しい」など組織化の度合も高いことが推察できる。棄権者については、サンプルが少なく弱い判断となるが「都合」や「頑張る」など客観的な見方であることが推察される。

**表8.4.8 アンケート単語ランキング
(第2回講座・4週目) .**

責任者(1,265)			責任者以外(4,389)			棄権者(357)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	18	思う	動詞	72	思う	動詞	6
2	考える	動詞	9	事業	名詞	48	言う	動詞	3
3	時間	名詞	8	自分	名詞	29	都合	名詞	3
4	役員	名詞	7	意見	名詞	22	役員	名詞	3
5	事業	名詞	6	出来る	動詞	20	フィールド	名詞	2
6	案	名詞	5	話し合い	名詞	20	以降	名詞	2
7	作成	名詞	5	グループ	名詞	15	頑張る	動詞	2
8	企画	名詞	4	楽しい	形容詞	15	行く	動詞	2
9	今	名詞	4	考える	動詞	15	伺う	動詞	2
10	今回	名詞	4	メンバー	名詞	14	時間	名詞	2

8.4.5 第2回講座・5週目のアンケート分析

下記は、平成25年6月15日(土)13時から17時に実施した5週目のプログラム内容である。

- 1 催事販売・進め方の説明
- 2 設立総会準備・設立総会
- 3 取締役会・事業部会議
- 4 部門別会議(広報・企画・総務・店舗)
- 5 事業部別進捗発表

表8.4.9は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示している。表7.3.9にある第1回の5週目は、事業計画作成のためにマーケティングミックスとS T Pの調査が責任者の業務となっていたが、今回はフレームワークの指定はしていない

い。就業力の3項目の特徴について、A文書作成力は企画立案の他に広報の仕事としてポスターや情報共有のための新聞の作成を指定したことから、形として残り目に見えやすいことから成長として実感していることが推察される。B情報収集・分析・発信力も役割に対して、2週目と3週目で商店街調査を経験していることから自発的に情報収集を目的として市場調査をおこなっている。C状況判断・行動力も、責任者と責任者以外のそれぞれの目的に応じた行動の中でAと同様に形として残り目に見えやすい内容を成長として実感している。列の責任者と責任者以外の比較については、責任者は、限りある時間の中で市場調査などの実施により前週と比較して企画の方向性が明確になったことが推察される。責任者以外については、役割が明確となり積極的な関わりがサンプルから推察される。

**表8.4.9 就業力の項目別アンケートサンプル
(第2回講座・5週目) .**

A文書作成力「第2回責任者」のサンプル		A文書作成力「第2回責任者以外」のサンプル	
広報の仕事を説明するために台本書くことで上達を実感した		ポスターのキャラクターを考え発想力があがった	
事業部内でもわりの意見をまとめた		企画書を作成で、相手に伝わりやすい表現を考えた	
B情報力「第2回責任者」のサンプル		B情報力「第2回責任者以外」のサンプル	
取引先の情報を伝えるために分析、発信を行った		前回よりは要点を押さえられやすくなつた	
市場調査で行なったからどういう商品を売るべきか考えた		店舗の方と仲よくなり、仕入れや販売方法を聞くことができた	
価格設定の時に向上了を感じた		実際に街にあるポスターを意識的に見て良い方法を収集した	
C判断・行動力「第2回責任者」のサンプル		C判断・行動力「第2回責任者以外」のサンプル	
事業部会議の際、議題を皆の様子を考えながら出していく		毎回の企画書提出がその力につながっている。	
何を話し合いまいいかどういう状況判断ができる		商品開発のために商店街へ足を運ぶこと。	
仕入先の調査の時		大学にアボをとりで電話をし時決め意見が言えた	

表8.4.10の単語ランキングの特徴として、表8.3.10に示す第1回講座・5週目と比較すると表8.3.10に示す第1回が「企画」が上位にランディングされていたが、今回は「事業」が意識の中心となっている。事業展開を、フレームワークをもちいた「企画」からはいるか、創造性を生かした「事業」からはいるかの違いといえる。事業の結果としての第1回の収益性が高く、第2回は動機付けが高まっている。責任者は企画の方向性が明確になったことから「事業」に意識が上位に位置し、「時間」に関する単語がランディング外となるなど、余裕が出てきている。責任者以外は、責任者を下支えするように「事業」「楽しい」など事業に対する意識が高い。棄権者については、サンプルが少なく弱い判断となるが「難しい」や「棄権」など否定語が出現し、受講者との意識の温度差が明確になっていることが推察される。

**表8.4.10 アンケート単語ランキング
(第2回講座・5週目) .**

No	責任者(1,189)			責任者以外(2605)			棄権者(81)		
	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	事業	名詞	12	思う	動詞	46	思う	動詞	5
2	自分	名詞	9	自分	名詞	23	難しい	形容詞	2
3	考える	動詞	8	事業	名詞	19	企画	名詞	1
4	思う	動詞	7	意見	名詞	13	棄権	名詞	1
5	話	名詞	7	聞く	動詞	13	現実味	名詞	1
6	他	名詞	5	販売	名詞	10	次回	名詞	1
7	班	名詞	5	楽しい	形容詞	9	自分	名詞	1
8	進む	動詞	4	話し合い	名詞	9	主張	名詞	1
9	伝える	動詞	4	企画	名詞	8	場面	名詞	1
10	ニーズ	名詞	3	考える	動詞	8	伝わる	動詞	1

8.4.6 第2回講座・6週目のアンケート分析

下記は、平成25年6月22日(土)13時から17時に実施した6週目のプログラム内容である。第2回では全体の進行をみながら、プログラムの項目をすすめた結果、設立総会の開催が6週目となった。

- 1 催事販売・進め方の説明
- 2 設立総会準備・設立総会
- 3 取締役会・事業部会議
- 4 部門別会議(広報・企画・総務・店舗)
- 5 第1回株主総会

表8.4.11は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示したものである。表8.3.11にある第1回の6週目は、金銭マニュアル等の実施前の確認に関する業務であるが、今回では市場調査や案を整理など企画は最終段階にきておらず積み残しの業務が多いことが推察される。就業力の3項目の特徴について、A文書作成力は企画書や新聞の作成など、第1回と比較してマーケティングミックスやS T Pの理解などの詳しい説明は一部の希望者にとどめ、責任者以外にも作成しやすい内容としたことから、作業の役割分担が可能となり成長として実感していることが推察される。B情報収集・分析・発信力も役割に対して、自発的に情報収集として価格調査や交通量調査をおこなっている。C状況判断・行動力も、責任者と責任者以外のそれぞれの目的に応じた行動の中で目に見えやすい内容を成長として実感している。列の責任者と責任者以外の比較については、責任者は、責任者以外の役割分担による成果を確認しながら指示を出していることが推察される。責任者以外について、第1回の6週目では有効なサンプルを得られなかつたが、今回はサンプルが多く、全体の士気が高まりからか、やる気が維持されていることが推察される。

**表8.4.11 就業力の項目別アンケートサンプル
(第2回講座・6週目) .**

A文書作成力「第2回責任者」のサンプル	A文書作成力「第2回責任者以外」のサンプル
市場調査に行き、情報をいろいろな方から聞くことができた	言われる前から文章を作り始めるようになった
	新聞の作成で文章力やデザイン力が向上した
	企画書で事業部の熱意を伝えることを考えて文章にしている
B情報力「第2回責任者」のサンプル	B情報力「第2回責任者以外」のサンプル
みんなの意見を聞いてまとめた	店舗前の交通量調査の実施で情報収集と分析力が向上した
全体がどう動いているのか把握した。分析力がついた	平日にスーパーに行ったりと、手段を比較して分析した
C判断・行動力「第2回責任者」のサンプル	C判断・行動力「第2回責任者以外」のサンプル
厳しいスケジュールの中、各事業部の案を整理できた	先に行動して文章を作るために情報を集めてまとめ始めた
発表で何を言う何を言わないという意思決定ができた	決めておかなければならることは何かをその場で考えた
	企画の急な変更では素早い判断が求められた

表8.4.12の単語ランキングの特徴として、表7.3.10に示す第1回講座・6週目と比較すると表8.3.12に示す第1回が「欠席」が1位にランキングとなり催事販売の直前においてモチベーションの低下が懸念されていたが、今回のアンケートにおける抽出語は責任者については2倍以上、責任者以外については11倍とアンケート記入が多く全体の士気が維持されている。責任者、責任者以外に共通している抽出語として「事業」が上位にランキングとなり、意識の中心となっていることがわかる。責任者は企画の方向性が明確になったことから「事業」に意識が上位に位置し、「時間」に関する単語がランキング外となるなど、余裕が出てきている。責任者以外は、責任者を下支えするように「事業」「楽しい」など事業に対する意識が高い。棄権者については、サンプルが少なく弱い判断となるが「多い」や「棄権」など否定語が出現し、受講者との意識の温度差が明確になっていることが推察される。

**表8.4.12 アンケート単語ランキング
(第2回講座・6週目) .**

責任者(1,255)			責任者以外(3,427)			棄権者(99)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	13	思う	動詞	61	多い	形容詞	4
2	事業	名詞	10	事業	名詞	32	決める	動詞	2
3	特に	副詞	9	自分	名詞	16	メモ	名詞	1
4	発表	名詞	8	意見	名詞	15	意見	名詞	1
5	自分	名詞	7	聞く	動詞	15	会議	名詞	1
6	考える	動詞	6	考える	動詞	14	棄権	名詞	1
7	今	名詞	5	今回	名詞	14	決まる	動詞	1
8	少し	名詞	5	言う	動詞	11	思う	動詞	1
9	分析	名詞	5	文章	名詞	11	事業	名詞	1
10	楽しい	形容詞	4	情報	名詞	10	出	名詞	1

8.4.7 第2回講座・7週目のアンケート分析

下記は、平成25年6月29日(土)13時から17時に実施した7週目のプログラム内容である。第7回は各事業部の事業計画を株主総会で発表し最終準備の時間とした。

- 1 催事販売・進め方の説明
- 2 部門別会議(広報・企画・総務・店舗)
- 3 取締役会・事業部会議
- 4 第2回株主総会

表8.4.13は、就業力の3項目のアンケート項目で記入された成長に関わるサンプルを示したものである。表8.3.13にある第1回の7週目は、店頭にはりだす広告の表現やお客様への発信の方法など催事販売実施における最終確認のサンプルであったが、今回では接客マニュアルの作成や、メニュー作成など最終講座においても作成が続いており作成物の確認にいたつておらず、積み残しの業務が多いことが推察される。就業力の3項目の特徴について、A文書作成力は接客マニュアルの作成、メニュー作成、責任者以外の意識が高く作業の役割分担が可能となり成長として実感していることが推察される。B情報収集・分析・発信力も情報収集として他店舗調査をおこなっている。C状況判断・行動力も、メニュー作成の立候補や自発的にメモの記録やミーティングで発言など、集団として能動的な行動ができる雰囲気であることが推察される。列の責任者と責任者以外の比較については、責任者は、その役割である売上や利益、仕入や販売など大枠の内容について、責任者以外は、データの記録、チラシ作成、他店舗調査など役割分担が理想的である。第1回の7週目では有効なサンプルを得られなかったが、全体の士気が高まりからか、やる気が維持されていることが推察される。

**表8.4.13 就業力の項目別アンケートサンプル
(第2回講座・7週目) .**

A文書作成力「第2回責任者」のサンプル	A文書作成力「第2回責任者以外」のサンプル
広告を作った際、視覚的に見た人に訴える広告を考えた	データを簡潔に記録することに慣れてきた
	接客マニュアルを作るにあたって、能力が向上した
B情報力「第2回責任者」のサンプル	B情報力「第2回責任者以外」のサンプル
役員の役割から、今日は自然と皆の前で意見を言えた	チラシの作成では、7月7日の七夕について調べまとめた
利益や売上の話を聞き、仕入、販売価格の見直しができた	販売商品の値段と材質、デザインを他で確認するようになった
足を運んで商品を販売している店舗に聞き込みをした	店舗で提出を求められたものを制作する
C判断・行動力「第2回責任者」のサンプル	C判断・行動力「第2回責任者以外」のサンプル
決断力がついた	事業部のメニュー製作をするときに立候補した
	残しておいた方がいい情報をメモすることができた
	店舗のミーティングの際にも意見を言えることができた

表8.4.14の単語ランキングの特徴として、表8.3.14に示す第1回講座・7週目と比較すると第1回が責任者、責任者以外の「お客様」が上位にランキングされている。また、責任者は「完売」「高齢」「最終」など方向性を示しており、主体的な取り組みが見える一方、第2回は「思う」「事業」「発表」など具体性に欠ける単語が中心となっている。この傾向は、表8.3.12に示す第1回講座6週目と同様に第1回と比較して催事販売の準備時間の配分によるものと推察でき

る。事業の結果に重点を置いた第1回の収益性が高く、集団の関係性に重点を置いた第2回は動機付けが高まっていることが示唆された。責任者は企画の方向性が明確になったことから「事業」に意識が集中し、「時間」に関する単語がランキング外となるなど、余裕が出てきている。責任者以外は、責任者を下支えするように「事業」「販売」など事業に対する意識が高い。棄権者については、サンプルが少なく弱い判断となるが「違う」や「棄権」など否定語が出現しており、受講者との意識の温度差が見受けられる。

**表8.4.14 アンケート単語ランキング
(第2回講座・7週目) .**

No	責任者(504)			責任者以外(2,027)			棄権者(185)		
	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	6	思う	思う	33	思う	動詞	4
2	考える	動詞	5	事業	名詞	16	人	名詞	4
3	事業	名詞	5	販売	名詞	14	いろいろ	副詞	2
4	発表	名詞	4	特に	副詞	9	意見	名詞	2
5	販売	名詞	3	作成	名詞	8	価値	名詞	2
6	部長	名詞	3	自分	名詞	7	自分	名詞	2
7	価格	名詞	2	向上	名詞	6	それぞれ	名詞	1
8	広告	名詞	2	考える	動詞	6	たくさん	名詞	1
9	前	名詞	2	文章	名詞	6	違う	動詞	1
10	素直	名詞	2	最後	名詞	5	棄権	名詞	1

8.5 アンケート単語ランキングの考察 (責任者・責任者以外・棄権者)

表8.5は、責任者・責任者以外・棄権者の単語ランキングを示している。表8.1にあるアンケートの自由回答を分析対象として、単語単位に分解しその関連性をはかり就業力開発に影響を及ぼす単語ランキングからの考察を行った。行にある()内は総抽出語数、右側の列にある「No」は上位15のランキング、「抽出語」は、アンケートに含まれる単語を分類、集計した中から単語を抜き出したものである。「出現回数」は、単語の出現回数を表している。責任者の特徴的是、「能動的で事業中心の意識」責任者以外は、「受動的で事業中心の意識」、棄権者は、「客観的で自分中心の意識」であることが推察できる。具体的に責任者については、責任者以外と比較して、「事業」「考える」「人」「発表」が上位に来ている。責任者以外は、責任者と比較して例えば、「自分」より「事業」が低い位置づけとなることから、事業よりも自分が意識されている。また、「考える」より「聞く」ことが優先されており、受動的と推察できる。最後に棄権者の傾向はアンケートの記入も「はい」「いいえ」など少なく、サンプルとなる単語が3,465での傾向となるが、品詞は名詞が多く動詞が少ないことが推察される。名詞の中でも「自分」「自己」など事業よりも優先され

る他、「多い」といった消極的な意識が推察される。

**表8.5 棄権者のアンケート単語ランキング
(責任者・責任者以外) .**

No	責任者(16,981)			責任者以外(39,722)			棄権者(3,465)		
	抽出語	品詞	出現回数	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	187	思う	動詞	593	思う	動詞	46
2	事業	名詞	104	自分	名詞	252	自分	名詞	19
3	自分	名詞	99	事業	名詞	176	人	名詞	19
4	考える	動詞	73	聞く	動詞	165	聞く	動詞	18
5	人	名詞	62	考える	動詞	161	考える	動詞	13
6	聞く	動詞	59	人	名詞	140	多い	形容詞	13
7	企画	名詞	51	意見	名詞	119	話	名詞	13
8	発表	名詞	51	楽しい	形容詞	102	商店	名詞	12
9	話	名詞	43	今回	名詞	99	説明	名詞	12
10	特に	副詞	41	発表	名詞	99	自己	名詞	11
11	感じる	動詞	40	出来る	動詞	95	紹介	名詞	11
12	楽しい	形容詞	39	調査	名詞	95	時間	名詞	10
13	部長	名詞	38	特に	副詞	94	意見	名詞	9
14	時間	名詞	36	感じる	動詞	92	頑張る	動詞	8
15	伝える	動詞	36	向上	名詞	91	積極	名詞	8

8.6 アンケート単語ランキングの考察 (男子学生・女子学生)

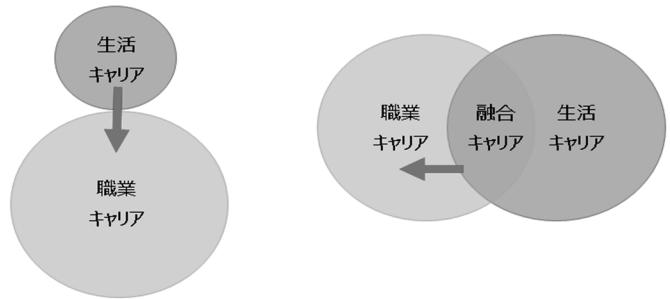

表8.6は表8.1から抽出した男子学生と女子学生のアンケート単語ランキングを示している。特徴としては、表7.5に示す責任者・責任者以外と比較して、男子学生が責任者、女子学生が責任者以外と極めて近い傾向であることがわかる。女子学生の記入のひとつとして「いつもは課題商品が与えられてクライアントがいる形で企画を考えることが多い。何をしても良いという自由な感じが大変」という意見があった。学校で与えられる宿題の多くは、正解が用意されているが、社会においては課題を見つけることが求められる。本プログラムで先の見えない内容に対して、女子学生、責任者以外は「聞く」から「考える」受動的な行動である一方、男子学生、責任者は「考える」から「聞く」というように能動的な行動であることが推察される。

表 8.6 男子・女子学生のアンケート単語ランキング.

男子学生(15,977)			女子学生(44,182)			
No	抽出語	品詞	出現回数	抽出語	品詞	出現回数
1	思う	動詞	179	思う	動詞	647
2	自分	名詞	102	自分	名詞	268
3	事業	名詞	83	事業	名詞	203
4	考える	動詞	73	聞く	動詞	195
5	人	名詞	64	考える	動詞	174
6	特に	副詞	54	人	名詞	157
7	聞く	動詞	47	意見	名詞	129
8	感じる	動詞	46	発表	名詞	114
9	企画	名詞	44	楽しい	形容詞	111
10	向上	名詞	43	今回	名詞	104
11	発表	名詞	38	調査	名詞	103
12	楽しい	形容詞	34	時間	名詞	98
13	行動	名詞	34	紹介	名詞	97
14	活動	名詞	33	話	名詞	97
15	意見	名詞	32	企画	名詞	94

8.7 大学生のキャリア決定

図 8.7 に図示するキャリア決定のとらえ方については、大学生男女間で特徴的な差があるという指摘がなされている。(河崎, 2002) 男性の場合、「職業キャリア」を人生の中心と位置づけて職業に経済的責任と人間的成長の役割を認め、家庭生活は副次的なものとみなしている。「生活キャリア」は結婚後に増大して「職業キャリア」に侵食するという将来の不安要因として「職業キャリア」を経済的責任と人間的成長のための職業「生活キャリア」を職業キャリアの基盤の上に積み重ねられるサブ労働ととらえている。他方、女性の場合、「職業キャリア」は楽しみや生きがいのものとして、「生活キャリア」は逃れられない責任と位置づけ「職業キャリア」を楽しみや生きがいのための仕事、「生活キャリア」を責任としての家事・育児、更に「融合キャリア」を生活の延長線上にある趣味等を活かした楽しみや生きがい等のための趣味的仕事ととらえる傾向にある。図 8.7 に図示する「生活キャリア」、「職業キャリア」そして「融合キャリア」について考察すると、男子学生は、「事業」「人」「向上」「企画」といった事業に関する単語は「職業キャリア」であり、「生活キャリア」と分離していることが推察される。女子学生については、「職業キャリア」は上位にくるものの、「楽しい」など、「生活キャリア」から「融合キャリア」に結びつける意識があると推察される。

出所：岡本 祐子「アイデンティティ生涯発達論の射程」
P248 をもとに作成

図 8.7 キャリアのとらえ方
(左図：男子大学生・右図：女子大学生).

8.9 まとめ

以上、講座の終了後に記入したアンケートについて、就業力の 3 項目の観点で責任者・責任者以外について考察を行った。対象とする群の違いとして、その役割から責任者は、集団の情報交換や情報共有など調整項目に成長の中心がおかかれていることに対して、責任者以外は個人の成長での実感があることが推察された。責任者以外について具体的に受講者が短期大学、大学 1 年生から 4 年生で、年齢や経験にバラつきがあるため、成長の達成感についても差異がある。ポスターや広告など、成果として見えやすい内容もプログラムに入れておくことで、成長を実感できるであろうことが示唆された。次に、アンケートの単語ランキングについて、責任者は、「自分」よりも「事業」が優先する意見が多い傾向にあり、事業の進行上でおこる様々な課題を解決しながら進行していくプログラム内容が評価につながっていると推察される。責任者以外は、「事業」の意識が上位にあるものの「自分」や「意見」、「楽しい」など意見が多い傾向にあり、プログラムの進行において、自分自身を中心として意思疎通に配慮している様子がうかがわれる。また、棄権者は「事業」の単語がランキング外の 21 位であり、プログラムの活動に関する動詞が少ないことからも興味関心が低かったことがうかがわれる。最後に、男子学生と女子学生の比較について、男子学生は責任者、女子学生は責任者以外のランキングに近い傾向にあることがわかった。男子学生は、「職業キャリア」を優先し「生活キャリア」と分離していることが推察される一方で、女子学生は、「職業キャリア」は上位にくるものの、「楽しい」など、「生活キャリア」から「融合キャリア」に結びつける意識があると推察される。

9 ソシオメトリック・テストによる分析と考察

9.1 ソシオメトリック・テストの内容

ソシオメトリーとは、モレノ、J. L.により提唱された社会的集団の構造と機能に関する理論である。本研究では、役員群と事業部群における関係構造を検証するために、第1回と第2回のプログラム実施後に受講者を対象にソシオメトリック・テストを行った。調査名は貢献度調査、受講者である調査対象の有効回答として、第1回は、35名（男11名、女24名）第2回は、37名（男12名、女25名）であった。調査方法は、受講者全員に対する調査内容について相対評価として順位づけした。具体的に、評価者は自分自身に「1」を記入、各項目に貢献の高い順番として、受講者全てを2から昇順で評価を行った。調査対象は3つある。第1は、受講者である。受講者とは、催事販売プログラムに参加した自分自身を除く学生全員である。第2は、関係者である。関係者とは、商店街、仕入業者、学校関係者、保健所など、受講者と顧客を除く利害関係者であり。第3は、顧客である。顧客とは、催事販売の実施時の来店客である。受講者に対する意図は、日頃からあらゆる関係者に対する気遣いを意識することである。受講者は、今回のプログラムでの役割として役割である役員、各事業部にとらわれず、貢献している人を評価することである。催事期間中で、全ての人とコミュニケーションをはかり、評価シートが空欄とならないよう、オリエンテーション時の自己紹介カードや全体の交流により受講者全員が相互に交流できる配慮を行った。仮説としては、第1に、事業部群は、凝集の方向を「事業部員」から「事業部長」に、第2に全体として、「事業部長」から「副社長」とした。

9.2 第1回ソシオメトリック・テストの結果

図9.1は、第1回催事販売プログラムにおいて、貢献度の高いと評価した「学生」の第1位を抽出し、ソシオメトリック構造として明らかにしたものである。第1回の受講者の有効回答は、男11名、女24名、計35名であった。役員部門を中心とした4つの中心に位置するSはS1の社長を中心とする役員の群、その四方を取り囲む事業部の群は、事業部長と事業部員で構成される。図に示す矢印は、第1回の実施分の学生本人から見た本人以外の参加学生に対する貢献度の第1順位を抽出したものである。選択した矢の方向が事業部の内部に凝集することを、群の関係性が濃密であるとし、中心の役員又は事業部の群以外を希薄としている。結果として、C群、B群、D群、A群の順番で濃密から希薄となる傾向が明らかになった。C群を例に活動状況に照らし合わせてみると、事業内容が決定す

るまでの工程で実施錯誤が高かったことから事業部長を中心とした事業部内の関係性が高まりC2、C4、C5、C7の事業部員の矢印が事業部長であるC1に向かったものと推察される。事業部の評価としては、BとCの群は実施に至るまで試行錯誤があった一方で、AとDの群は円滑な運営であったことから、組織化の度合に変化が生じたものと推察される。

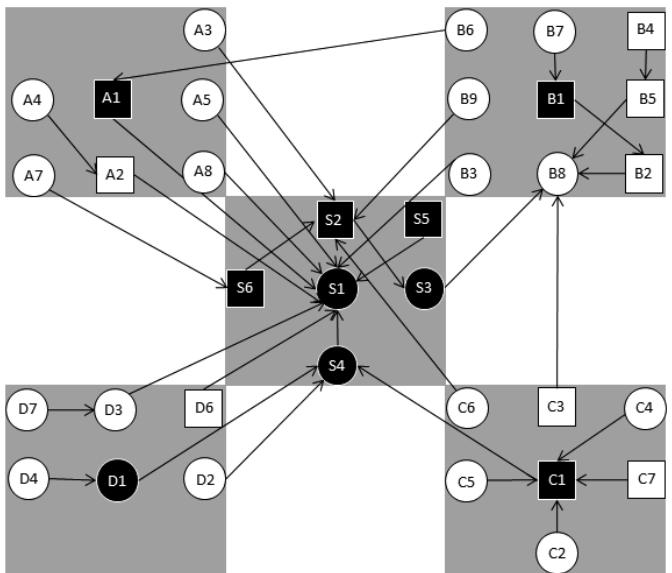


図9.1 受講者のソシオグラム（第1回講座）。

学生数男11、女24、計35 口男（■責任者）
○女（●責任者）→「学生」貢献度の第1選択

9.3 第2回ソシオメトリック・テストの結果

図9.2は、図9.1と同様に第2回催事販売プログラムのソシオメトリック構造として明らかにしたものである。第2回の受講者の有効回答は、男12名、女25名、計37名であった。事業部の評価として、ソシオメトリック構造の顕著な特徴として社長にのみ凝集する傾向が明らかとなった。第1回と比較して矢印の多くが社長であるS1に向かっていることはS1の影響力が強く、事業部長のそれが弱いことを示している。第1回と比較して、S1に凝集した理由としては、第1に、S1の資質として、リーダーシップとコミュニケーション能力が高く、受講者全体に対する影響力があった。第2に、表1のプログラム日程より、事業部ごとのグループワークよりも、全体のコミュニケーション向上のための時間として2週間確保したことや、第1回の活動記録を参考にできていた分、各事業部の実施錯誤が減少し、組織化の度合が希薄になったものと推察される。

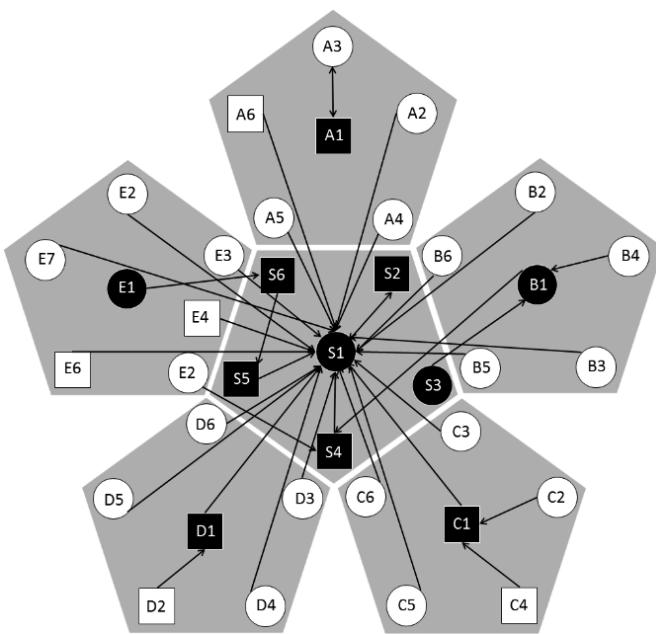


図9.2 受講者のソシオグラム（第2回講座）。

学生数男12、女25、計37 口男（■責任者）
○女（●責任者）→「学生」貢献度の第1選択

9.4 ソシオメトリック構造の比較評価

図9.3は第1回のソシオメトリック構造を（1）学生（2）関係者（3）顧客の項目別に「責任者」および「責任者以外」の群として貢献度の1人当たりの平均値について比較したものである。図9.4は同様に第2回について示している。独立変数を「責任者」および「責任者以外」、従属変数は、両変数の貢献度の差として分散分析を行った。有効回答数は、9.2項および9.3項と同様に、第1回は、男11名、女24名、計35名、第2回は、男12名、女25名、計37名であった。t検定は、有意水準を図の上部に明記したもので（表中※※印）図に示すエラーバー付き棒グラフの左側の列にある数値は、貢献度の平均値、エラーバーは各対象群に対する標準誤差の値を示している。評価は貢献度の昇順であることから、棒グラフの学生、関係者、顧客の増加傾向は貢献度の減少を示している。責任者は「学生→関係者→顧客」の順位であることからも学生を優先した自律的な組織運営がなされていたと示唆できる。責任者以外は、「学生→関係者→顧客」の順番で責任者と傾向が異なることから役割分担が明確であったと推察される。第1回の貢献度比較は、図9.3に図示する右側の「学生」を対象とした棒グラフの2つの群の差が相対的に大きいことから責任者と責任者以外の役割に応じた貢献度が高く評価されている一方で、意思疎通に対する心理的な距離があった可能性示唆された。第2回は、図9.4に図示する棒グラフの差が相対的に小さいことから、その関係性が近いと推察される。また、

「顧客」のグラフを例にすると、責任者と責任者以外の棒グラフの差はほとんど見られないことから、事業部員の消費者に対する販売活動が貢献度に評価されたものと示唆される。

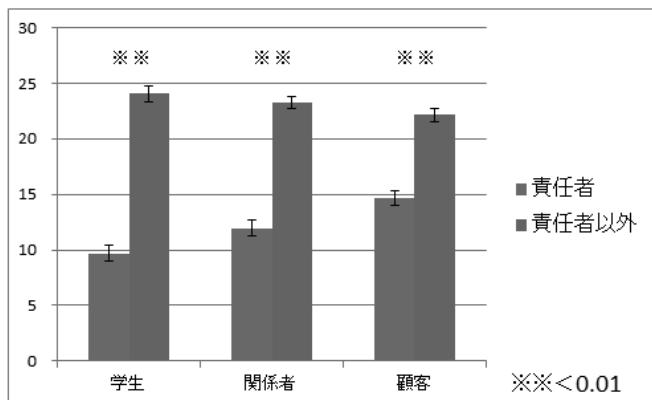


図9.3 第1回催事販売の対象者別貢献度比較。

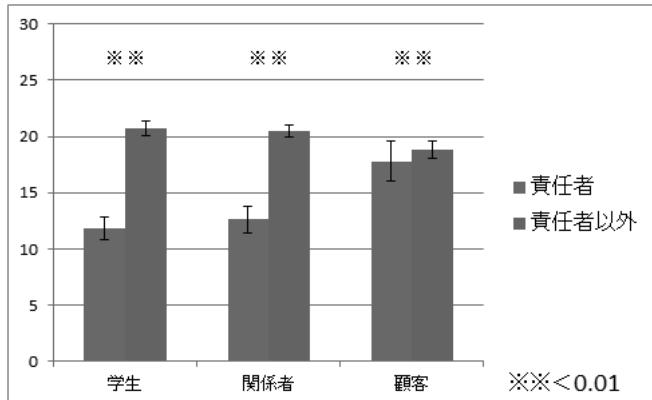


図9.4 第2回催事販売の対象者別貢献度比較。

9.5 マネジリアル・グリッド理論による比較評価

図9.4は、マネジリアル・グリッド理論に基づいて第1回と第2回のソシオグラムに基づいた結果を4象限で示したものである。マネジリアル・グリッド理論は、リーダーシップ行動論の一つとして1964年にブレイクとムートンによって提唱されたリーダーシップの行動スタイルを「人への関心」と「業績への関心」という2つの側面からとらえた行動理論である。ブレイクとムートンによると「9・9型」がもっとも理想なリーダーシップ類型だと考えられている。左側の列にある軸は、配慮の高低であり、下の行は、構造（化）主導を示している。図8.1 第1回催事販売受講者のソシオグラムから、矢印で示す凝集の度合を「濃密」であるが中程度であるため「中構造」である「5・5型」と示唆される。責任者は責任者以外を配慮していたことから「中配慮」とすると、図9.2の■で囲まれた部分を示している。「5・5型」は、業績にも人間に

もバランス良く関心を示す妥協型リーダーである。次に図8.2のソシオグラムの表は第2回の部分で組織化の密度が「希薄」であることを「低構造」とすると、第2回では、業績が第1回と比較して低い傾向にあった、また責任者は責任者以外を高く配慮していたことから「高配慮」とすると、■で囲まれた部分を示している。図9.5の第1回第2回プログラム介入効果の評価結果と関連づけると、第1回は、マネジリアル・グリッド理論から「中道型」といって■にある「中構造、中配慮」である「1・9型」と示唆される。業績も良好であった一方、就業力の開発は第2回に劣っている。第2回は■にある「高配慮、低構造」で業績から利益に結びつかなかつたが、就業力の開発にあたっては、高い値を示している。「1・9型」は、業績を犠牲にしても人間への関心が高い人情型リーダーである。上記を勘案すると、3か月以内のプログラムで、未経験の領域であったため構造(化)主導がなかなかすまず受講者の学習効果が未熟な段階であった。以上から第1回は、受講者のレベルを超えた内容であり、責任者の行動力で業績は伸びたものの、責任者以外は未消化の部分が多く業績に反映されなかつたことが示唆される。第2回は、第1回と比較して、プログラムの難易度が低下させた試みにより、そのレベルが受講者のレベルに対して適正となり、業績は下がつたものの就業力開発を表現している。

9.5 ソシオグラムと就業力の関連評価

図9.5は第1回と第2回の受講者に実施したプログラム介入効果の評価結果を図示している。左上は、就業力、右上は、就業力の3尺度の1つであるA文書作成力、同様に左下が、B情報収集・分析・発信力、右下がC状況判断・行動力である。繰り返しのある分散分析を行ったところ、4つの評価結果は有意でなかつたため、弱い判断となるが、第2回の事前調査の自己評価の平均値では、第1回と比較して下回っていた値が事後調査での結果では第1回を上回ることから、第2回の能力開発に効果が推察される。ソシオグラムおよび貢献度比較の結果と関連付けてみると、第1回は事業部長中心で事業部内の関係性は濃密であったものの、責任者と責任者以外の心理的な距離が遠く、相対的に責任者以外の能力開発は低い傾向であった。第2回は社長中心で事業部内の関係性は希薄であったものの、責任者の権限移譲がすすめられ責任者と責任者以外の心理的な距離が近くなつたことから、責任者以外の動機付けにつながり能力開発に効果があつたと示唆される。

9.6 まとめ

ソシオメトリック構造について、プログラム終了後に分析を行つた。分析として第1に、第1回と第2回の自分以外の受講者全員の貢献度について第1順位について評価結果の分析を行つた。結果として、第1回の実施では各事業部の事業部長を中心に凝集する傾向が示され、第2回では社長にのみ凝集する傾向が示唆された。第2回の実施では、第1回で明らかとなつた事業部間での対人距離と相互作用抵抗の関係が改善されたものの、組織構造として設計した各事業部は事業部長を中心に凝集し、事業部長は副社長に凝集するには至らず、今後の課題となる。第2に、評価結果を「責任者」と「責任者以外」の群に分け分析を行つた。結果として、第1回は、「責任者」と「責任者以外」の貢献度の差が大きく、役割として心理的な格差が大きい一方で、第2回はその差が小さいことが明らかになつた。第3に、マネジリアル・グリッド理論に基づく比較評価として、第1回は、妥協型リーダーの「5・5型」第2回は「1・9型」と推察される。ブレイクとムートンによると「9・9型」がもっとも理想なリーダーシップ類型だと考えられていることから、次の課題となる。最後にソシオメトリック構造と就業力の関連評価として、繰り返しのある分散分析を行つたところ有意でなかつたため、弱い判断となるが、就業力の成長は、第1回と比較して第2回が上回る。当初設計したソシオメトリック構造とはならなかつたものの、プログラムの改善により、第2回の能力開発に効果があつたと推察できる。

10 催事販売プログラムの検証

10.1 催事販売プログラム・レビュー調査

催事販売プログラムの検証と改善を目的に、受講者の一部に対してプログラム終了後に、「就業力」の成長と、事業部の組織化の種類を明らかにするために、「チーム」と「組織におけるコミュニケーション」について、に関するアンケートと聞き取り調査を実施した。具体的に第1回・第2回プログラム、2013年11月30日にプログラムの補助者(男1名)、第1回は平成25年12月4日に責任者(女2名)、第2回の聞き取り調査は平成25年12月9日に責任者(男3名、女1名)、責任者以外(女2名)に対して実施した。

10.2 就業力の項目別・レビュー調査

事前・事後調査で実施した就業力の評価結果から、プラス成長だけでなくマイナス成長があることも明らかになった。受講者がプラス成長およびマイナス成長を実感した経験を特定することで、プラスとなった経験を重点的にプログラムに組み込むとともにマイナスとなった経験を改善することで、より効果的なプログラムの設計が可能となる。表10.1.1は、受講者が、就業力のA文書作成能力のレビュー調査結果に基づき、5項目の評価結果について、プラスおよびマイナスの成長を感じた経験のサンプルを示したものである。その特徴として、責任者は責任者以外の意見を取りまとめ議事録やプレゼン資料など目標達成に向け試行錯誤した経験に成長を実感している。また、マイナス成長では、文書作成を定型のフォーマットに沿って作成したりなど、熟考する過程が含まれていないことが示唆できる。また、責任者以外については、個別の役割で作成する内容などが、所属する事業部でその意見が採用されたことにプラスの成長を実感している。また、マイナス成長では、主張が通らない。または、その環境になかったと推察できる。

表10.1.1 就業力の項目別・レビューサンプル
(A文書作成能力) .

A要点メモ力「責任者」の+(-)成長サンプル 議事録、各種資料作成 保健所に行って聞いた話をまとめた (メモしないこともあった)	A要点メモ力「責任者以外」の+(-)成長サンプル あ店の人がテスト?のようなものをしてきたとき
A記録作成力「責任者」の+(-)成長サンプル 議事録を作り、何をしなくてはいけないか考えた 議事録作成 (メモの内容が事実かどうか確認しなかった)	A記録作成力「責任者以外」の+(-)成長サンプル 話し合いの内容をまとめ見直すという作業を通じて 議事録作成
A文意把握力「責任者」のプラス成長サンプル 各事業部の資料から状況を把握したこと 議事録を読む (資料のナナ読み)	A文意把握力「責任者以外」の+(-)成長サンプル レジュメを見て話し合った
A文章構成力「責任者」の+(-)成長サンプル 議事録作成 中間発表・最終プレゼン・会議の発表、連絡 (テンプレ通りに書いた)	A文章構成力「責任者以外」の+(-)成長サンプル 自分の意見を文面で伝えた時 販売のためのPOPづくり
A文章力「責任者」の+(-)成長サンプル ※ナババでのやり取り (型にはまつ返答) ※クラウド型教育 支援システム	A文章力「責任者以外」の+(-)成長サンプル グループミーティング後の話し合い (相手の考えに対して自分の意見を言ったら批判だと言われた)

表10.1.2は、受講者が、就業力のB情報収集・分析・発信力のレビュー調査結果に基づき、8項目の評価結果について、プラスおよびマイナスの成長を感じた経験のサンプルを示したものである。その特徴として、責任者は情報収集のために商店街まで直接聞きに行くことや、インターネットや本で調べながら企画を組み立て、責任者以外の状況を考慮しながら同意を得てすすめる経験に成長を実感している。また、マイナスの成長では、責任者以外に知りえた情報を伝達する工程を簡略化したことである。結果として、責任者以外に伝えるべき情報が伝わらなかったのではないかと示唆できる。責任者以外については、個別の役割で作

成する内容などが、所属する事業部でその意見が採用されたことにプラスの成長を感じている。また、マイナスの成長について、情報収集は責任者が影響力のある部分を担うため、責任者以外の役割は少なく、具体的な経験に至らなかったことが示唆される。

表 10.1.2 就業力の項目別・レビューサンプル
(B情報収集・分析・発信力).

B情報源把握力「責任者」の+(-)成長サンプル+CB28.C5 B情報源把握力「責任者以外」の+(-)成長サンプル 議事録、株主総会資料の作成 商店街まで足を運んで直接聞きに行った (探さないで人に聞く)	チラシ作成時
B仮説構築力「責任者」の+(-)成長サンプル 事業にコメントし、部長に説明する。 わからぬことがあったときはインターネットや本で調べた (ネットに頼りました)	B仮説構築力「責任者以外」の+(-)成長サンプル
B信頼関係構築力「責任者」の+(-)成長サンプル インターネット以外の時間に話したり食事に行ったりした プレゼン資料作成 (各事業部に自分が関わるうどすることができなかった)	B信頼関係構築力「責任者以外」の+(-)成長サンプル 事業部内で自分の考えをすべて伝えることができた 何回も合う事によって
B資料批判力「責任者」の+(-)成長サンプル 他のサイトと比較した 他の人にも確認した (プレゼン資料のソースを確認しなかった)	B資料批判力「責任者以外」の+(-)成長サンプル 販売するときの商品説明 他の人にも確認した
B取扱選択力「責任者」のプラス(マイナス)成長サンプル 資料を作るときに色々なサイトを比較した (プレゼン資料のソースを確認しなかった)	B取扱選択力「責任者以外」の+(-)成長サンプル ポスター作成時、予想した客層に合わせた雰囲気のものにした
B対象者確定力「責任者」の+(-)成長サンプル 人に合わせてメッセージを変えた 相手の状況を考慮しつつ伝える方法を考える機会は多かった (ビビで伝える時もあった)	B対象者確定力「責任者以外」の+(-)成長サンプル お店の人と仲良くなって情報を聞き出したとき
B情報媒体選択力「責任者」の+(-)成長サンプル 相手の状況を考慮しつつ伝える方法を考える機会は多かった (Lineの全体送信ですませてしまう事が多かった)	B情報媒体選択力「責任者以外」の+(-)成長サンプル
B情報伝達力「責任者」の+(-)成長サンプル 言い方や書き方を思考錯誤した 相手の状況を考慮しつつ伝える方法を考える機会は多かった (個人個人へのアプローチが足りなかった)	B情報伝達力「責任者以外」の+(-)成長サンプル

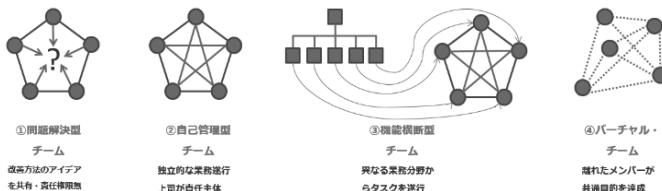

表 10.1.3 は、受講者が、就業力のC状況判断・行動力のレビュー調査結果に基づき、6項目の評価結果について、プラスおよびマイナスの成長を感じた経験のサンプルを示したものである。その特徴として、責任者は、責任者以外の協力を得ながら問題解決するために考え方行動に移す過程に成長を感じ、意思に反して行動に移せない状況にマイナスの成長を感じている。また、責任者以外は、困難を克服していく過程にプラスの成長、諦めてしまった場合にマイナスの成長を感じていることが推察される。

表 10.1.3 就業力の項目別・レビューサンプル
(C状況判断・行動力).

C状況判断力「責任者」の+(-)成長サンプル 会議の運営 保健所で言われたことを自分なりにまとめた (見ていただけのこともあった)	C状況判断力「責任者以外」の+(-)成長サンプル 販売直前になって計画が実施できないとわかったとき 理不尽なことをと言われて対応したとき
C状況対応力「責任者」の+(-)成長サンプル 会議中の自分の役割、板書 (見ていただけのこともあった)	C状況対応力「責任者以外」の+(-)成長サンプル 販売直前になって計画が実施できないとわかったとき 保健所に飲食を止められたとき
C自己変革力「責任者」の+(-)成長サンプル どうすればもっと全体が機能するかを考えた 大学の関係者に要望を伝えた (行動で移せなかった)	C自己変革力「責任者」の+(-)成長サンプル お茶を入れる練習を何度も行った 商品をより良くするとき
C環境変革力「責任者」の+(-)成長サンプル (環境を変えようとはしなかった)	C環境変革力「責任者以外」の+(-)成長サンプル (悪いという現状を認めてしまった)
C説得力「責任者」の+(-)成長サンプル なぜ自分がもう考えのかを伝えた Lineでの時までチャット (困り事を他の人に共有しなかった)	C説得力「責任者」の+(-)成長サンプル 本心を言い合った時、「けんか? したとき (悪いという現状を認めてしまった)
C共同行動力「責任者」の+(-)成長サンプル 各役員に必要だと思ったことを伝えた 飲み会を多く開きコミュニケーションをとった (飲み会が好きではないメンバーへの配慮が足りなかった)	C共同行動力「責任者以外」の+(-)成長サンプル (悪いことばかり指摘して良い状態になるよう勧めなかった)

10.3 チーム・レビュー調査

図10.1は、今回のチームの種類としてあげる代表的な4つのチームのイメージを示している。チームとは、達成すべき目標、そのためのアプローチを共有し、連帯責任を果たせる補完的なスキルを備えた少人数の集合体であり、成功するチームや業績の高いチームには、一定の共通した特徴があるといわれている。そこで、催事販売プログラムの終了後に、第1回と第2回のチームの種類がどのタイプであったかを明らかにするために、就業力の項目別・レビュー調査と同様に、対象者にアンケート調査と聞き取り調査を行った。①問題解決型の特徴は、改善方法のアイデアを共有・責任権限は無い。②自己管理型は、独立的な業務遂行で上司が責任主体である。③機能横断型は、異なる業務分野からタスクを遂行している。最後に④バーチャル・チームは、離れたメンバーが共通目的を達成することを特徴としている。

出所：『組織行動のマネジメント』ダイヤモンド社、(2009)

図10.1 チームの4つのタイプ.

図10.2は、第1回の受講者3名に実施したチームのタイプのアンケート結果をもとにその割合を示している。円グラフの■の部分は①問題解決型、■の部分は②自己管理型、■の部分は③機能横断型、最後に■の部分は、④バーチャル・チームである。

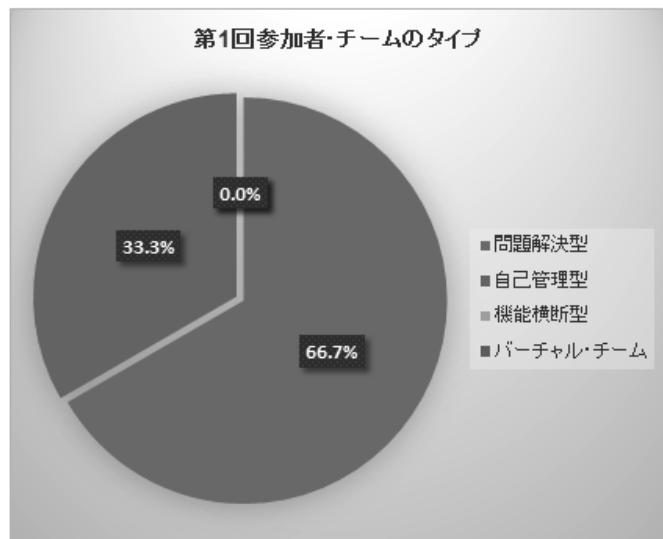


図10.2 チームのタイプ調査結果（第1回講座）.

図10.3は、第2回の受講者7名に実施したチームのタイプのアンケート結果をもとにその割合を示している。円グラフの■の部分は①問題解決型、■の部分は②自己管理型、■の部分は③機能横断型、最後に■の部分は、④バーチャル・チームである。第1回と第2回を比較すると、第1回は、その割合から①問題解決型の傾向であり、第2回は、②自己管理型の傾向であることが示唆された。傾向が変化した理由について、第1回は、事業部単位の取り組みが中心で、チームワークが強化された一方で、当初の設計していたマトリクス組織の機能しなかったため、第2回は、その機能を強化したことから、マトリクス組織の評価項目である③機能横断型の割合が高まったと推察される。

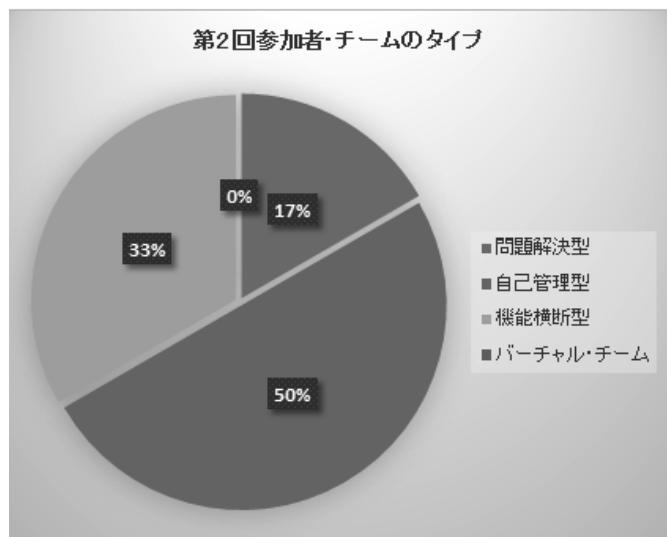


図10.3 チームのタイプ調査結果（第2回講座）.

10.4 コミュニケーション・レビュー調査

催事販売プログラムの第1回の4事業部と、第2回の5事業部の組織におけるコミュニケーションの特徴的な3つの形について、受講者的一部からレビュー調査を行った。図10.4は、コミュニケーションのイメージを示している。速さの低い順番に「遅」「中」「速」程度の低い順番に「低」「中」「高」としている。⑤鎖型の特徴は、各項目の迅速さを迅速さ「中」正確さ「高」リーダー存在感「中」メンバー満足度「中」⑥輪型は、各項目の迅速さを迅速さ「速」正確さ「高」リーダー存在感「高」メンバー満足度「低」。最後に⑦全経路は「速」「中」「なし」としている。

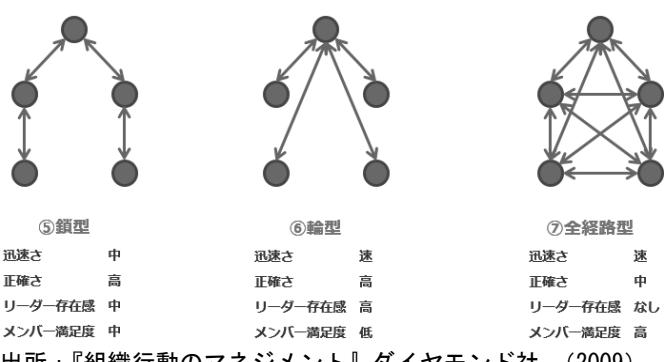


図 10.4 小集団ネットワークの3つの型。

図10.5は、第1回の受講者3名および第2回の受講者7名に実施したチームのタイプのアンケート結果をもとにその割合を示している。円グラフの■の部分は⑤鎖型、■の部分は⑥輪型、最後に■の部分は、⑦全経路である。

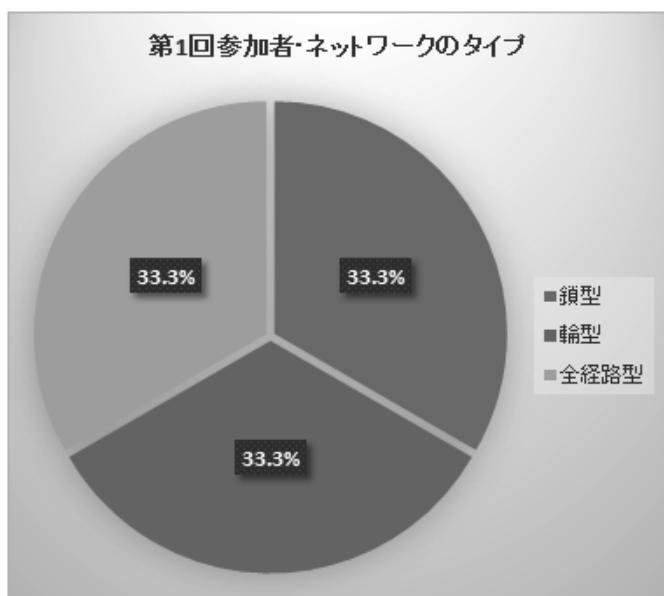


図 10.5 第1回ネットワークのタイプ調査結果。

図10.6は、第2回の受講者7名に実施したチームのタイプのアンケート結果をもとにその割合を示している。第1回と第2回を比較すると、第1回は、⑤鎖型、⑥輪型、⑦全経路が混在していたのに対して、第2回は、⑦全経路の傾向が示唆された。組織の設計では、⑦全経路で第1回は、機能しなかったものの、第2回は、その機能を強化したことから、その割合が高まったものと示唆される。

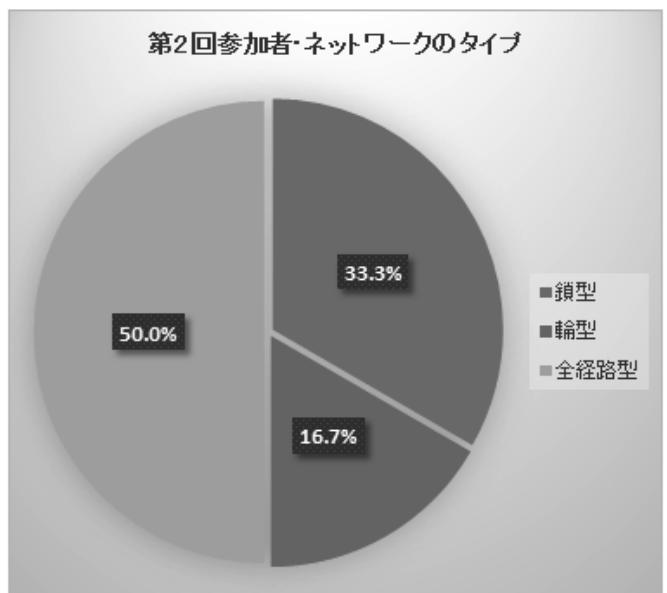


図 10.6 第2回ネットワークのタイプ調査結果。

10.6 まとめ

催事販売プログラムの検証として、受講者的一部にレビュー調査を行った。まず、就業力の項目別にプラスおよびマイナスの経験から就業力の成長には、目標達成に向け試行錯誤した経験に成長を実感している。また、マイナス成長では、熟考する過程が含まれていないことが示唆された。次に、事業部の組織化の種類を明らかにするために、「チーム」と「組織におけるコミュニケーション」について、レビュー調査を行った。第1回は、事業部単位の取り組みが中心で、チームワークが強化された一方で、当初の設計していたマトリクス組織が機能しなかったため、第2回は、その機能を強化したことから、マトリクス組織の評価項目である③機能横断型の割合が高まったことを示唆している。「組織におけるコミュニケーション」のアンケート結果については、第1回が事業部単位でのまとまりが強かったことに比較して第2回では、チームのタイプでは、機能横断型、ネットワークのタイプでは、全経路型の割合が高くなり、全体のまとまりが強かつたことを示唆している。

11 今後の展望

11.1 研究の展望

大学生の志向を把握し、その志向に合うプログラムとして、学習型ではなく参加型でどの業界・業種でも共通に必要な力である就業力の育成についての知見を提案できるような体制をとる。大学生側の納得感も重視する。今後のプログラム実施に際しては、課題に対する実施方法の見直しをおこない、効果的なプログラムの開発を継続していく必要があると考える。

11.2 まとめ

以上、今回で実施した催事販売プログラムの課題をもとに本研究では、PBLにおける催事販売プログラムを実施し、就業力を構成する19項目を分析した結果、改善・向上することが明らかになった。大学教育は、働くようになって必要とされる能力の育成に、これまで貢献してきたし、これからも貢献し続けることができる。この基本認識を出発点とした催事販売プログラムの効果として、参加した学生は、仮説をたてて情報収集、企画、実践、そして検証という一連のプロセスを経験し、就業力の成長を実感することができたといえる。就業力の課題としては主体者である本人の成長意欲を高める方法である。「責任者」と「男子学生」については、顕著な開発効果が認められた一方で、受講者の多数を占める「責任者以外(71%)」と「女子学生(65%)」の開発効果が低く、PBLとして期待された情報収集や行動の能力開発が極めて低かったことから、本人の意欲を高める改善の必要が示唆された。また、ソシオメトリック構造の検証については、第1回と第2回の結果として、就業力の能力開発が改善されたものの、この考察がどの程度一般性をもつか不明であるため、就業力の開発と貢献度の順位評価の有意性を検証するために、更なる事例研究の必要性が示唆された。

参考文献

- 1) 橋口耕一. KHCoder. (Ver. 2. Beta. 30c, 2013)
<http://khc.sourceforge.net/>
- 2) John Dewey (1916). Democracy and Education: an introduction to the philosophy of education,
- 3) 宮原誠一, (1957). 学校と社会. 岩波書店.
角方正幸, 松村直樹, 平田史昭 (2010). 『就業力育成論』.
- 4) 経済産業省「社会人基礎力」育成のススメ.
- 5) 小杉礼子 (2010). 若者と初期キャリア. ミネルヴァ書房 (pp. 135-136).
- 6) 厚生労働省 (2005). インターンシップ推進のための調査研究委員会報告書の取りまとめ.
- 7) 文部科学省 (2012). 首都圏に立地する大学における産業界のニーズに対応した教育改善.
- 8) 村木あずさ・川野真志・高木信人・澤井駿・松田勇介・吉村祐美 (2011). 福行支援から検証する経営学の理論と実践. 日本経営工学会平成23年度秋季研究大会予稿集 (pp. 308-309)
- 9) 村松俊明 (2013). 催事販売プログラムによる学生の就業力測定の試み. 日本コミュニティ心理学会第16回大会プログラム発表論文集 (pp. 122-123).
- 10) 村松俊明 (2013). 产学連携による人材育成プログラムの評価. 経営行動科学学会第16回大会プログラム・発表論文集 (pp. 217-222).
- 11) 西崎雅仁・村松俊明 (2011). 経営体験によるポータブルスキルの開発に関する検証. 日本経営工学会平成23年度秋季研究大会予稿集 (pp. 126-127).
- 12) 岡本祐子 (2002). アイデンティティ生涯発達論の射程. ミネルヴァ書房 (pp. 248).
- 13) P・ハーシー・K・H・ブランチャード共著 (1998). 行動科学の展開. 生産性出版.
- 14) 労働政策研究・研修機構鈴木誠 (2007). 相互利益かゼロサムか? アメリカ航空業における労使関係と企業パフォーマンス. 論文Today.
- 15) 就職システム研究会 (2000). S P I 問題. 池田書店.
- 16) 安田節之・渡辺直登 (編著) (2011). プログラム評価研究の方法. 新曜社.

本研究は、文部科学省・平成24年度「産業界のニーズに対応した教育改善・充実体制整備事業」の実施内容をまとめたものである。

実践体験型 PBL による就業力育成の試み

Attempt to acquire managerial capabilities by Problem-Based Learning

村松俊明* 西崎雅仁**

Toshiaki Muramatsu, Masahito Nishizaki

Summary

The purpose of this article is to acquire managerial capabilities necessary for University students from the viewpoint of career education. In this class, they set up the virtual-company, and experience market research, the forming of a business plan, purchase of goods, sales activities, closing of accounts. It is possible for them to improve presentation capabilities through a lot of experience of the presentation including the announcement of a business plan and the result. Finally, we verify the effect of this class by conducting one-group pretest-posttest design and questionnaire survey.

キーワード：問題解決型学習、経営能力

Keywords : Problem-Based Learning, managerial capabiliteis

1. はじめに

大学は全入学の時代を迎え、これまで以上に自立的でない学生が入学する一方で、社会、経済の高度化に対応できる自立的な人材に対する社会的要請は高まっており、入学した学生の教育と卒業後のキャリア教育が課題となっている。本来、大学は大学生自身が興味を持っている分野を勉強する場所であって、大学生が卒業後自らの素質を向上させ、社会的・職業的自立を図るために必要な能力である就業力と大学の勉強が直結し、大学での学びを高めることができれば望ましい。大学生には、大学で得た知識を知恵にかえる機会を提供し、そのつながりを実感することができれば、大学で十分に身に付けられるものであり大学時代が意義のあるものになるはずである。そこで、多様な大学生が大学の勉強のつながりを実感し職業意識やキャリアに関わる意識を高めることを目的として 2015 年度「企業と社会 1」では、就業力の育成を支援する PBL を取り入れた授

業をおこない、就業力、性格適性検査、から得られた結果について分析・評価をおこなった。

2. 就業力の定義と概念

2.1 就業力の定義

就業力とは、「働くために必要とされる力」であって「就職する力」ではない。つまり、大学生が自分に合った仕事を見つける能力をいう。2010 年 2 月に改正され、2011 年度から施行された大学設置基準では、「大学生が卒業後自らの素質を向上させ、社会的・職業的自立を図るために必要な能力」を就業力と定義している。文部科学省は、大学にキャリア教育の実施を義務づけており 2010 年から 2014 年度までの 5 年間を大学生・大学院生の「就業力」向上の重点期間と位置づけ、キャリア教育に積極的な大学・短大の取り組みを財政支援している。就業力の指標は、「文書作成力」「情報収集・分析・発信力」「状況判断・行動力」の 3 つからとらえた法政

* 大同大学 情報学部 総合情報学科 経営情報専攻

** 大同大学 情報学部 総合情報学科 経営情報専攻

大学の定義を使用する。大学教育は、就業力養成にこれまで貢献してきたし、これからも貢献できる。PBLの仕組みが有効となる。

2.2 就業力の概念

働く上で必要とされる能力である就業力を重層的にとらえることで取り組むべき課題が見えてくる。図1は、就業力の概念を示している。上の専門知識になるほど、見えやすい能力であり教育プログラムで育成しやすく、必要によって入れ替えも可能な能力である。他方、下になるほど、幼児期からの生活の積み重ねの中で育成されるもので、変化しにくいものである。この中段にある「能力・行動様式」レベルの能力がコンピテンシーであり、就業力である。この能力は教育を通じて形成・変容されうるが、知識ほどには可変的でないため、不斷に形成していく必要がある。SPI性格適性検査については、物事に対する姿勢から得られる性格適性検査のデータを参考に、講義内容を大学生の状況に合わせることが可能となる。

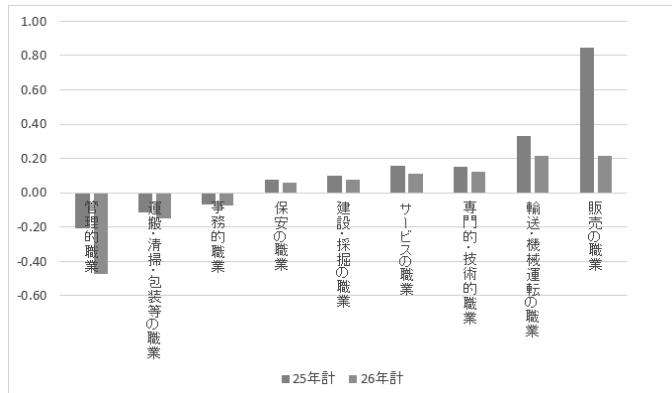

出所：法政大学「就業力」GP推進プロジェクト・藤村博之『就業力を構成する要素』をもとに作成

図1 就業力の概念図。

3 ビジネス業種の選定

図2は職業別有効求人数から有効求職者数を引いた差の対就職者比率である。事業の選定に際して、「販売の職業」の業種を選択した。供給超過の傾向は、「管理的職業」「運搬・清掃・梱包等の職業」「事務的職業」となっている。このような業種は人気が高いが競争を勝ち抜くことのできる一部の人間が対象となるため、今回の講義については、特定の層を対象とした、また、日常生活に密着した馴染みやすいテーマに絞り、販売を通じて一連のビジネスの流れを把握することが可能になる。具体的に、情報技術の進展と高

等教育をうけITリテラシーの向上により業務の質についても二極化の進行がすすみ、専門知識や専門的技能を要するいわゆる「高スキル」業務と同時に、特別な専門知識や技能は必要としない「低スキル」業務のうち、機械化されにくい手仕事の業務も増え、逆に中間的な業務が減少している。このような現状で供給超過である職業よりも、需要超過である「販売の職業」を対象としたプログラムが競争を回避する上で、有効である。

出所：厚生労働省『職業安定業務統計』をもとに作成

図2 職業別有効求人数から有効求職者数を引いた差の対就職者比率（平成25年、26年）。

4 講義内容

講義は、共通課題としてテントハウスメーカーの企業協力を得てテント生地を使用した商品企画をおこなった。学生の提案する商品がビジネスとして実現可能な内容に近づけるために適宜解説をおこない受講者に共通の理解を深めた。次に、個別課題として、仕入れは1,000円の自己資金を上限としたビジネスプランを作成し受講者間での販売を実行し最終的に試算表を用いて「利益=売上-費用」の評価をおこなった。受講者には1円以上の利益を生み出すために知恵を絞る。情報収集し実際に汗をかき行動し、実現に向けた取り組みをおこなう。実行をともなわない壮大なビジネスプランの作成よりも、自己資金を用いて、小さくとも企画から販売までやり遂げて、その結果を検証することに価値がある。

4.1 科目の概要

授業では、ビジネスの企画、実行、検証を通じて能力の開発をおこなう。教員は、履修者のプランを実施に導くアドバイスに留め、履修者が主体となり自己選択、自己決定を原則として白いキャンバスに、自由な発想でプランを思い描き、活動をビジネスに見立てて

ビジネスプランを作成し、実行する。検証は、「利益=売上-費用」を項目について試算表の作成をおこなう。実施にあたって仕入れは1,000円を上限に自己資金を用いて実現に向けた取り組みをおこなう。1円以上の利益を生み出すために知恵を絞り、情報収集し、実際に汗をかき行動し、実行をともなわない壮大な企画よりも、自己資金を用いて、小さくとも最後までやり遂げることに価値がある。上記の内容をもとに、ビジネスプランを作成し、実行する。検証は、「利益=売上-費用」を項目について試算表を作成した。

4.2 対象者

2015年度「企業と社会1」月曜5時限、総合情報学科1年51名、2年4名の計55名（男子48名、女子7名）である。

4.3 授業期間

2015年度前期（2015年4月から同年7月）

4.4 授業の内容

- [1]オリエンテーション、事前アンケート作成
- [2]自分自身の適性から強みを知る。
- [3]市場調査・ビジネスプラン作成の解説
- [4]市場調査・ビジネスプラン作成1
- [5]市場調査・ビジネスプラン作成2
- [6]ビジネスプランの中間発表
- [7]市場調査・ビジネスプラン作成3
- [8]市場調査・ビジネスプラン作成4
- [9]ビジネスプランの発表
- [10]ビジネスプラン実施日
- [11]ビジネスプラン実施予備日、試算表作成1
- [12]ビジネスプラン実施予備日、試算表作成2
- [13]ビジネス体験発表
- [14]授業のまとめ・事後アンケート作成
- [15]授業の総括
- [16]期末試験

4.5 学習到達目標

- [1]個人としてビジネスを最後までやり上げることができる
- [2]ビジネスにおける「三方良し」を説明できる。
- [3]ビジネス実施後に試算表が作成できる。
- [4]プレゼンテーションで自分のビジネスプランを説明できる。

4.6 成績評価の方法

毎回、講義の後に提出する感想（事前、事後）30%
受講者によるビジネスの相互評価 50%

期末試験 20% の総合評価

5 調査方法

第1回の講義に受講生に対して事前の就業力調査と性格適性検査、最終講義に事後調査を実施した。

5.1 就業力調査

表1に示す就業力を構成する尺度は3つある。A文書作成力（以下「A文書作成力」）、B情報収集・分析・発信力（以下「B情報力」）、C状況判断・行動力（以下「C判断・行動力」）を構成する。下位項目は、それぞれ5、8、6の合計19項目を指標とした。調査票は、プログラムの参加者に対して2回実施した。表2に示す19の能力項目の右側に評点値を記入する空欄をもうけ、プログラムの実施前と実施後にわけて回答を求める。回答方法は5件法「1. 出来ない、2. なかなか出来ない、3. 内容により出来る、4. いつも出来る、5. 積極的にできる」により数値化した。

表1 就業力の分類。

尺度	項目	内容
A 文書作成力	要点メモ力	話を聴きながら要点をメモする。
	記録作成力	メモをもとに記録を作成する。
	文意把握力	文章を読んで要点を把握する。
	文章構成力	読み手に伝わる論理構成を考える。
	文章力	他人の考えを踏まえて、自分の考えを文章で表現する。
B 情報収集・分析・発信力	情報源把握力	必要な情報がどこにあるかを知る。
	情報収集法（仮説構築力）	情報収集のためには、どのような情報が必要かを判断する基準を持たなければならぬ。
	情報収集法（信頼関係構築力）	情報をすくい取る網をつくる。 大切な情報は人の中にある。「この人になら話してもいいかな」と思ってもらうには、その人の信頼関係が基礎になる。
	情報価値判断力（資料批判力）	資料の出所がどれだけ信頼できるところか、周囲の状況からどれほど信頼に足る情報かを見分ける。
	情報価値判断力（取扱選択力）	インターネット上の情報は玉石混淆である。 いいものとそうでないものを見分ける目を持っていないと、誤った情報に振り回されることになる。
	情報価値判断力（対象者確定力）	誰に対して、どのような情報を発信するのかを決めらる。 対象者によって、伝えるべき情報の内容が異なるはずである。
	情報価値判断力（情報媒体選択力）	対象者に合わせて情報媒体を選ぶ。
	情報価値判断力（情報伝達力）	情報の受け手に合わせて、発信する情報の構成を変える。 伝えたい人に伝えたいことが伝わる方法を体得する。
	状況判断力	いつもとは違う状況になったとき、あわてるこなく、何が起こっているのかを見極める。
	状況対応力	状況を見極めた上で、るべき行動を決めて動く。
C 状況判断・行動力	行動力（自己変革力）	現状に満足するのではなく、常に良い状態を求めて自らを変えていく。
	行動力（環境変革力）	より良い状態に近づけるために、必要に応じて環境も変える。
	行動力（説得力）	自分の意見を他人にわかってもらい、ともに行動する仲間をつくる。
	行動力（共同行動力）	他の人を巻き込んで、より良い状態を実現するために行動する。

出所：法政大学「就業力」GP推進プロジェクト・藤村博之
『就業力を構成する要素』をもとに作成

5.2 性格適性検査

SPIはSynthetic Personality Inventoryの略であ

り、リクルートマネジメントソリューションズが提供する適性検査である。能力適性検査と性格適性検査の2つから構成された総合的な人事適性検査である。マーケシート方式によるSPI性格適性検査144問を実施した。

6 就業力分析と考察

図3は個人の最終課題である受講者内で販売を実施後の利益実績である。縦軸は利益額、横軸は受講者の人数を示している。販売結果から販売に参加した受講者40名中1名は、売上原価が売上を上回ったものの、39名が利益を上げ、受講者間で個人が得られた利益額合計は10,270円であった。なお、販売時間は30分あつたことから、平均利益額は257円、60分では514円となる。2014年1月現在の名古屋市における最低賃金は、800円であることから、最低賃金と60分あたりの平均利益額514円を比較するとマイナス286円となった。

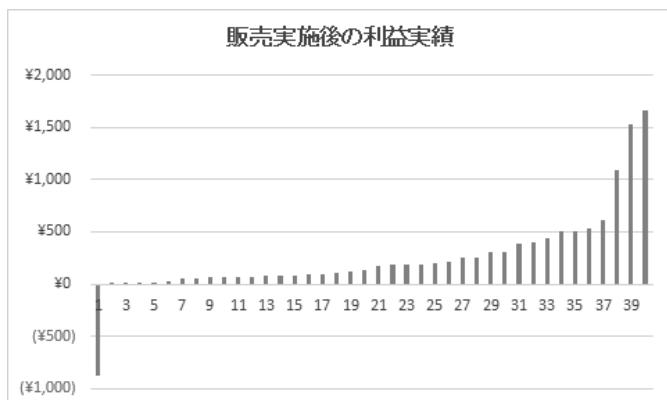


図3 販売実施後の利益実績。

図4は講義の介入効果の評価結果を就業力の尺度ごとに示したものである。利益を1,000円以上あげた受講者が3名を利益上位者3名、上位以外受講者36名の具体的に利益上位3名とは、売上総利益が受講者で相対的に上位となった3名（以下「利益上位者」）の就業力の結果と上位者を除く受講者36名（以下「上位者以外」）である。列は5段階の自己判定による評定尺度、行は事前および事後調査の結果を示している。母集団について平均値に有意差があるかどうかを調べる方法として、繰り返しのある分散分析をおこなった結果、「A文書作成力」、「B情報力」および「C判断・行動力」に有意差は認められなかったことから、その作用は弱いものであると判断される。図3に講義の介入による能力開発の効果を示した。尺度別に、A文書作成力について、「利益上位者」は「上位者以外」と比較して、自己判定結果が高いものの報告書な

どの作成により、その能力が同様な傾向で開発されたことがうかがえる。B情報力は両者ともに同様の傾向である。C判断・行動力は、「利益上位者」は「利益上位者以外」と比較して、能力開発がすすんだことが読み取れる。

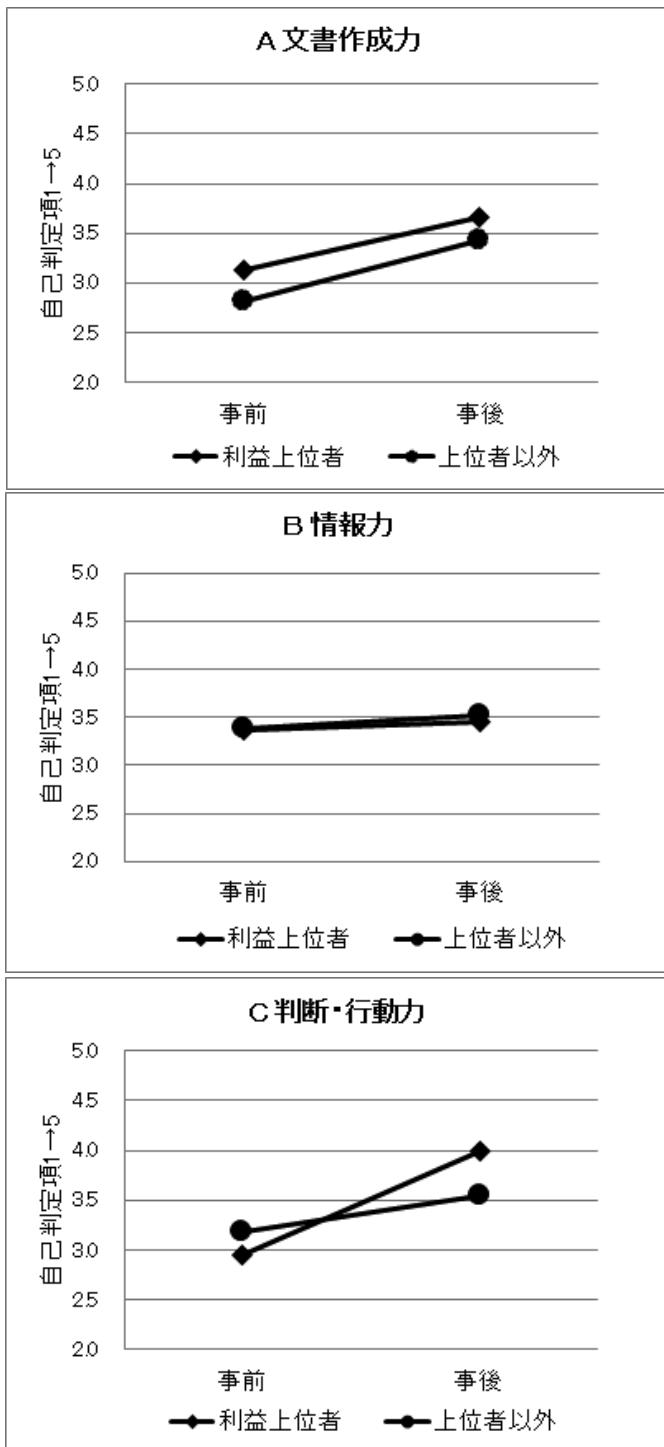


図4 プログラムの介入効果の評価結果。

6.2 就業力開発の特徴

表2は、受講者の就業力開発の特徴を示したものである。列の左側は就業力の能力要素、右側に向かって事前調査及び事後調査の平均値、()内は標準偏差の値、表中に□で囲んである右側は、事後調査から事前調査の平均値の差を降順に配列している。行の数値は、就業力の自己診断による能力項目の平均値で、表中の右横にある (*p<0.05) および (**p<0.01) は、その差が統計的に有意であることを示している。「平均値の差が顕著（表中※※印）である能力要素は、A文書作成力を構成する「文章力」、「文章構成力」および「文意把握力」があり「A文書作成力」に開発効果が明らかとなった。

表2 就業力開発の特徴。

尺度・能力項目	事前調査	事後調査	差
順位			
1 A: 文章力	2.54 (0.84)	3.44 (0.87)	0.90 ***
2 A: 文章構成力	2.62 (0.77)	3.44 (0.87)	0.82 ***
3 A: 文意把握力	2.97 (0.86)	3.69 (0.72)	0.72 ***
4 C: 説得力	3.18 (1.08)	3.72 (0.78)	0.54 *
5 C: 共同行動力	3.08 (1.10)	3.59 (0.74)	0.51 *
6 C: 自己変革力	3.15 (0.89)	3.62 (0.77)	0.46 *
7 C: 状況対応力	3.18 (0.93)	3.62 (0.70)	0.44 *
8 C: 環境変革力	3.21 (0.97)	3.59 (0.54)	0.38 *
9 A: 要点メモ力	3.03 (0.80)	3.36 (0.89)	0.33
10 B: 資料批判力	3.18 (0.90)	3.46 (0.67)	0.28
11 B: 情報源把握力	3.33 (0.83)	3.62 (0.80)	0.28
12 A: 記録作成力	3.05 (0.78)	3.31 (0.82)	0.26
13 C: 状況判断力	3.18 (0.93)	3.41 (0.87)	0.23
14 B: 情報伝達力	3.18 (0.93)	3.38 (0.62)	0.21
15 B: 仮説構築力	3.21 (0.82)	3.38 (0.70)	0.18
16 B: 対象者確定力	3.46 (0.71)	3.62 (0.80)	0.15
17 B: 信頼関係構築力	3.62 (0.87)	3.74 (0.84)	0.13
18 B: 情報媒体選択力	3.49 (0.87)	3.54 (0.78)	0.05
19 B: 取捨選択力	3.41 (0.90)	3.44 (0.74)	0.03

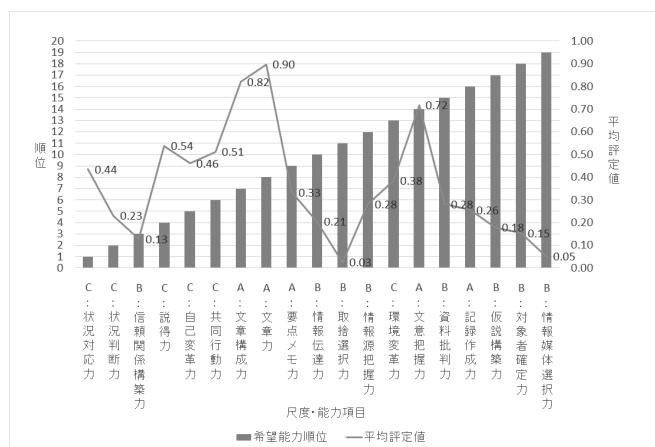
数字は平均評定値、()内はSD *P<.05 **P<.01

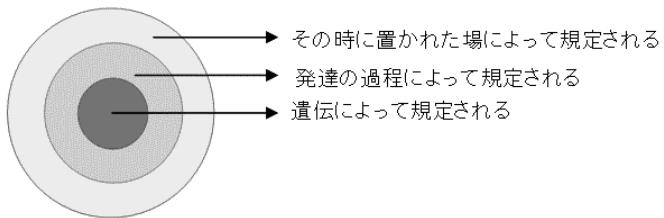
図5は、表2の特徴を図示したものである。縦軸は、事後調査から事前調査の平均値の差、横軸はA文書作成力、B情報力、C判断・行動力の能力尺度と19の能力要素を示している。表2と同様の内容となるが、A文書作成力について、開発効果が高いことを読み取れる。

図5 就業力開発の特徴。

6.3 就業力開発の希望と現実

図6は、受講者の就業力開発として希望する能力と開発結果を示している。列の左側は能力項目の希望順位は棒グラフに対応している。左下の能力要素の状況対応力は受講生が開発を希望順位が1位を示し、右側に向かって順位が高くなっている。右側にある平均評定値は、就業力の事前・事後調査の平均値の差で折れ線グラフに対応している。特徴として受講者の就業力開発の希望順位は、C判断・行動力、A文書作成力、B情報力で、開発結果は、A文書作成力、C判断・行動力、B情報力である。特徴としては、C判断・行動力の能力開発を希望しているものの、開発効果は実感できていない。A文書作成力は、開発効果が相対的に実感しやすい。B情報力は、相対的に能力開発希望は低く、効果が実感できていないことが読み取れる。




図6 就業力開発の希望と結果。

7 性格適性検査の評価尺度

受講者にプログラム開始前に実施し分析をおこなった。分析の評価尺度として、職務適応性である第一部は、社会的内向性、内省性、身体活動性、持続性、慎重性、達成意欲、活動意欲、敏感性、自責性、気分性、独自性、自信性、高揚性、の適応性の10つの尺度で評価している。また、性格類型である第二部は、性格類型で、興味関心の方向、ものの見方、判断のしかた、環境への接しかた、についての4つの尺度で評価している。

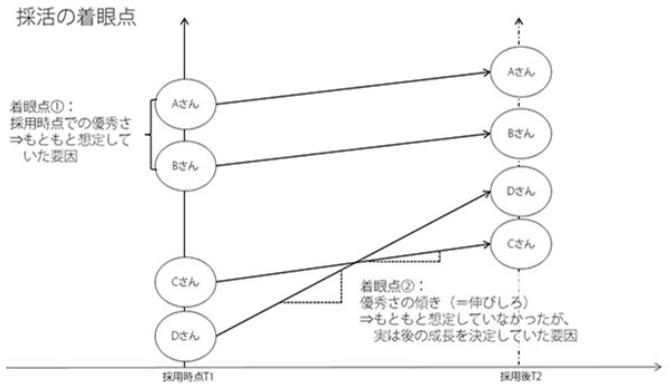

7.1 パーソナリティの構造

図7は、パーソナリティの構造について現したものである。人間の性格は層をなしていると考えられており、中心となる核には生理的なものと密接な関係にある遺伝的な層、次に発達の過程で形成された層、そして一番外側の層には現在置かれている状況によって規定される行動傾向の層がある。就業力育成を目的とした授業計画をたてるにあたって、性格適性検査を参考に受講生の傾向をとらえることで、教育効果を高めることができるとなる。

7.2 適性検査の着眼点

適性検査の分析として性格の特色が、人間関係に影響を及ぼす。採用活動の着眼点について現したものが図8である。本授業における性格適性検査の第1の着眼点は、もともと想定した要因である受講時点の性格適性を把握である。第2に、受講時点の性格適性と同様であるが、受講棄権者の想定である。第3は、成長の可能性を想定することである。講義を始めるにあたって、上記に述べた3つの着眼点に注目することで、能力や状況に応じて仕様変更を適宜行うことが可能となる。

出所：Vol.055 人事・採用に科学的視点を（服部泰宏）

図8 採用活動の着眼点。

7.3 受講時点での性格適性の把握（着眼点1）

7.3.1 受講者の特徴

図9は、性格適性検査の指標を用いて、本授業の受講者のデータを基に、左は本授業の受講生「大同大学（n=19）」、右は関東に所在する複数の私立大学（以下「関東私大」）（n=94）について比較分析をおこなったものである。大同大学は、1年から2年の受講生、関東私大（文系学部）は、1年から4年が就業力育成を目的としたプログラムを受講している。独立変数を「大同大学」と「関東私大」、従属変数は、左記指標の平均スコアの差としている。左列の指標にある (*p<0.05) および (**p<0.01) は、その差が統計的に有意であることを示している。「大同大学」の職務適応性は、「社会的内向性」が相対的に高く、「持続性」「達成意欲」「活動意欲」「自信性」のスコアが低い傾向であることが明らかになった。また、性格類型は、「興味関心の方向」が低い傾向があり、その差が有意であることがわかる。上記の注目すべき指標は、「持続性」「達成意欲」「活動意欲」「自信性」が低く、「社会的内向性」が高い傾向である。表5.1を参考に大同大学の受講生の特徴を述べると、1つのことに執着なく、視野が広い、興味範囲も広く柔軟性はある他、目標設定レベルが低い傾向が読み取れた。授業計画では、自ら考え取り組む内容を予定していたが、上記の結果を踏まえ大学の勉強のつながりを実感し職業意識やキャリアに関わる意識向上の取り組みが適切と判断した。

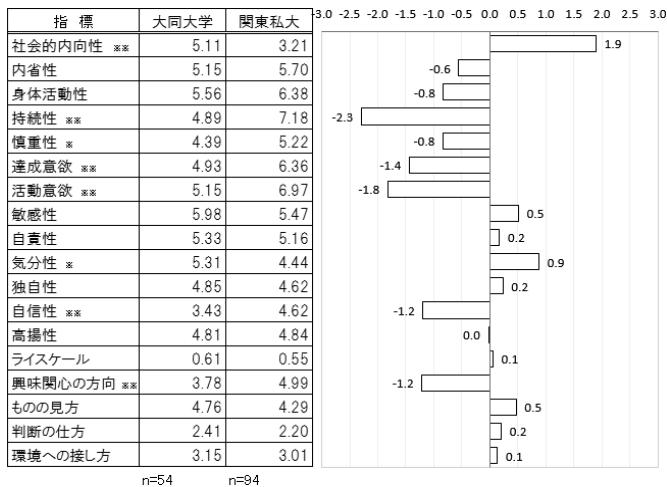


図 9 性格適性検査比較分析
(大同大学・関東私大).

7.3.2 受講者および棄権者の特徴

図 10 は、本授業に登録した受講生の出席者の授業回数別の推移を示している。縦軸は受講生の出席人数、横軸は左から授業の回数を示している。最終的に、55 名の受講登録で最終の棄権者は、15 名であった。

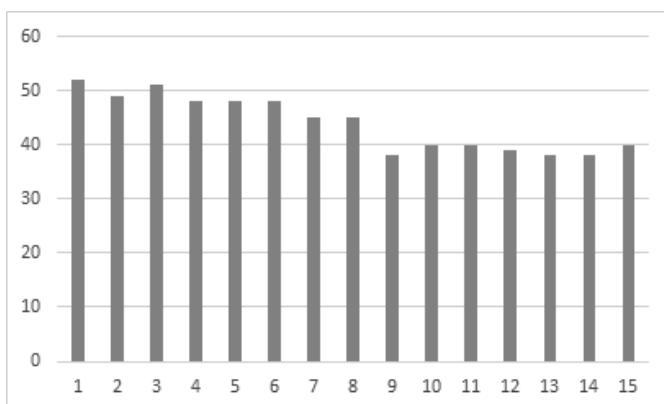


図 10 出席者数の推移.

図 11 は、性格適性検査の指標を用いて、本授業の登録者のデータを基に、左は受講者「受講者 (n=40)」、右は講義を途中棄権した「棄権者 (n=14)」について比較分析をおこなったものである。独立変数を「受講者」および「棄権者」、従属変数は、左記指標の平均スコアの差としている。講義の受講と棄権に関する適性検査指標の 1 つに「持続性」がある。この得点が高い場合は、忍耐強く諦めない気力がある。左列の指標における受講者と棄権者の差が全ての項目で統計的に有意でなかったため弱い判断となるが、「持続性」で、受講者と棄権者を比較すると棄権者が 1.5 ポイント低いことが特徴的である。また、「達成意欲」「活動意欲」も同様であるなど、相対的

に継続が困難となる傾向が読み取れる。

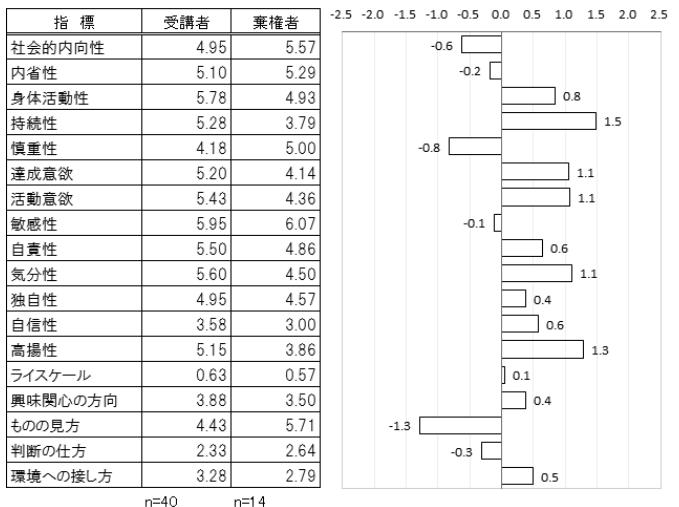


図 11 性格適性検査による分析結果.
(受講者・棄権者)

7.4 成長の可能性の想定 (着眼点 2)

7.4.1 実績者 (利益上位者) の特徴

図 12 は、性格適性検査の指標を用いて、本授業の受講者のデータを基に、左は受講者のうち利益が 1,000 円以上あった上位 3 名「利益上位者 (n=3)」、右は上位者以外「上位者以外 (n=37)」について比較分析をおこなったものである。なお、利益とは本授業の最終課題として個人が商品を仕入れ受講者間で販売した売上から売上原価の差を示している。独立変数を「利益上位者」および「上位者以外」、従属変数は、左記指標の平均スコアの差としている。左列の指標における利益上位者と上位者以外の差が全ての項目で統計的に有意でなかったため弱い判断となるが、「利益上位者」の職務適応性は、「持続性」「達成意欲」「活動意欲」「敏感性」が相対的に高い傾向にあり、性格類型は、「ものの見方」「判断の仕方」「環境への接し方」が相対的に高い傾向であると読み取れる。

指標	利益上位者	上位者以外
社会的内向性	5.00	4.95
内省性	5.33	5.08
身体活動性	6.67	5.70
持続性	6.67	5.16
慎重性	5.67	4.05
達成意欲	6.67	5.08
活動意欲	5.33	5.43
敏感性	7.33	5.84
自責性	6.67	5.41
気分性	6.67	5.51
独自性	5.67	4.89
自信性	4.00	3.54
高揚性	4.67	5.19
ライスケール	0.67	0.62
興味関心の方向	4.00	3.86
ものの見方	3.00	4.54
判断の仕方	1.00	2.43
環境への接し方	2.00	3.38

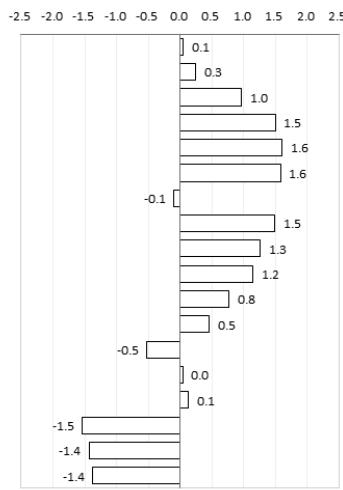


図 12 性格適性検査による分析結果
(利益上位者・上位者以外).

7.4.2 自己評価による就業力開発の特徴

図 13 は、性格適性検査の指標を用いて、本授業の受講者のデータを基に、「就業力開発」について分析をおこなったものである。左は就業力の事前と事後に自己評価をおこない事後が事前を上回る就業力がプラス、右は下回るマイナス独立変数を「就業力+」およびマイナスとなった「就業力-」について比較分析をおこなったものである。従属変数は、左記指標の平均スコアの差としている。左の指標における受講者と棄権者の差が全ての項目で統計的に有意でなかったため弱い判断となるが、責任者以外で平均値の差が（表中※印）認められるのは、「C状況判断力」、「A要点メモ力」および「A記録作成力」であることが示唆された。

指標	就業力+	就業力-
社会的内向性	5.00	4.60
内省性	5.14	4.80
身体活動性	5.66	6.60
持続性	5.37	4.60
慎重性	4.11	4.60
達成意欲	5.06	6.20
活動意欲	5.51	4.80
敏感性	5.91	6.20
自責性	5.37	6.40
気分性	5.83	4.00
独自性	5.06	4.20
自信性	3.51	4.00
高揚性	5.23	4.60
ライスケール	0.63	0.60
興味関心の方向	3.63	5.60
ものの見方	4.46	4.20
判断の仕方	2.46	1.40
環境への接し方	3.40	2.40

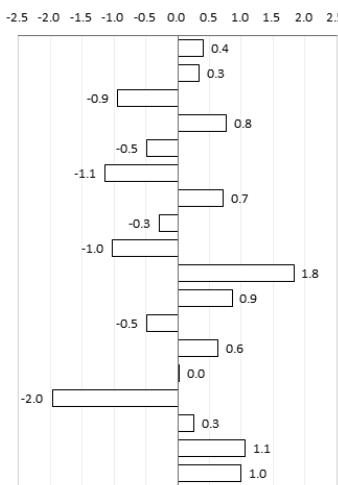


図 13 性格適性検査による分析結果
(就業力プラス・就業力マイナス).

8 考 察

本研究では、催事販売プログラムを実施した結果について定量評価をおこない有効性を検証するために就業力の構成項目と能力開発との関連付けを示した。課題としては主体者である本人の成長意欲を高める方法である。「利益上位者」については、顕著な開発効果が認められた一方で、参加者の多数を占める「利益上位者以外」の開発効果が低く、その開発された能力項目は、要点メモ力などが中心であった。PBLとして期待された情報収集や行動の能力開発が極めて低かったことから、本人の意欲を高める更なる改善の必要が示唆された。その対策として、能力開発が認められた項目から段階的に開発をすすめていく方法も考えられるため次回の課題としたい。今後の講義に際しては、今回の課題をもとに実施方法の見直しをおこない、効果的なプログラムの開発を継続していく必要があると考える。

参考文献

- 就職システム研究会 (2000). S P I 問題. 池田書店.
- 角方正幸, 松村直樹, 平田史昭 (2010). 『就業力育成論』.
- ドナルド・R. ウッズ (2001). PBL(Problem-based Learning)—判断能力を高める主体的学習. 医学書院.
- 河合塾 (2011). アクティブラーニングでなぜ学生が成長するのか—経済系・工学系の全国大学調査からみえてきたこと. 東信堂.
- 河合塾 (2014). 「学び」の質を保証するアクティブラーニング—3年間の全国大学調査から. 東信堂.

研究成果報告書 (掲載期間 2014.11-2015.10)

著書

- (1) 松岡陽子／日本パーソナリティ心理学会 20 年史編纂委員会編：日本パーソナリティ心理学会 20 年史, アタッチメント研究とパーソナリティ, 福村出版, 2015.
- (2) 井上孝司, Petors Abraha, 酒井克彦：生産加工学, 第 1 章 2 章 3 章 4 章 5 章 6 章 8 章 10 章 13 章 14 章, コロナ社, 2014.
- (3) 平博仁：炭素繊維強化プラスチック(CFRP)の開発と市場, 第 9 章 航空機における CFRP の現状と動向, CMC 出版, 2015 年 2 月
- (4) 堀尾吉巳／日本学術振興会マイクロビームアナリシス第 141 委員会編:マイクロビームアナリシス・ハンドブック, 2.4.4 反射高速電子回折(RHEED)担当, オーム社, 2014 年.
- (5) 五十嵐太郎編／石田壽一、今井公太郎、木下庸子、後藤治、斎藤理、坂牛卓、佐藤淳、菅野裕子、中川理、永山祐子、平田晃久、藤本壮介、南泰裕、武藤隆、本江正茂、山形浩生、五十嵐太郎著：14 歳からのケンチク学, 35-50p, 彰国社, 2015 年 4 月.
- (6) 渡邊慎一／日本ヒートアイランド学会編：ヒートアイランドの事典, 通風計画 -室内に風を取り込む-, 朝倉書店, 2015.
- (7) 渡邊慎一／日本建築学会編：心理と環境デザイン -感覚・知覚の実践-, 行動観察に基づく屋外・半屋外空間の評価(1) -都市公園における被験者の行動-, 技報堂出版, 2015.
- (8) Hideki Sato, Ryoichi Narita/Jeffrey W.Tweedale, Lakhmi C.Jain, Junzo Watada, Robert J.Howlett (Eds.) : Knowledge-Based Information Systems in Practice, Chapter 7 Regular Polygon Based Search Algorithm for Processing Maximum Range Queries, Springer-Verlag New York Inc (C), 2015.
- (9) 横山弥生 他：可視化の図学, 第 10 章, その他, 株式会社ダイテック, 2015 年 4 月.
- (10) 横山弥生 他：多角形百科, I-4-⑤, 丸善出版, 2015 年 6 月.

論文及び調査報告

- (1) 呉雲影, 林文杰, 松木孝文：地域産業の発展と環境問題—潮州市を事例として—, 日中社会学研究, 23 号, 2015 pp.23-29
- (2) K. Ueno: Bottcher coordinates for polynomial skew products, to appear in Ergodic Theory Dynam. Systems, published online.
- (3) 中井三留, 成田淳一郎 : Hardy 空間の位相線形構造の一断層—補間問題の応用の立場から—, 大同大学紀要, 50 卷, 2014, pp. 1-30.
- (4) T.Futamura, T.Ohno, T.Shimomura : Boundary limits of monotone Sobolev functions with variable exponent on uniform domains in a metric space, Rev. Mat. Complut., Vol.28, 2015, No.1, pp.31-48.
- (5) 松井豊次：プロンテ・ディ講演会報告, Brontë Newsletter of Japan, 2014, 89 号, p. 6.
- (6) 松井豊次：書評：ジョージ・エリオット著 菊田美和子、今泉瑞枝訳『テオフラストス・サッチの印象』(彩流社、2012 年、298 頁), ジョージ・エリオット研究, 2014, 16 号, pp. 55-64.
- (7) 鈴木雅博：教員コードによる職員会議の秩序構築 一解釈的アプローチによる相互行為分析—, 日本教育経営学会紀要, 第 57 号, 2015 , pp.64-78.
- (8) Tatsuya Suzuki, Yuko Wasada-Tsutsui, Takahiko Ogawa, Tomohiko Inomata, Tomohiro Ozawa, Yoichi Sakai, Michael Fryzuk, Hideki Masuda, N₂ Activation by an Iron Complex with a Strong Electron Donating Iminophosphorane Ligand, Inorganic. Chemistry, Vol.54, pp.9271-9281 (2015)
- (9) Satoru Onaka, Yoichi Sakai, Tomoji Ozeki, Tadahiro Nakamoto, Yusuke Kobayashi, Masashi Takahashi, Ryo Ogiso, Tsutomu Takayama, Michito Shiotsuka : Synthesis, Structure and Valence-Trapping vs Detrapping for New Trinuclear Iron Pentafluorobenzoate Complexes: Possible Recognition of Organic Molecules by

57Fe-Mössbauer Spectroscopy, Dalton Trans., 43, 2014, 18, pp.6711 - 6719.

(10) 坂井信之 (山口大学), 斎田浩見, 玉置孝至 (日本大学) : Gravastar Shadows, Physical Review D, 90 卷, 2014 年 11 月, article no.104013.

(11) 藤澤篤仁 (名古屋大学), 斎田浩見, 柳哲文 (名古屋大学), 南部保貞 (名古屋大学) : Maximum mass of a barotropic spherical star, Classical and Quantum Gravity, 32 卷, 2015 年 10 月, article no.215028.

(12) Takashi Inoue, Masahiro Hagino, Kazushige Tokuno, Hiroshi Usuki and Junji Miyamoto : The Machinability of CFRP with Cutting Movement of end-milling, Key Engineering Materials, Vols 650-657, (2015), pp.391-397.

(13) H. Okubo, R. Tsuboi, S. Sasaki: Frictional properties of DLC films in low-pressure hydrogen conditions, WEAR, Vol. 340-341 (2015), pp. 2-8.

(14) H. Okubo, R. Tsuboi, C. Tadokoro, S. Sasaki: Tribological properties of a tetrahedral amorphous carbon (ta-C) film under boundary lubrication in the presence of organic friction modifiers and zinc dialkyldithiophosphate (ZDDP), WEAR, Vol. 332-333 (2015), pp. 1293-1302.

(15) S. Yano, S. Kato, R. Tsuboi, S. Sasaki: Lubrication properties of magnetorheological fluids, The Finnish Journal for Tribology, Vol. 2, No. 33 (2015), pp.3-10.

(16) 大久保光, 坪井涼, 田所千治, 佐々木信也: H-free-DLC 膜による無灰系摩擦調整剤の潤滑効果に及ぼす ZnDTP 添加の影響に関する研究, 日本機械学会論文集, 第 81 卷, 第 824 号, 14-00656, 2015 年.

(17) S. Watanabe, T. Koyama, Y. Kondo, K. Miyake, M. Nakano, S. Sasaki, R. Tsuboi: Effects of Mixing Two Ionic Liquids on Tribological Behavior of Bearing Steel, Surfactants in Tribology, Vol. 4 (2014), pp. 217-238.

(18) Takashi Inoue, Masahiro Hagino, Kazushige Tokuno, Hiroshi Usuki, and Junji Miyamoto : The Machinability of CFRP with Cutting Movement of End-milling, Key Engineering Materials, Vols 656-657, 2015, pp. 391-397.

(19) 前田安郭: 社会に応える実学教育一大同大学機械工学科铸造プロセス工学研究室一, 素形材, 2015, 第 56 卷, 6, pp.59-61.

(20) 前田安郭: 特集「铸造シミュレーションパッケージソフト最前線」によせて, 鑄造工学, 第 86 卷, 2014, 12, p.905.

(21) 前田安郭: 最新の铸造シミュレーション技術, (公社)日本铸造工学会東海支部・長野地区技術講習会テキスト, 2015, pp.1-10.

(22) 中道隆, 古川勇, 森田啓一, 近藤博紀, 前田安郭, 岩田靖, 八百川盾: 鑄造シミュレーション技術と応用(温度・凝固解析技術と活用), (公社)日本铸造工学会・研究報告 113, 2014, pp.96-99.

(23) 前田安郭: 3. MARS 法による気液二相流湯流れシミュレーション, 鑄造シミュレーション技術と応用(温度・凝固解析技術と活用), (公社)日本铸造工学会・研究報告 113, 2014, pp.43-47.

(24) Xinzhe Jina, Kozo Osamurab, Shutaro Machiya, Kentaro Kajiwara, Takahisa Shobu, Hideaki Maeda, Effect of epoxy impregnation on strain distribution of materials in Bi2223 superconducting coils by using synchrotron X-ray diffraction, Journal of Alloys and Compounds, Volume 650, 25 2015, pp. 444-449.

(25) Kozo Osamura1, Shutaro Machiya, Stefanus Harjo, Tatsushi Nakamoto, Najib Cheggour and Arend Nijhuis, Local strain exerted on Nb3Sn filaments in an ITER strand, Superconductor Science and Technology, Volume 28, Number 4.

(26) 宮本潤示: 大気圧プラズマ窒化法における硬度均一性への影響, 表面技術, 66, 2015, 4, pp.165-166.

(27) Takashi Inoue, Masahiro Hagino, Kazushige Tokuno, Hiroshi Usuki, Junji Miyamoto : The Machinability of CFRP with Cutting Movement of End-milling, Key Engineering Materials, 656-657, 2015, pp.391-397.

(28) Sachihiro Isogawa : Trends of precision forging in Japan, Proceeding of the 13th Asian Symposium on Precision Forging, 13, 2014, pp.10-15.

(29) 五十川幸宏: 学会・業界活動, 素形材, 56, 2015, 5, pp.44-47.

(30) Sachihiro Isogawa : National report "Activities of Forging in Japan September 2014-August 2015, 48th Plenary Meeting of International Cold Forging Group, 2015-9, Daejeon, Korea.

(31) Nazri MD DAUD, Yasuaki KOZATO, Satoshi KIKUCHI, Shigeki IMAO : Control of leading edge separation on airfoil using DBD plasma actuator with signal amplitude modulation, Journal of Visualization, DOI 10.1007/s12650-015-0283-0, 2015, pp 1-11.

(32) 加藤佳久, 伊藤宏太, 今尾茂樹, 菊地聰, 小里泰章: DBD プラズマアクチュエータを用いた長方形噴流の制御, 日本

(33) 平博仁:航空・宇宙(通巻700号記念特集号)・(産業分野別にみた防錆技術),防錆管理,59巻,2015,10号,pp.438-444.

(34) 平博仁:航空機用軽金属材料の動向と課題(特集 航空・宇宙産業を支える軽金属),軽金属,65巻,9号,2015,pp.426-431

(35) 田代勉,尾形和哉:暖機期間における燃費悪化抑制と暖機時間の短縮を両立するHVのエンジン・MG駆動力配分制御,日本機械学会論文集,81巻,2015,824号,pp.14-0054

(36) 大澤文明,杉村佑基,清水孝純,尾形和哉,山田靖:複数指の回転体によるシームレスな紙の持ち替えおよび切断機構を備えた清拭補助装置の設計,精密工学会誌,81巻,2015,6号,pp.582-588

(37) 大西孝,坂倉守昭,藤山泰弘,大橋一仁,塚本真也:円筒研削における工作物熱変形量を考慮した加工システムの開発,砥粒加工学会誌,59巻,2015,10号,pp.594-598.

(38) Takashi Onishi, Moriaki Sakakura, Yusuke Nakano, Makoto Harada, Kazutoshi Kawakami, Takeshi Sakane, Kazuhito Ohashi and Shinya Tsukamoto: Simulation Analysis and In-Process Measurement of the Workpiece Temperature Distribution in Large Surface Grinding, Key Engineering Materials, Vol. 656-657, 2015, pp. 353-356.

(39) 川福基裕:2.2章 速度特性を有する摩擦モデルを用いたショートスパンシーク時の高精度軌跡追従制御,ナノスケールサーボのための革新的な制御技術,第1347号,pp.10-15.

(40) 川福基裕:RCカーを用いた車両振動制御システムの開発,計測自動制御学会中部支部教育工学論文集,37巻,2014,pp.48-50.

(41) M.Jimbo, Y.Fujiwara, T.Shimizu : Improvement of thermal stability of amorphous CoFeSiB thin films, J. Appl. Phys. 117, 2015, 17A313, pp.17A313-1 – 17A313-4.

(42) Yasuo Takagi : The Characteristic Analysis of a University Building : Dynamic Modelling by Grey Box Approach, SICE Journal OF CMSI, Vol. 8, 2015, No.5, pp.328-333.

(43) 武田:水素を用いた再生可能エネルギーの安定化に関する研究ー水から直接プロトンを取出す「プロトンフィルタ」の可能性検証ー,大同大学紀要,第50巻,2015年,pp.121-126

(44) 山口、武田、他:低炭素化社会のための超伝導直流送配電システムの研究開発,平成26年度文部科学省私立大学戦略的研究基盤形成支援事業研究成果報告書,2015年

(45) 橋本雄一:PET表面上に沿面放電電極を備えたリライタブルペーパーの作製,静電気学会誌,39巻,2015,2号,pp.94-99.

(46) Y. Horio, Y. Watanabe, Y. Takakuwa and S. Ogawa : RHEED Patterns Calculated for Pt Nano Clusters on TiO₂(110) Substrate, e-J. Surf. Sci. Nanotech., 13, 2015, pp. 125-128.

(47) T.Ishizaki, M.Usui, Y.Yamada : Thermal cycle reliability of Cu-nanoparticle joint, Microelectronics Reliability, 2015, 55, pp.1861-1866.

(48) T.Ishizaki, M.Yanase, A.Kuno, T.Satoh, M.Usui, F.Osawa, Y.Yamada : Thermal simulation of joints with high thermal conductivities for power electronic devices, Microelectronics Reliability, 2015, 55, pp.1060-1066.

(49) 山田靖:パワーモジュールなどの評価試験方法について,TEST,2015,37,pp.6-8.

(50) 宇野享,大建met:風の街みやびら,新建築,89巻16号,2014.12月号,pp.132-139

(51) 宇野享,大建met:風の街みやびら,景观设计 LANDSCAPE DESIGN 誌(中国),発刊67号,2015.01,pp. 80-85

(52) 宇野享,大建met:風の街みやびら,建築ジャーナル, 第1236号, 2015.03, pp. 58-59
ネットメディア ※すべて「風の街みやびら」
Archdairy:2015.07
<http://www.archdaily.com/770434/kaze-no-machi-miyabira-susumu-uno-can-plus-met-architects>

BauNetz:2015.07
http://www.baunetz.de/meldungen/Meldungen-Seniorenwohnheim_in_Japan_4457621.html

competitiononline:2015.08
<https://www.competitiononline.com/en/projects/59235>

ARQA:2015.09
<http://arqa.com/arquitectura/kaze-no-machi-miyabira.html>

(53) Shigeharu Tamura, Yosuke Okamoto, Seiji Nakagawa, Yasushi Shigeri:Practical color barrier-free illumination

for deuteranope by LEDs, *Color Research and Application*, 2015年6月, vol.40, pp.218-223.

(54) Yosuke Okamoto, Seiji Nakagawa : Effects of daytime light exposure on cognitive brain activity as measured by the ERP P300, 2015年1月, *Physiology & Behavior*, vol.138, pp313-318.

(55) 武藤隆 : クリックオピニオン『「地域でのアート」とまちづくり』, 每日新聞, 東海13版, 2015年10月17日, 第47828号, 21面.

(56) 渡邊慎一, 石井仁, 長野和雄, 富田明美, 堀越哲美: 日傘による直達日射の人体投射面積遮蔽率, 人間と生活環境, 21卷, 2014, 2号, pp. 93-98.

(57) 渡邊慎一, 堀越哲美: 日本各地における炬燵の使用実態と「炬燵前線」の推定, 人間と生活環境, 22卷, 2015, 1号, pp. 9-20.

(58) 渡邊慎一, 石井仁, 長野和雄: 日傘使用時の体感温度の算出, 第38回 人間-生活環境系シンポジウム報告集, 2014, pp. 107-110.

(59) 杉浦正純, 小田加奈子, 渡邊慎一, 石井仁: 被験者による日傘使用時の温熱的快適性評価, 第38回 人間-生活環境系シンポジウム報告集, 2014, pp. 111-114.

(60) 棚橋秀行: 油汚染地盤に対する汎用的な非掘削浄化技術の開発, 地盤工学会第11回 環境地盤工学シンポジウム論文集, 2015, pp.391-398.

(61) Toyohide Watanabe and Koichi Asakura : Is Experience of Novel Reading Useful to Compose Technical Papers?, International Conference on Intelligent Interactive Multimedia Systems and Services, , 2015,, pp.357-368.

(62) Koichi Asakura and Toyohide Watanabe : A Movement Algorithm for Evacuee Agents in Disaster Simulators: Towards the Development of Evacuation Guidance Systems Based on Ant Colony Systems Using MANET, International Conference on Intelligent Interactive Multimedia Systems and Services, , 2015,, pp.369-378.

(63) 鎌倉友男, 谷寄徹也, 上田浩次: 冬タイヤ用音響同定システムの開発, 電子情報通信学会基礎・境界ソサイエティ Fundamentals Review, Vol.9, 2015, No.2, pp.84-91.

(64) Hideki Sato, Shigemi Nagata : Experimental Evaluation of Multi-Key Content-Based Image Retrieval, Proceedings of the 8th International Conference on Intelligent Interactive Multimedia Systems and Services, 2015, pp.313-324.

(65) 方斌, 田嶋拓也, 阿部武彦, 柴田慎一, 南保英孝, 木村春彦, “POS データによる最適な稼働レジ台数の予測に関する一考察”, 日本設備管理学会, Vol.27, No.1, pp.1-11 (2015.5)

(66) Hiroki Takagi, Hiroaki Kudo, Tetsuya Matsumoto, Yoshinori Takeuchi, Noboru Ohnishi : Interactive Color Correction of Display by Dichromatic User, International Conference on Neural Information Processing, 8836, pp.175-182.

(67) Takehiro Sakai, Tetsuya Matsumoto, Yoshinori Takeuchi, Hiroaki Kudo and. Noboru Ohnishi : A Mobile System of Reading out Restaurant Menus for Blind People, International Conference on Enabling Access for Persons with Visual Impairment, pp.174-178.

(68) Yuto Dekiura, Tetsuya Matsumoto, Yoshinori Takeuchi, Hiroaki Kudo, Noboru Onishi, Norihide Kitaoka, Kazuya Takeda: Fast Separation and Accurate Recognition of Overlapped Speech - Separation by Spectral Subtraction and Acoustic Model Training using Separated Speeches -," 2015 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing, pp. 1-4.

(69) 大塚文雄, 不破勝彦 : 環境変化を考慮した植物の生育システムに対する一考察, 大同大学紀要, 50卷, 2015, pp.147-155.

(70) 横井健二 : 3つのクロスがもたらす学びの効果, 大同大学紀要, 第50卷, 2015年3月, pp.157-166.

(71) 西崎雅仁・坂田桂子: 繼体天皇の地域文化的・歴史的価値と産業形成の起点に関する考察, 大同大学紀要, 第50卷, 2014年, pp. 167-177

(72) 坂口直太・西崎雅仁: 資産評価測定と資産除去債務に関する考察, ←大同大学紀要, 第50卷, 2014年, pp179-185.

(73) 村上理 : AICPA の職業倫理基準と『一般に認められた会計原則』—1973年職業倫理規程規則203の設定を題材として—, 経済学研究 (北海道大学), 65卷, 2015, 1号, pp.215-223.

(74) 光田恵, 棚村壽三 : 室内においの測定と評価, 人間工学, 51卷, 3号, pp. 183-189, 2015年.

(75) 佐藤壮一郎 : 第20回男子ジュニア世界選手権, 公益財団法人 日本ハンドボール協会編
「ハンドボール」, 2015年11月, 第555号 3pp

学会発表

- (1) 松木孝文, 呉雲影, 林文杰,: 地域産業の発展と環境問題—潮州市を事例として—, 政治社会学会第 6 回研究会, 2015 年 11 月, 広島.
- (2) 上野康平: Bottcher coordinates at superattracting fixed points of holomorphic skew products, 日本数学会 2015 年度年会, 2015 年 3 月, 明治大学.
- (3) 上野康平: Bottcher coordinates at superattracting fixed points of holomorphic skew products, 冬の力学系研究集会, 2015 年 1 月, 日本大学軽井沢研修所.
- (4) 上野康平: Bottcher coordinates at superattracting fixed points of holomorphic skew products, RIMS 研究集会複素力学系の総合的研究, 2014 年 12 月, 京都大学.
- (5) 梅田礼子 : ブログ等による英語自習促進の試み, 公益社団法人私立大学情報教育協会, 平成 27 年度教育改革 ICT 戦略大会, 2015 年 9 月, 東京 (アルカディア私学会館).
- (6) 鈴木雅博 : 教師間相互行為における成員カテゴリーの諸相 —「下校時刻」は何の問題として語られたか—, 日本教育社会学会, 第 67 回大会研究発表, 2015 年 9 月, 東京.
- (7) 鈴木雅博 : 教師間相互行為における成員カテゴリーの諸相 (2), エスノメソドロジー・会話分析研究会, 2015 年度研究大会, 2015 年 10 月, 東京.
- (8) 久田晴生 : 大学の教職科目における実践的な指導とは, 日本生活指導学会第 33 回大会, 自由研究発表, 2015 年 9 月 6 日, 岡山大学
- (9) 久田晴生 : 大同大学の F D 活動のこれまでとこれから, IDE 大学協会主催「高校と大学の合同シンポジウム」, パネリスト, 2015 年 7 月 3 日, 名古屋大学
- (10) 松岡陽子 : 親からみた成人の子との関係(2) : 子はアタッチメント対象になるか?, 日本発達心理学会, 第 26 回大会, 2015 年 3 月, 東京大学.
- (11) 松岡陽子 : 韓国ソウルの公園で観察されたアタッチメント関連行動, 日本教育心理学会, 第 56 回総会, 2014 年 11 月, 神戸国際会議場.
- (12) 山田雄太、天野雅斗、石垣尚男、植田和次、江藤直美、金子美由紀、神田翔太、後藤浩史、三枝大地、根本研、光安信次 : バレーボール試合時における移動距離に関する研究, 日本バレーボール学会, 2015 年 3 月, 第 20 回記念大会, 東京.
- (13) 酒井陽一、小木曾 了、高山 努、中本忠宏、北澤孝史、川崎武志、高橋 正、尾関智二、小林雄介 : 混合原子価三核カルボン酸錯体の原子価揺動と三核部分構造合原子価三核鉄錯体の原子価遙動, 第 16 回メスバウア一分光研究会シンポジウム, 2015.3. (東京大学、駒場)
- (14) 酒井陽一、小木曾 了、中本忠宏、川崎武志、北澤孝史、高山 努、高橋 正 : 多形をとり、また種々の結晶溶媒分子をもつ混合原子価鉄三核ペンタフルオロ安息香酸錯体の原子価トラップ／デトラップ挙動, 2015 年日本放射化学会年会, (2015. 9) 東北大学
- (15) 酒井陽一、小木曾了、中本忠宏、川崎武志、北澤孝史、高山努、高橋正 : 混合原子価三核鉄フッ素置換安息香酸錯体の結晶構造／分子構造と原子価揺動, 京都大学, 平成 27 年度 KUR 専門研究会, 2015 年 11 月, 大阪.
- (16) 酒井陽一、小木曾了、中本忠宏、川崎武志、北澤孝史、高山努、高橋正 : 多形をとり、また種々の結晶溶媒分子をもつ混合原子価鉄三核ペンタフルオロ安息香酸錯体の原子価トラップ／デトラップ挙動, 日本放射化学会, 第 58 回放射化学討論会, 2015 年 9 月, 宮城.
- (17) 酒井陽一、小木曾了、高山努、中本忠宏、北澤孝史、川崎武志、高橋正、尾関智二、小林雄介 : 混合原子価三核鉄カルボン酸錯体の原子価揺動と三核部分構造, メスバウア一分光研究会, 2015 メスバウア一分光研究会シンポジウム, 2015 年 3 月, 東京.
- (18) 斎田浩見 (登壇者), 藤澤篤仁, 柳哲文, 南部保貞 : 流体球が持ち得る最大質量, 第 15 回特異点研究会, 2015 年 1 月, 名古屋大学.
- (19) 斎田浩見 : ブラックホールの直接観測の理論整備, 第 8 回ブラックホール磁気圏研究会, 2015 年 3 月, 広島大学.
- (20) 斎田浩見 : Toward a specification of the strong gravity region by unstable confined orbits of null-mass particles, OCAMI International Workshop on Mathematics and Physics in General Relativity, 2015 年 3 月, 大阪市立大学.
- (21) 斎田浩見 : ブラックホールの曲がった時空の効果を直接観測する原理と方法 2, 日本天文学会, 2015 年秋の年会,

2015年9月、甲南大学.

(22) 斎田浩見: ブラックホールの強い重力レンズ効果の観測による質量と自転角運動量の測定方法, 日本物理学会, 2015年秋の分科会, 2015年9月, 大阪市立大学.

(23) Tomohiko Fukao, Takashi Inoue, Masahiro Hagino, Takashi Hayashi and Kazushige Tokuno : Machinability of hot working die steel SKD by dry cutting, SEEP Conference 2015, 2015年(8月), University of The West of Scotland.

(24) Taiga Yasuki, Masahiro Hagino, Takashi Hayashi and Takashi Inoue : Improvement of work environment for CFRP material with diamond arranged type milling tool, SEEP Conference 2015, 2015年(8月), University of The West of Scotland.

(25) Yuta Masu, Takashi Inoue, Masahiro Hagino, Kazushige Tokuno, Takashi Hayashi, Kimitoshi Watanabe and Yasumitu Shimizu : Improvement of work environment for cutting CFRP material with modulated rotation spindle mechanism, SEEP Conference 2015, 2015年(8月), University of The West of Scotland.

(26) 三輪裕哉, 神崎隆男 : 大気境界層に及ぼす上空速度変動の影響, 日本機械学会東海支部, 第64期総会講演会, 2015年3月, 名古屋.

(27) 蔦森秀夫, 飯塚栄治, 天石敏郎, 佐藤健太郎, 萩原裕樹, 伊藤予基, 柴田章博 : 3次スプライン降伏関数およびその異方硬化モデルの提案と穴広げモデル適用, 日本塑性加工学会, 塑性加工春季講演会, 2015年5月, 横浜.

(28) 松井洋平, 蔦森秀夫, 天石敏郎 : 6000系アルミニウム合金板の穴広げ成形における異方硬化の影響, 日本塑性加工学会, 第66回塑性加工連合講演会, 2015年10月, いわき.

(29) 太田英一, 与語康宏, 岩田徳利, 蔦森秀夫 : 6000系アルミニウム合金板における摩擦係数の摺動方向依存性, 日本塑性加工学会, 第66回塑性加工連合講演会, 2015年10月, いわき.

(30) R. Tsuboi and S. Sasaki: CFD Investigations in Surface Texturing, International Tribology conference 2015 Tokyo, September 2015, Tokyo.

(31) Y. Kuroiwa C. Tadokoro S. Sasaki R. Tsuboi S. Hosohata T. Tamura S. Kato: Effectiveness of Dimple's Distribution Pattern for Improving Friction Properties of Lead-free Copper Alloy, International Tribology conference 2015 Tokyo, September 2015, Tokyo.

(32) H. Nagasaki C. Tadokoro R. Tsuboi Y. Tokuta S. Sasaki: Evaluation of frictional behavior of textured surface by using a newly proposed GPS parameter, International Tribology conference 2015 Tokyo, September 2015, Tokyo.

(33) H. Okubo, H. Fukuda, R. Tsuboi and S. Sasaki: Tribological properties of a tetrahedral amorphous carbon (ta-C) film under boundary lubrication in the presence of organic friction modifiers and zinc dialkyldithiophosphate (ZDDP), Wear of Material 2015, April 2015, Toronto.

(34) 佐々木千明, 田所千治, 佐々木信也, 坪井涼, 是永敦, 徳田祐樹 : 精密切削加工面の摩擦特性を評価するGPSパラメーターの開発, 日本機械学会関東支部第21期総会講演会, 2015年3月, 横浜.

(35) 作田潤紀, 五十嵐聖樹, 内山一輝, 斎藤勇貴, 徳納一成, 渋谷辰夫 : 点欠陥集合体が導入された高純度アルミニウム多結晶における転位チャンネルのせん断変位, 日本金属学会, 第156回春季講演大会, 2015年3月, 東京(東京大学).

(36) 伊藤弘哲、前田安郭 : 薄肉鋳物を対象とした湯流れシミュレーションにおける計算条件, 日本鋳造工学会, 第167回全国講演大会概要集, 2015年10月, 北海道

(37) 渋谷涼太、寺嶋一彦、野田善之, 前田安郭 : (論文賞受賞講演) 注湯と搬送を平行する傾動式自動注湯機における液面振動固有周波数の推定と振動抑制, 日本鋳造工学会, 第166回全国講演大会概要集, 2015年5月, 東京

(38) 伊藤弘哲、前田安郭 : 自由表面挙動に着目した鋳型充填の直接観察とシミュレーション, 日本鋳造工学会, 第166回全国講演大会概要集, 2015年5月, 東京

(39) Shutaro Machiya, Kozo Osamura and D. P. Hampshire, Measurements of the local strain on ReBCO superconducting layer using high energy X-ray and the critical current under compression mode, International workshop on coated conductor For application 2014, Korea Cheju.

(40) 宮本潤示 : 大気圧プラズマによる工具鋼の窒化処理法の開発, 日本熱処理技術協会, 第79回講演大会, 2015年6月, 東京.

(41) Katsumi Moriwaki : Modeling and Control of an Autonomous Hybrid Vehicle for Navigation and Guidance,

IFAC, 8th Vienna International Conference on Mathematical Modelling (Mathmod), 2015年2月, Vienna, Austria.

(42) 石川直樹, 森脇克巳, 加藤雅人, 宮田達也 : AR.Drone を利用した自律飛行動作システムの検討, 日本機械学会東海支部, 第64期総会講演会, 2015年3月, 春日井, 愛知.

(43) 大島拓海, 森脇克巳 : マイコンを利用した車両制御システムの設計, 日本機械学会東海支部, 第64期総会講演会, 2015年3月, 春日井, 愛知.

(44) Katsumi Moriwaki : Drivability Control to Optimize the Operating Freedom in the Hybrid Vehicle Propelling System, IEEE, 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 2015年10月, Montreal, Canada.

(45) 青山正治, 五十嵐本照 : 上鋳物師による Cu-Fe-Pb 系合金鋳造仮像の造立背景とその技法, 日本鋳造工学会, 第166回全国講演大会, (2015年5月), 早稲田大学・西早稲田キャンパス.

(46) 五十川幸宏 : 鍛造部材の軽量化技術の動向, 日本鍛造機械工業会, MF-Tokyo2015, 2015-7, 東京.

(47) Sachihiro Isogawa : Trends of precision forging in Japan, 20th Korean Symposium on forging technology, August 2015, Changwon, Korea.

(48) Sachihiro Isogawa : Trends of precision forging in Japan, Proceeding of the 13th Asian Symposium on Precision Forging, 2014-9, Gyeongju, Korea.

(49) Sachihiro Isogawa : ICFG Subgroup Meeting "Advanced Precision Forming", 48th Plenary Meeting of International Cold Forging Group, 2015-9, Daejeon, Korea.

(50) 弓倉和真, 小里泰章, 菊地聰, 今尾茂樹 : プラズマアクチュエーターによる翼まわりの流れ制御に関する研究(振幅変調駆動の効果), 日本機械学会東海支部, 第64期総会講演会, 2015年3月, 中部大学.

(51) 山中翔, 加藤佳久, 今尾茂樹, 菊地聰, 小里泰章 : DBD プラズマアクチュエータの駆動条件が長方形噴流に及ぼす影響, 日本機械学会東海支部, 第64期総会講演会, 2015年3月, 中部大学.

(52) Y. Kozato, S. Kikuchi, S. Imao, Y. Kato, K. Okayama : Flow Control of a Rectangular Jet by DBD Plasma Actuators, International Conference on Jets, Wakes and Separated Flows 2015, June 2015, Stockholm.

(53) 加藤洋, 小里泰章, 菊地聰, 今尾茂樹 : 周期的変動を付加した後向きステップ流れに関する研究, 日本機械学会, 2015年度年次大会, 2015年9月, 札幌.

(54) 小森和武 : 介在物破壊のための梢円空孔モデルによるフェライト-ペライト鋼の伸線加工時の延性破壊予測, 日本塑性加工学会, 第77回伸線技術分科会, 2014年11月, 尼崎.

(55) 小森和武 : 棒線材の引抜き及び圧延における解析技術, 日本鉄鋼協会, 第118回棒線圧延部会, 2015年6月, 名古屋.

(56) Kazutake Komori : Predicting Ductile Fracture in Ferrous and Nonferrous Metals during Tensile Tests using an Ellipsoidal Void Model, European Mechanics Society, 9th EUROMECH Solid Mechanics Conference, July 2015, Madrid.

(57) Hirohito HIRA, Hiromitsu ITOH, Akihiro TAKEUCHI : STUDY ON THE LASER AND WATERJET CUTTING OF PREFORM TO RESIN TRANSFER MOLDING, ACMA&SAMPE, CAMX(THE COMPOSITES AND MATERIALS EXPO) 2015, 2015年10月, Dallas

(58) Tomoyuki SUZUKI, Hirohito HIRA : Physical Properties of CFRP Laminates Prepared by VaRTM Technique, ACMA&SAMPE, CAMX(THE COMPOSITES AND MATERIALS EXPO) 2015, 2015年10月, Dallas

(59) Hirohito HIRA, Tomoyuki SUZUKI : Application of waterjet without abrasives to surface treatment of CFRP, ICCM, ICCM20 (20th International Conference on Composite Material), 2015年7月, Copenhagen

(60) 松田航洋, 柴木裕之, 町屋修太郎, 平博仁 : VaRTM により成形した高弾性率繊維 CFRP 板の特性へおよぶ積層条件の影響, 日本複合材料学会, 第40回複合材料シンポジウム, 2015年9月, 金沢

(61) 大江悠平, 平博仁 : 微小切込をプリプレグに導入した CFRTP の強度改善方法, 日本複合材料学会, 第40回複合材料シンポジウム, 2015年9月, 金沢

(62) 平博仁, 川合啓介, 安藤順明 : 高弾性繊維を用いた CFRP 円筒材の振動特性, 日本材料学会／日本複合材料学会, 第6回日本複合材料会議 (JCCM-6), 2015年3月, 千葉

(63) 松田航洋, 柴木裕之, 町屋修太郎, 平博仁, 小柳卓治 : VaRTM で成形した高弾性繊維 CFRP 板の振動特性, 日本材料学会／日本複合材料学会, 第6回日本複合材料会議 (JCCM-6), 2015年3月, 千葉

(64) 大江悠平, 福井慶伍, 平博仁 : 熱可塑性樹脂 PA66 マトリックス CFRP の成形性に及ぼすプリプレグの 微小切

込の影響, 日本材料学会／日本複合材料学会, 第 6 回日本複合材料会議 (JCCM-6), 2015 年 3 月, 千葉

(65) 伊藤広光, 金原祥, 平博仁, 竹内彰浩: 高出力ファイバーレーザによるプリフォームの切断, 日本材料学会／日本複合材料学会, 第 6 回日本複合材料会議 (JCCM-6), 2015 年 3 月, 千葉

(66) 尾形和哉: ロボカップサッカー中型リーグ参加の取り組み, 計測自動制御学会中部支部, オープンラボ・若手研究発表会, 2014.11, トヨタ産業技術記念館

(67) 鬼頭謙輔, 尾形和哉: ジンバル機構を用いたジャイロモーメント効果による 2 輪台車の姿勢保持, 日本機械学会東海支部, 第 64 期総会・講演会, 2015.3, 中部大学

(68) Takashi Onishi, Moriaki Sakakura, Teppei Takashima, Takuya Kodani, Kazuhito Ohashi and Shinya Tsukamoto: Dimensional error analysis for grinding of a cylindrical long workpiece, LEM21 2015, The 8th International Conference on Leading Edge Manufacturing in 21st Century, Oct. 2015, Kyoto.

(69) T. Onishi, Y. Shimizu, M. Sakakura, M. Harada, Y. Nakano, S. Baba, K. Ohashi, S. Tsukamoto: Experimental study of the causes for shape error of a large workpiece machined by surface grinding, International Committee for Abrasive Technology, ISAAT 2015 (The 18th International Symposium on Advances in Abrasive Technology), Oct. 2015, Korea.

(70) 大西 孝, 坂倉守昭, 藤山泰弘, 大橋一仁, 塚本真也: 円筒研削における工作物熱変形量を考慮した加工システムの開発, 研磨加工学会, 2015 年度学術講演会, 2015 年 10 月, 横浜.

(71) 高島哲平, 大西孝, 坂倉守昭, 大橋一仁, 塚本 真也: 長尺工作物の円筒トラバース研削における形状誤差の改善, 精密工学会, 2015 年度春期大会学術講演会, 2014 年 9 月, 仙台.

(72) Takashi Onishi, Moriaki Sakakura, Yusuke Nakan, Makoto Harada, Kazutoshi Kawakami, Takeshi Sakane, Kazuhito Ohashi and Shinya Tsukamoto: Simulation Analysis and In-Process Measurement of the Workpiece Temperature Distribution in Large Surface Grinding, National Central University, Taiwan & Japan Society for Precision Engineering, The International Conference on Machining, Materials and Mechanical Technologies, Sep. 2014, Taiwan.

(73) Takashi ONISHI, Moriaki SAKAKURA, Yohei WADA, Naoki SATO, Kazuhito OHASHI and Shinya TSUKAMOTO: Simulation Analysis of Thermal Deformation of a Workpiece during Cylindrical Plunge Grinding Estimating the Grinding Force from the Power Consumption of the Wheel Motor, Japan Society for Precision Engineering, The 15th International Conference on Precision Engineering, Jul. 2014, Kanazawa.

(74) 萩野泰弘, 坂倉守昭: 遺伝的アルゴリズムを用いたブランコ・ロボットの動作学習, 日本機械学会, 第 64 期東海支部総会講演会, 2015 年 3 月, 愛知.

(75) 中野博貴, 坂倉守昭: C P G によるスケートボード・ロボットの動作学習, 日本機械学会, 第 64 期東海支部総会講演会, 2015 年 3 月, 愛知.

(76) 伊藤 悠馬, 篠原 主勲, 杉山 卓也, 西堀 研人, 西堀 賢司, 有松・鳴海絞りロボットの信頼性評価, 日本機械学会 第 27 回計算力学講演会, 2014 年 11 月, 岩手.

(77) 河野 晋, 西堀 賢司, 杉山 卓也, 西堀 研人, 篠原 主勲, 伝統工芸「有松・鳴海絞り」における簡易型キャップ装着機: 構造の簡略化と作業性の向上, 東海支部総会講演会講演論文集, 2015 年 3 月, 愛知.

(78) 伊藤 悠馬, 篠原 主勲, 杉山 卓也, 西堀 研人, 西堀 賢司, 有松・鳴海絞りロボットの構造の信頼性評価, 東海支部総会講演会講演論文集, 2015 年 3 月, 愛知.

(79) 小田康文, 成澤泰貴, 出原寿紘, 溝口正信: 超小型衛星 ChubuSat における太陽電池パネル展開機構の開発, 日本機械学会東海支部, 第 64 期総会・講演会, 2015 年 3 月, 名古屋.

(80) 川福基裕: RC カーを用いた車両振動抑制制御系の開発, 計測自動制御学会中部支部, オープンラボ・若手研究発表会, 2014 年 11 月, 名古屋.

(81) 川福基裕: ピボット軸摩擦を考慮した磁気ディスク装置のヘッド位置決め制御, SRC (情報ストレージ研究推進機構), 第 38 回 SRC 技術報告会 (第 6 部会), 2014 年 12 月, 湯河原.

(82) 川福基裕: 無線駆動車両の開発と振動制御, 計測自動制御学会中部支部, 教育工学研究会, 2015 年 9 月, 名古屋.

(83) 石井良亮, 藤原裕司, 前田浩二, 加藤剛志, 大島大輝, 神保睦子, 小林 正, 岩田聰: Co2Fe(AlSi)-Al2O3 グラニュラ一多層膜における磁気抵抗効果の熱処理温度依存性, 日本磁気学会, 第 39 回学術講演会, 2015 年 9 月, 名古屋.

(84) 前田知樹, 牟田亮, 高瀬祥, 藤原裕司, 佐藤英樹, 前田浩二, 神保睦子, 小林正: カーボンナノチューブに内包さ

れた FePt 微粒子の組成制御, 日本磁気学会, 第 39 回学術講演会, 2015 年 9 月, 名古屋.

(85) 武内雄輝, 藤原裕司, 神保睦子, 前田浩二, 小林正 : FeSiBNb 薄膜の作製と磁気特性の評価, 日本磁気学会, 第 39 回学術講演会, 2015 年 9 月, 名古屋.

(86) 森龍丸, 藤原裕司, 田中貴大, 前田浩二, 小林正, 神保睦子 : 水素含有雰囲気下で還元された酸化グラフェンの磁気特性, 電気・電子・情報関係学会, 平成 27 年度東海支部連合大会, 2015 年 9 月, 名古屋.

(87) Y. Fujiwara, R. Muta, T. Maeda, H. Sato, K. Maeda, M. Jimbo, T. Kobayashi : Composition control of FePt nanoparticles in carbon nanotubes, The 13th International Symposium on Sputtering and Plasma Processes (ISSP2015), 2015 年 7 月, Kyoto.

(88) Yasuo Takagi : "Q-Value Evaluation for a Campus Building, SICE, Annual Conference, July 2015, Hangzhou China.

(89) 高木康夫 : 電源高調波系による HEMS 向け家電判別アルゴリズムの検証, 電気学会, 電力・エネルギー部門大会, 2015 年 9 月, 名古屋.

(90) Y. Horio, Y. Watanabe, Y. Takakuwa, S. Ogawa : RHEED Patterns Calculated for Pt Nano Clusters on TiO₂(110) Substrate, The 7th International Symposium on Surface Science (ISSS-7), November 3, 2014, Kunibiki Messe, Matsue.

(91) 堀尾吉巳, 高桑雄二, 小川修一, 田代将人 : RHEED 励起オージェ電子分光法の開発と応用, 第 14 回東北大学多元物質科学研究所研究発表会, 2014 年 12 月 5 日, 東北大学.

(92) 田代将人, 堀尾吉巳 : FE-MEED 装置の開発及びそれによる結晶表面観察, 日本表面科学会, 第 14 回日本表面科学会中部支部学術講演会, 2014 年 12 月 20 日, 名古屋大学.

(93) 二村真史, 太田祐貴, 大島義文, 中原 仁, 堀尾吉巳 : プラズマ CVD による炭素薄膜の形成, 日本表面科学会, 第 14 回日本表面科学会中部支部学術講演会, 2014 年 12 月 20 日, 名古屋大学.

(94) 堀尾吉巳, 田代将人, 高桑雄二, 小川修一 : FE-MEED による Ge ハットクラスタの観察, 日本物理学会, 日本物理学会第 70 回年次大会, 2015 年 3 月 21 日, 早稲田大学.

(95) 堀尾吉巳 : 電子線回折法 (RHEED/LEED), 日本表面科学会, 第 59 回表面科学基礎講座「表面・界面分析の基礎と応用」, 2015 年 7 月 1 日, 東京理科大学.

(96) 堀尾吉巳, 高桑雄二, 小川修一 : 中速電子回折と表面波共鳴との相関性, 応用物理学会, 第 76 回応用物理学会秋季学術講演会, 2015 年 9 月 13 日, 名古屋国際会議場.

(97) 田島誠也, 二村真史, 堀尾吉巳 : LPD により形成された TiO₂ 薄膜の特性評価, 応用物理学会, 第 76 回応用物理学会秋季学術講演会, 2015 年 9 月 14 日, 名古屋国際会議場.

(98) 二村真史, 田島誠也, 堀尾吉巳 : プラズマ CVD による炭素針状結晶の形成, 応用物理学会, 第 76 回応用物理学会秋季学術講演会, 2015 年 9 月 15 日, 名古屋国際会議場.

(99) 堀尾吉巳, 高桑雄二, 小川修一, 安部功二 : RHEED 励起による ZnO(0001) 表面からの BRAES プロファイル, 日本物理学会, 日本物理学会 2015 年秋季大会, 2015 年 9 月 16 日, 関西大学.

(100) 堀尾吉巳 : 表面回折手法 (RHEED/LEED), 日本表面科学会, 第 60 回表面科学基礎講座「表面・界面分析の基礎と応用」, 2015 年 10 月 21 日, 大阪大学.

(101) Y. Horio, Y. Takakuwa, S. Ogawa and K. Abe : Auger Intensity Anomalies from ZnO(0001) Surface Excited by RHEED Incident Beam, 10th International Symposium on Atomic Level Characterizations for New Materials and Devices '15 (ALC '15), October 27, 2015, Kunibiki Messe, Matsue.

(102) T. Ishizaki, M. Usui, Y. Yamada : Thermal cycle reliability of Cu-nanoparticle joint, ESREF 2015, 2015 年 10 月, Toulouse.

(103) 三浦大貴, 木野拓真, 大島佑太, 青木翔穂, 山田靖, 石崎敏孝, 佐藤敏一, 真井正則 : パワー半導体用接合の評価と解析, よこはま高度実装技術コンソーシアム創立 9 周年記念シンポジウム, 2015 年 9 月, 横浜.

(104) 柳瀬匡史, 久野敦輝, 伊藤晃平, 高橋直也, 中山雄成, 山田靖, 竹馬克洋 : 炭素系異方伝熱材料の積層化による放熱板の適用可能性, 第 29 回エレクトニクス実装学会春期講演大会, 2015 年 3 月, 東京.

(105) 山田靖 : パワー半導体用接合技術, スマートプロセス学会エレクトロニクス生産科学部会電子デバイス実装研究委員会, 2014 年 12 月, 東京.

(106) Yosuke Okamoto, Seiji Nakagawa : Assessment of visual fatigue caused by flickering lights based on MEG

responses, 計測自動制御学会ライフエンジニアリング部門シンポジウム, 2015年9月, 飯塚.

(107) 加藤和雄:「LOCAL-LCAL/長谷川豪作品」のデザイン論、空間論の検証 2015. 5.13 名古屋工業大学 4号館ホール (MESH 環境デザインセミナー主催)

(108) 加藤和雄:「デザインの彼方へ/加藤吉弘作品」のデザイン論、空間論の検証 2015. 10.20.名古屋工業大学 4号館ホール (MESH 環境デザインセミナー主催)

(109) 佐藤達生:「ゴシック建築線条化の主要過程」『中世における<建築>—日本とヨーロッパ』(シンポジウム)アンスティチュ・フランセ京都, 2014年11月14日

(110) 久留宮健, 西谷千華, 萩原伸幸:六角形グリッドを積層させた構造システムの耐力-柱断面をパラメータとした検討ー, 日本建築学会 2015 年度大会(関東), 学術講演会, 2015 年 9 月, 神奈川.

(111) 藤森繁:超速硬モルタルを対象としたリバウンドハンマーによる打撃の影響範囲に関する基礎的検討, 日本建築学会, 2015 年度大会 (関東) , 2015 年 9 月, 平塚

(112) 朴相俊, 藤森繁, 牧保峯, 渡辺正雄:東海地方における巨大コンクリート像の現状に関する調査研究 その 2. 聚楽園大仏像, 日本建築学会, 2015 年度大会 (関東) , 2015 年 9 月, 平塚

(113) Jin Ishii, Shinichi Watanabe : Influence of outdoor thermal environment on shaded or sunlit walking path selection of pedestrian, 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment, 2015 年 7 月, Toulouse, France.

(114) 橋本成仁, 嶋田喜昭, 難波秀太郎:岡山市都市部における都市環境特性と交通事故発生状況の関係に関する研究, 土木学会, 第 50 回土木計画学研究発表会, 2014 年 11 月, 鳥取.

(115) 棚橋秀行:室内大型土槽を用いた油汚染地盤の非掘削浄化に関する研究, 廃棄物資源循環学会他共催, 第 21 回 地下水・土壤汚染とその防止対策に関する研究集会, 2015 年 6 月, 福岡.

(116) 棚橋秀行:油汚染地盤の原位置非掘削浄化技術開発に関する室内土槽実験, 地盤工学会中部支部, 第 27 回中部地盤工学シンポジウム, 2015 年 8 月, 名古屋.

(117) 栄優介, 朝倉宏一:消費電力量とスケジュール長のトレードオフに基づく省電力タスク・スケジューリング・アルゴリズム, 平成 27 年度電気・電子・情報関係学会東海支部連合大会, 2015 年 9 月, 名古屋.

(118) 中村香織, 谷寄徹也, 上田浩次, 戎家隆, 野村英之, 鎌倉友男:3 軸振動成分に着目した夏・冬タイヤ判別方法の一考察, 電気学会, ITS 研究会, 2015 年 6 月, 千葉.

(119) 宇佐美孝侑, 佐藤秀樹:OLAP スカイラインキューブに対する範囲問合せ処理の並列実装と評価, 情報処理学会, 第 77 回全国大会, 2015 年 3 月, 京都.

(120) 島貫博, 渡邊豊英, 朝倉宏一, 佐藤秀樹:折り紙初心者のための仮想的折り図教示による操作支援, 電子情報通信学会, 信学技報, 2015 年 6 月, 津.

(121) 佐藤秀樹, 長田茂美:複数検索キーに基づく画像内容検索の提案と評価, 電気関係学会北陸支部, 平成 27 度電気関係学会北陸支部合大会, 2015 年 9 月, 金沢.

(122) 鋤柄求, 今井慎也, 柴田慎一, 田嶋拓也, 阿部武彦, 木村春彦, “季節モデルを考慮したニューラルネットワークによる牛乳販売量の予測”, 日本設備管理学会, 環境・福祉と設備管理研究会, Japan-China Workshop on Logistics Systems and Industrial Engineering 2015 「物流システムと経営工学」, pp.69-74 2015.2.

(123) 松永 亘平, 秋田貴俊, 柴田慎一, 木村春彦, 大藪多可志, “イチゴの植物生体電位による生育状態の評価”, 日本設備管理学会, 環境・福祉と設備管理研究会, Japan-China Workshop on Logistics Systems and Industrial Engineering 2015 「物流システムと経営工学」, pp.57-60, 2015.2.

(124) 秋田貴俊, 柴田慎一, 木村春彦, “ α 波・ β 波成分を用いた脳波データによる情動推定”, 日本設備管理学会, 環境・福祉と設備管理研究会, Japan-China Workshop on Logistics Systems and Industrial Engineering 2015 「物流システムと経営工学」, pp.37-42, 2015.2.

(125) 鋤柄求, 今井慎也, 柴田慎一, 田嶋拓也, 阿部武彦, 木村春彦, “価格モデルを考慮したニューラルネットワークによる牛乳販売量の予測”, 電子情報通信学会, 電子情報通信学会総合大会講演会論文集 2015 年_情報・システムソサイエティ (D-20-5), 174, 2015-03-12

(126) 秋田貴俊, 柴田慎一, 木村春彦, “快・不快音聴取時における脳波による情動評価”, 電子情報通信学会, 電子情報

(127) 安達隼騎, 柴田慎一, 木村春彦, 大藪多可志, “植物生体電位の周波数特性による生育診断のための識別モデル”, 電子情報通信学会, 電子情報通信学会総合大会講演会論文集 2015 年_情報・システムソサイエティ (D-20-8), 177, 2015-03-12,

(128) Andre Cavalcante, Evelyn Lima, Allan K. Barros, Yoshinori Takeuchi, Noboru Ohnishi : Measuring streetscape complexity and its application on maps, 電子情報通信学会, パターン認識・メディア理解研究会, 2014 年 12 月, 福岡.

(129) 池田直史, 出木浦悠人, 松本哲也, 竹内義則, 工藤博章, 大西昇: 音源分離を用いた発話重複区間検出, 電子情報通信学会, 総合大会, 2015 年 3 月, 滋賀.

(130) 畠真之, 松本哲也, 竹内義則, 工藤博章, 大西昇: スマートフォンによる警告音検知システム~基本周波数が連続的に変化する音の検知~, 電子情報通信学会, 総合大会, 2015 年 3 月, 滋賀.

(131) 西切充樹, 松本哲也, 竹内義則, 工藤博章, 大西昇: Web カメラを用いた視線に基づく集中度の評価, 電子情報通信学会, 総合大会, 2015 年 3 月, 滋賀

(132) 堀池一希, 竹内義則, 松本哲也, 工藤博章, 大西昇: 指示対象挿入機能を用いた要約筆記文作成システムの開発, 電子情報通信学会, 福祉情報工学研究会, 2015 年 3 月, つくば

(133) 兼子政孝, 工藤博章, 松本哲也, 竹内義則, 大西昇: 深度センサを用いたスポーツフォームの類似度評価法, 電子情報通信学会, 教育工学研究会, 2015 年 3 月, 徳島

(134) 池田直史, 工藤博章, 松本哲也, 竹内義則, 大西昇: 聴覚障害学生のためのパソコン要約筆記支援の課題, 電気・電子・情報関係学会, 東海支部連合大会, 2015 年 9 月, 名古屋

(135) 畠真之, 工藤博章, 松本哲也, 竹内義則, 大西昇: 独居高齢者のための遠隔家族間回想法コミュニケーションシステム, 電気・電子・情報関係学会, 東海支部連合大会, 2015 年 9 月, 名古屋

(136) 三好真人, 枝植覚, 武田一哉, “局所的な音高遷移パターンの言語依存性に関する分析”, 日本音響学会講演集, 2-5-3, Mar, 2015, 東京.

(137) 三好真人, 枝植覚, 武田一哉, “MIDI 音源を用いた旋律の言語依存性に関する分析”, 音学シンポジウム, Vol.2015-MUS-107, No.53, 2015, 東京.

(138) 不破勝彦, 糸瀬憲, 安部僚馬, 宇野裕貴, 田中智也: LEGO Mindstorms NXT を用いた二輪型倒立ロボットの障害物回避制御, 計測自動制御学会中部支部教育工学論文集, 37 卷, 2014 年 12 月.

(139) 不破勝彦, 田中智也: 固有値問題に基づく最小次元デュアルオブザーバの設計と教育効果, 計測自動制御学会中部支部教育工学論文集, 37 卷, 2014 年 12 月.

(140) 不破勝彦, 成清辰生, 大羽達志: Hurwitz 行列を用いた Lyapunov 方程式の一解法, 電気学会, 平成 27 年度電気・電子・情報関係学会東海支部連合大会, 2015 年 9 月, 名古屋工業大学.

(141) 不破勝彦, 田中智也: デュアルオブザーバを用いた強安定化制御系設計, 電気学会, 平成 27 年度電気・電子・情報関係学会東海支部連合大会, 2015 年 9 月, 名古屋工業大学.

(142) 大塚文雄, 不破勝彦: 植物の生育に必要な気象積算量に対する考察, 電気学会, 平成 27 年度電気・電子・情報関係学会東海支部連合大会, 2015 年 9 月, 名古屋工業大学.

(143) Masahito NISHIZAKI: A Study on The Evaluation System of Retention Technology in Manufacturing Industry., J-T 技術革新セミナー, 2015.10.28, バンコク.

(144) 棚村壽三, 萬羽郁子, 長谷博子, 岩橋尊嗣, 光田恵: 喫煙室の空気環境調査 第 2 報 喫煙終了後におい質の変化, 第 38 回 人間一生活環境系シンポジウム, 2014 年 12 月 6 日, 長崎.

(145) 岩橋尊嗣: 五感の役割及び相互作用, 芳香消臭脱臭剤協議会 平成 26 年度研修会講演, 2015 年 7 月 28 日, 東京.

(146) 城田光穂, 小関在, 光田恵, 岩橋尊嗣, 近藤肇: 天然ゴム臭の臭気発生特性と感覚的消臭に関する検討, 第 28 回におい・かおり環境学会, 2015 年 8 月 25 日, 名古屋.

(147) 岩橋尊嗣, 光田恵: 半導体型酸化触媒による有機物の完全酸化分解反応 (第 1 報) 一溶剤臭一, 第 28 回におい・かおり環境学会, pp92-93, 2015 年 8 月 26 日, 名古屋.

(148) 棚村壽三: 住宅における調理臭の評価・制御方法に関する研究,におい・かおりの知覚と空間設計シンポジウム (日本建築学会環境心理生理運営委員会心理生理のフロンティア小委員会), 2014 年 11 月 29 日, 大阪.

(149) 萬羽郁子, 棚村壽三, 柴田吉見, 都築和代, 板倉朋世, 光田恵: 喫煙室の空気環境調査 第1報 喫煙時の空気質の変動, 第38回 人間-生活環境系シンポジウム, 2014年12月6日, 長崎.

(150) 棚村壽三, 萬羽郁子, 長谷博子, 岩橋尊嗣, 光田恵: 喫煙室の空気環境調査 第2報 喫煙終了後のにおい質の変化, 第38回 人間-生活環境系シンポジウム, 2014年12月6日, 長崎.

(151) 磯崎文音, 光田恵, 棚村壽三: におい物質濃度が臭気質に及ぼす影響に関する検討, 第38回 人間-生活環境系シンポジウム, 2014年12月7日, 長崎.

(152) 光田恵, 村田順子, 棚村壽三: 在宅介護環境における臭気の発生場面の調査, 第38回 人間-生活環境系シンポジウム, 2014年12月7日, 長崎.

(153) 廣瀬正幸, 棚村壽三, 山本健, 光田恵: 味覚を用いた官能評価における被験者選定について, 第38回 人間-生活環境系シンポジウム, 2014年12月7日, 長崎.

(154) 磯崎文音, 光田恵, 棚村壽三: におい物質濃度が臭気質に及ぼす影響に関する検討, 第16回 空気調和・衛生工学会中部支部学術研究発表会, 2015年3月9日, 名古屋.

(155) 小林士剛, 棚村壽三, 光田恵, 柴田吉見: 自動車内装材のたばこ付着臭に関する研究, 第16回 空気調和・衛生工学会中部支部学術研究発表会, 2015年3月9日, 名古屋.

(156) 加藤雄大, 棚村壽三, 廣瀬正幸, 磯崎文音, 光田恵: レモンの香気成分の嗅覚閾値と臭質に関する検討, 第16回 空気調和・衛生工学会中部支部学術研究発表会, 2015年3月9日, 名古屋.

(157) 磯崎文音, 光田恵, 棚村壽三: におい物質濃度が臭気質に及ぼす影響に関する検討, 一般社団法人日本家政学会第67回大会, 2015年5月24日, 岩手.

(158) 廣瀬正幸, 棚村壽三, 光田恵: 鼻腔経由の香りが味覚に与える影響に関する研究, 一般社団法人日本家政学会第67回大会, 2015年5月24日, 岩手.

(159) 棚村壽三, 光田恵, 西澤れい, 笹川叶実, 佐藤香澄: たばこの種類による臭気評価の比較, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(160) 上田実穂, 廣瀬正幸, 山本健, 棚村壽三, 加藤雄大, 光田恵: 三点比較式臭袋法によるレモンの香気成分の閾値測定, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(161) 廣瀬正幸, 棚村壽三, 山本健, 光田恵: 食品官能評価を想定した味覚パネルと嗅覚パネルの選定方法の検討, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(162) 磯崎文音, 棚村壽三, 玉井里奈, 榊原清美, 岩井幸一郎, 今枝孝夫, 中島毅彦, 光田恵: においの連続提示による嗅覚順応についての検討, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(163) 光田恵, 棚村壽三, 山本圭介, 川合秀治, 川村優希: 模擬臭を用いた脱臭性能評価の検討 第1報 模擬臭の作成手法の一例, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(164) 萬羽郁子, 棚村壽三, 柴田吉見, 長谷博子, 光田恵: 喫煙室の内装材への付着臭の経時変動, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(165) 磯崎文音, 光田恵, 棚村壽三: におい物質の温度差における臭気質の変化に関する研究 第2報 硫化メチルとスカトールを用いた検討, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(166) 小林士剛, 棚村壽三, 光田恵, 中村友香, 柴田吉見, 荊美鈴: 自動車内装材へ付着したたばこ臭に関する研究, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(167) 光田恵, 萬羽郁子, 板倉朋世, 都築和代, 棚村壽三, 山下千穂: 高齢者の介護環境におけるにおいに関する研究 第1報 在宅と高齢者施設における調査, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(168) 相武広樹, 光田恵, 棚村壽三, 可児歩夢: 高齢者の介護環境におけるにおいに関する研究 第2報 在宅介護環境における臭気源の調査, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(169) 山村冴未, 佐藤夢子, 棚村壽三, 光田恵, 石黒真衣, 藤井泰樹, 浅野幸康: 模擬臭を用いた脱臭性能評価の検討 第2報 脱衣室の臭気の特性と模擬臭に関する検討, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(170) 山田喜直, 小川由美子, 棚村壽三, 杉浦晃治, 光田恵: 消臭マスクの性能評価及びマスク素材臭のにおいに関する研究, 第28回におい・かおり環境学会, 2015年8月25日, 名古屋.

(171) 廣瀬正幸, 近藤栞, 棚村壽三, 光田恵: レモンの香気成分における嗅覚特性 第1報 温度差による強度、快不快

度の変化, 第 28 回におい・かおり環境学会, 2015 年 8 月 25 日, 名古屋.

(172) 廣瀬正幸, 永田晃平, 高尾真由, 水谷日向子, 棚村壽三, 光田恵: レモンの香気成分における嗅覚特性 第 2 報 溫度差による質の印象の変化, 第 28 回におい・かおり環境学会, 2015 年 8 月 25 日, 名古屋.

(173) 廣瀬正幸, 棚村壽三, 光田恵: レモンの香気成分における嗅覚特性 第 3 報 各香気成分がレモンのかおりへ及ぼす影響, 第 28 回におい・かおり環境学会, 2015 年 8 月 25 日, 名古屋.

(174) 棚村壽三, 光田恵: たばこ臭の許容レベルに関する検討 第 3 報 たばこの種類による評価の比較, 日本建築学会大会学術講演便概集 環境工学 II, 2015 年 9 月 4 日, 神奈川.

(175) 磯崎文音, 光田恵, 棚村壽三: におい物質の温度差における臭気質の変化に関する研究 第 2 報 硫化メチルとスカトールの比較, 日本建築学会大会学術講演便概集 環境工学 II, 2015 年 9 月 4 日, 神奈川.

(176) 光田恵, 棚村壽三: 在宅介護環境のにおいに関する研究 第 3 報 高齢者の居室における臭気の発生要因, 日本建築学会大会学術講演便概集 環境工学 II, 2015 年 9 月 4 日, 神奈川.

作品

- (1) 大嶋和彦: 低剛性エンクロージャによる共鳴音の低減を狙った薄板バックロードホーン, 月刊 STEREO, 2015 年 8 月号, pp.43.
- (2) 滝鼻康太, 富永智浩, (大嶋和彦): 3 次元プリンタを利用したバックロードホーンスピーカーの設計と製作, 月刊 STEREO, 2015 年 8 月号, pp.38-39.
- (3) 宇野享: -ING 宇野享展 「個展」 ギャラリーNICA 2014 年 10/31-11/24 日
- (4) 宇野享: T 邸 (個人住宅改修) 愛知県 2015 年 5 月竣工
- (5) 宇野享: あぶくま更生園 福島県 2015 年 4 月竣工
- (6) 加藤和雄: 「建築↔インテリア」 招聘作品。2015.1.7~11.国際デザインセンター4F デザインギャラリー (中部デザイン団体協議会主催)
- (7) 加藤和雄: グループ老人ホーム(唐山)2015・6~.建築・インテリア・設計・監修業務
- (8) 加藤和雄: 「透過性シェルターの空間構成・演出 NO.2」、インスタレーション、10 月、名古屋平和公園
- (9) 中島貴光: 舞台装置「あらかわ創造舞台芸術祭 2015 能オペラ『王女メディア』」, サンパール荒川大ホール, 2015 年 3 月
- (10) 武藤隆: 武蔵浦和の住宅, 非公開, 埼玉県さいたま市, 2014 年 11 月.
- (11) 杉本幸雄・愛知県教育委員会・NPO 法人「いのちをバトンタッチする会」共同制作
公立中学校道徳授業で使用する「いのちの授業」DVD 制作
2015 年 10 月製作 2016 年 4 月より配布予定
- (12) 高木基充: Love&Peace Poster Exhibition : 2015 年 8 月
- (13) 高木基充: JAGDA 中部 GIFT TREE AICHI ポスター&ポストカード展 : 2015 年 11 月
- (14) 渡部裕子: Blash and Ink 企画展, 立体書の展示(招聘出品および 11 点すべて所蔵作品となる), オーストラリア
アデレード 南オーストラリア州立美術館, 2014 年 9 月 6 日~2015 年 11 月 30 日(期間延長)
- (15) 渡部裕子: アジア創造美術展, 立体書の展示(15 点), 東京都 東京新国立美術館, 2015 年 1 月 31 日~2 月 4 日
- (16) 渡部裕子: オフラインバイアンドトレード, 立体書の展示(招聘出品 10 点), 愛知県名古屋市 ポートメッセ名古屋, 2015 年 3 月 8 日
- (17) 渡部裕子: 蔵ギャラリーこけらおとし 企画展, 立体書と平面作品(招聘出品 15 点), 愛知県犬山市 よあけや蔵ギャラリー, 2015 年 4 月 5 日~5 月 11 日
- (18) 渡部裕子: 境内アート 2015, 立体書の作品展示(12 点), 長野県小布施玄照寺, 2015 年 4 月 18 日~4 月 19 日
- (19) 渡部裕子: Art Expo New York 2015, 立体書の展示(招聘出品 10 点), アメリカ ニューヨーク pier49, 2015 年 4 月 22 日~4 月 26 日
- (20) 渡部裕子: ニューヨーク凱旋個展 アートシップ企画展, 立体書と平面作品(招聘出品 20 点), 愛知県名古屋市 ギャラリーアートシップ, 2015 年 9 月 17 日~9 月 22 日
- (21) 渡部裕子: 朗読ライブ「欲」インスタレーション, インスタレーション作品制作と展示(1 点), 愛知県名古屋市, 2015 年 9 月 8 日
- (22) 井藤隆志: Rin Rin Ring 転がる形状の指輪, リビングデザインセンターOZONE, 3DPrinting×Design 展, 2015

年 10 月 2 日～10 月 4 日

- (23) 岡田心：仏具「ポタリン」, interiorlifestyle TOKYO 2015 sotto, 東京ビッグサイト, 2015 年 6 月.
- (24) 横井健二：あれ水面にも鬼が, 東山動植物園もみじ狩り写真コンクール 2014 入賞作品展示会, 東山動植物園植物会館, 動物会館, 2015 年 1 月 8-12 日, 2015 年 1 月 14-18 日.
- (25) 横山弥生： Everlasting, 個展, Medalia Gallery, NY, 2015 年 5 月.
- (26) 横山弥生： TRIANGL, 展覧会, INTERNATIONAL CENTER OF CCCS, NY, 2015 年 10 月.
- (27) 齊藤慎太郎：第 28 回ユニバーシアード競技大会 女子ハンドボール日本代表ヘッドコーチ 2015 年 7 月
- (28) 齊藤慎太郎：平成 27 年度文部科学省委託事業 女性アスリートの育成・支援プロジェクト デンマーク遠征 チームリーダー 2015 年 11 月

受 賞

- (1) 渋谷涼太、寺嶋一彦、野田善之, 前田安郭：平成 27 年度日本铸造工学会優秀論文賞, 論文「注湯と搬送を並行する傾動式自動注湯機における液面振動固有周波数の推定と振動抑制」, 2015 年 5 月.
- (2) Sachihiro Isogawa : In recognition and with appreciation for the great presentation for 13th ASPF, Trends of precision forging in Japan, 2014-9.
- (3) 宇野享以下 5 名：第 14 回／2014 優秀賞 一般社団法人公共建築協会会長表彰 「幕張インターナショナルスクール」 2014/11
- (4) 宇野享：豊田市藤岡地域交流館・支所公募型設計プロポーザル 1 等, 豊田市, 2015 年 8 月
- (5) 宇野享：豊橋市まちなか図書館（仮称）実施計画策定委託業務プロポーザル一次通過, 豊橋市, 2015 年 6 月
- (6) 宇野享：静岡理工科大学 建築学科棟 設計・監理業務プロポーザル指名依頼（一次通過）, 2015 年 4 月
- (7) 藤森繁：国際トラスコンテストの会：2015 年度日本建築学会教育賞（教育貢献）, 構造技術者を志す学生向けの国際トラスコンテストを通じた継続的教育活動, 2015 年 4 月.
- (8) 渡部裕子：アジア創造美術展 共生藝術賞(東京国立新美術館), 立体書 15 点を 1 組として, 2015 年 1 月 31 日.
- (9) 岡田心：OMOTENASHI Selection2015 金賞, 加湿器「マスト」, 2015 年 2 月.
- (10) 岡田心：OMOTENASHI Selection2015, かまど「コヘツツイ」, 2015 年 2 月.
- (11) 岡田心：GOOD DESIGN AWARD 2015, 印鑑「SAMURA-IN」, 2015 年 10 月.
- (12) 岡田心：GOOD DESIGN AWARD 2015, 仏具「ポタリン」, 2015 年 10 月.
- (13) 棚村壽三：公益社団法人におい・かおり環境協会 学術賞, 2015 年 5 月.

特 許

- (1) 五十川幸宏、升田 裕久、奥村 賢一人、前田 晃平：温・熱間加工用潤滑剤および温・熱間加工方法, 特願 2015-207914, 2015 年 10 月 22 日.
- (2) 村井雅彦、谷本智彦、高木康夫、山岸祐之：エネルギー管理方法、エネルギー管理プログラム、エネルギー管理装置、エネルギー管理システム, 登録 5780827 号, 2015/07/24 登録.
- (3) 山田靖, 臼井正則, 今井誠, 原田直一, 川原英樹：半導体モジュール, 特許第 5807801 号, 2015 年 11 月 10 日.
- (4) 山田靖, 臼井正則, 小島崇, 今井誠, 石野寛：バスバー, 特許第 5671417 号, 2015 年 2 月 18 日
- (5) 渡部裕子：商標登録 5762207 (和菓子屋ロゴデザイン), 2015 年 5 月 1 日
- (6) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516592 号、平成 27 年 2 月 2 日
- (7) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516593 号、平成 27 年 2 月 2 日
- (8) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516594 号、平成 27 年 2 月 2 日
- (9) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516595 号、平成 27 年 2 月 2 日
- (10) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516596 号、平成 27 年 2 月 2 日
- (11) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516597 号、平成 27 年 2 月 2 日
- (12) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516598 号、平成 27 年 2 月 2 日
- (13) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516599 号、平成 27 年 2 月 2 日

- (14) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1516600 号、平成 27 年 2 月 2 日
- (15) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1518512 号、平成 27 年 3 月 2 日
- (16) 井藤隆志、細川光一、大木優一：ガスボンベ。意匠登録第 1527643 号、平成 27 年 6 月 29 日
- (17) 岡田心：ポータブルかまど、意匠登録第 1513175 号、平成 26 年 11 月 7 日。
- (18) 岡田心：火立、香立、リン具、リン棒付き花立、意匠登録第 1516870 号、平成 27 年 1 月 9 日。
- (19) 岡田心：印材、意匠登録第 1518379 号、平成 27 年 1 月 30 日。
- (20) 岡田心：印材、意匠登録第 1518380 号、平成 27 年 1 月 30 日。
- (21) 岡田心：鎖槌、意匠登録第 1523013 号、平成 27 年 4 月 3 日。
- (22) 岡田心：行灯、意匠登録第 1534427 号、平成 27 年 8 月 28 日。
- (23) 岩橋尊嗣、石川綾子、山本哲、伊藤勇治、小田達明：消臭性樹脂容器、特願第2015-155212号、平成27年8月5日。

その他

- (1) 佐藤達生：「ハギア・ソフィア大聖堂学術調査団の仕事」NHK 文化センター名古屋、2015 年 10 月 29 日
- (2) 佐藤達生：「建築遺産とは何か」NHK 文化センター名古屋、2015 年 4 月 3 日
- (3) 佐藤達生：「西洋のドーム建築を見る」NHK 文化センター名古屋、2015 年 6 月 12 日

複写される方へ

本誌に掲載された著作物を複写したい方は、(社)日本複写権センターと包括複写許諾契約を締結されている企業の従業員以外は、図書館も著作権者から複写権等の行使の委託を受けている次の団体から許諾を受けて下さい。著作物の転載・翻訳のような複写以外の許諾は、直接本会へご連絡下さい。

〒107-0052 東京都港区赤坂9-6-41 乃木坂ビル 学術著作権協会
TEL: 03-3475-5618 FAX: 03-3475-5619 E-mail:info@jaacc.jp

アメリカ合衆国における複写については、次に連絡して下さい。

Copyright Clearance Center, Inc.
222 Rosewood Drive, Danvers, MA 01923 USA
Phone: (978) 750-8400 FAX: (978) 750-4744

Notice about photocopying

In order to photocopy any work from this publication, you or your organization must obtain permission from the following organization which has been delegated for copyright for clearance by the copyright owner of this publication.

Except in the USA

Japan Academic Association for Copyright Clearance (JAACC)
6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan
TEL: 81-3-3475-5618 FAX: 81-3-3475-5619 E-mail:info@jaacc.jp

In the USA

Copyright Clearance Center, Inc.
222 Rosewood Drive, Danvers, MA 01923 USA
Phone: (978) 750-8400 FAX: (978) 750-4744

大同大学紀要 第51巻

2016年3月 印刷

2016年3月 発行

編集兼発行者

大同大学
研究・産学連携支援室

〒457-8530 名古屋市南区滝春町10-3

代表者 澤岡昭

印刷所 株式会社コームラ

代表者 鴻村健司

BULLETIN OF DAIDO UNIVERSITY

Vol.51 December 2015

CONTENTS

Reiko Umeda	
Students' perception of their own English skills	1
Ryo TSUBOI	
Visualization of lubricant flow on surface texturing under hydrodynamic lubrication	7
Kazunori Shinohara, Kosei Ishimura, Yoshiro Ogi, Hiroaki Tanaka, Koji Matsumoto	
Repeatability Evaluation Using Contact Finite Element Modeling	11
Kazunori Shinohara	
Special function:Leaf function $r=sleaf_n(l)$	23
(First report)	
Kazunori Shinohara	
Special function:Leaf function $r=cleaf_n(l)$	39
(Second report)	
Yuichi Hashimoto	
Deposition of diamond-like carbon film by chemical solution process	69
Yoshimi Horio, Koji Abe, Yuji Takakuwa	
Polarity Determination of ZnO(0001) Surface by RHEED Rocking Curve	75
Hideyuki Tanahashi	
Laboratory soil tank experiments for the development of generic in-situ purification on oil polluted ground without excavation	81
Yasaki Oishi	
Finding Magic Squares of Prime Numbers with Minimum Constant	91
Shin-ichi Shibata, Takatoshi Akita, Haruhiko Kimura	
Emotion Extraction Method for listening to the Pleasant and Unpleasant Sound using Alpha and Beta Wave on a Simplified EEG	97
Takashi HONDA	
Construction of Experimental Cluster System with Card-sized PC	105
Kenji Yokoi	
The educational effect analysis of the graduation study which tackled welfare service facility's issues	109
Shigeki Ozawa	
A Study on Rail Freight Terminal Actual Condition in Germany	121
Masahito Nishizaki	
THE possibilities and limitations for craftsmanship and traditional techniques	133
Toshiaki Muramatsu, Masahito Nishizaki	
Development and Verification of a Retail Management Internship Program to acquire managerial capabilities	143
Toshiaki Muramatsu, Masahito Nishizaki	
Attempt to acquire managerial capabilities by Problem-Based Learning	181