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Multiscale Modeling of Failure Strain in Off-Axis Tensile Testing of UD-CFRP
by
Kenichi YOSHIOKA,
(Toray Composites (America), Inc., USA)

Yuta KuMAGAI, Ryo HIGUCHI,
(Department of Aerospace Engineering, Tohoku University, Sendai)

Dongyeon LEE
(Toray Composites (America), Inc., USA)

and Tomonaga OKABE
(Department of Aerospace Engineering, Tohoku University, Sendai)

Fiber-reinforced polymer matrix composites are fractured by accumulation of microscopic damage in fiber length
scale. Therefore, accurate prediction of microscopic crack initiation is extremely important to predict failure of
composite structures. In this study, multiscale modeling approach that consists of a macroscopic scale analysis and a
microscopic scale analysis is proposed, and is applied to tensile testing of unidirectional off-axis specimens of
carbon fiber reinforced plastic (CFRP) to predict their failure strain. On a macroscopic analysis, off-axis specimen is
modeled as a homogeneous body, and 3D finite element analyses (FEA) are performed using an anisotropic elasto-
plastic constitutive law to obtain accurate deformation field under off-axis loading. On a microscopic scale, 3D
periodic unit cell (PUC) analyses are conducted by applying strain history obtained from macroscopic FEA to
predict initial cracking strain. Two failure criteria are employed for matrix resin in PUC analysis. The first is the
dilatational energy density criterion for brittle failure, and the second is the ductile damage growth law for ductile
failure. In order to validate the accuracy of proposed multiscale approach, predicted results are compared with the

experimental results. (Received December 28, 2015)

F— TR IXNVFAF—VETY ¥, CFRP, WWIEN, MLV, & )55 R
Key Words  Multiscale Modeling, CFRP, Failure Strain, Periodic Unit Cell Simulation, Off-Axis Tensile Testing
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Fig.1 Dimensions of coupon specimen for uniaxial off-
axis tensile testing.
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Table I ~Comparison of strain ratios on the failure strain.

o o o o

Off-axisangle 15° 20° 30" 45° 60" 75° 90

Stain ratio

1.51 1.30 0.938 1.00 0.994 1.01 0.958
Elub/Ec(‘nlvr
2
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—_ | :
9 1.4 experiments
= 12 1
qoq L | —@—Crack initiation in
= multiscale modeling
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3
3506 +4-©-Corrected cracking |
=y PR . |
<04 strain in multiscale |
02 modeling
0

40 60 80 100
Off-axis angle 0 (degrees)

0 20
Fig.2 Comparison of the simulated initial cracking strains
with the failure strains in the experiment (T700G/

2511).
[
1.8
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-~
X 14
: 12 4 Failure strain in
E experiments (Untabbed)
s 1 ] . © Failure strain in
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= 06 i —o—Crack initiation in
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0.4
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0 . . L .
0 20 40 60 80 100

Fiber orientation 0 (degrees)

Fig.3 Comparison of the simulated initial cracking strains
with the failure strains in the experiment (T800S/
3900-2B).
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Fig.4 Schematic view of macroscopic analysis model.
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Table II  Elastic properties of unidirectional laminates used
in macroscopic FEA.

T700G/2511
Longitudinal Young’s modulus Ei 130GPa
Transverse Young’s modulus E2, E3 8.21GPa
Shear modulus Gz, G13 4.00GPa
Shear modulus G2 2.77GPa
Poisson’s ratio Viz, Vi3 0.260
Poisson’s ratio Vz3 0.480

T800S/3900-2B
Longitudinal Young’s modulus £ 150GPa
Transverse Young’s modulus £z, E3 9.16GPa
Shear modulus Gz, Gi3 4.62GPa
Shear modulus Gz 2.55GPa
Poisson’s ratio Viz, Vi3 0.302
Poisson’s ratio Ve3 0.589
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Fig.5 Comparison of tensile stress-strain curves between
macroscopic FEA and experiments (T700G/2511)".
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Fig.6 Comparison of tensile stress-strain curves between
macroscopic FEA and experiments (T800S/3900-2B).
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Fig.7 FE model for microscopic analysis.
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Matrix elements

Table III Elastic properties of carbon fiber and epoxy resin
used in 3D PUC analysis.

T700G/2511
Fiber longitudinal Young’s modulus F1. 230GPa
Fiber transverse Young’s modulus Er 17.5GPa
Fiber longitudinal Poisson’s ratio V1. 0.17
Fiber transverse Poisson’s ratio v 0.46

Fiber’s coefficient of thermal expansion

-0
for the longitudinal direction @1 Lo
Fiber’s coefficient pf thermal expansion 10x10°/K
for the transverse direction @

Matrix Young’s modulus Em 3.2GPa
Matrix Poisson’s ratio Vm 0.38
Z/Iatrlx s coefficient of thermal expansion 60x10°/K
T800S/3900-2B
Fiber longitudinal Young’s modulus 1. 294GPa
Fiber transverse Young’s modulus Er 19.5GPa
Fiber longitudinal Poisson’s ratio V1. 0.17
Fiber transverse Poisson’s ratio vt 0.46
Fiber’s COCf:flCl?I]t of ther'mal expansion _; 44/
for the longitudinal direction @1
Fiber’s coefficient pf thermal expansion o 4o
for the transverse direction @
Matrix Young’s modulus Em 3.2GPa
Matrix Poisson’s ratio ¥m 0.38
1;/llnatr1x s coefficient of thermal expansion 60x10°/K
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Prediction of Tensile Strength of Unidirectional Carbon Fiber Reinforced Epoxy
Matrix Composites with Spring Element Model
by
Jun WATANABE, Fumihiko TANAKA, Hiroaki MATSUTANI, Haruki OKUDA, Terumasa TSUDA

(Composite Material Research Laboratories, Toray Industries, Inc., Ehime)

Ryo HiGucHI, Go YAMAMOTO and Tomonaga OKABE
(Department of Aerospace Engineering, Tohoku University, Sendai)

This paper describes a simulation method for predicting tensile strength of unidirectional fiber-reinforced epoxy
matrix composites using a spring element model (SEM).The strengths predicted with SEM are compared with
experimentally-obtained data to demonstrate the potential of the SEM. It is found that by utilizing the bimodal
Weibull distribution for estimation of fiber strength distribution, the strengths predicted with the SEM are in a
reasonable agreement with those acquired by resin-impregnated strand tensile tests. We then also showed that the
improvement in the fiber strength distribution in the short gauge length is needed as well as the strength distribution

in long gauge length to enhance the tensile strength of the composites. (Received December 28 , 2015)
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Key Words : Spring Element Model, CFRP, Bimodal Weibull Distribution, Strength Prediction
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Table I  Physical and mechanical properties of TORAYCA
TM T800S and T700S fibers”.

T800S T700S
Bundle strength (GPa) 5.9 4.9
Tensile modulus (GPa) 294 230
Density (g/cm”) 1.8 1.8
Diameter (#m) 5.4 6.9

Table I Weibull parameters of T800S and T700S
obtained by SFT and SFC tests”"*".

oo (GPa) m (<) oo (GPa) mz (-)
T800S 6.9 4.1 8.3 13
T700S 5:2 4.8 6.1 12

Table III Material properties of the matrix used for the
resin-impregnated strand tensile tests.

Matrix initial modulus (GPa) 2.7
Matrix modulus after yielding (MPa) 32
Matrix yield stress (MPa) 24
Matrix shear modulus (GPa) 1.0
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Fig.l Stress-strain curve of the matrix used for the resin-
impregnated strand tensile tests.
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Fig.2 Schematic illustrations of the spring element model
(SEM)”.
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(b) Axial stress concentration on nearby fibers around a
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Fig.3 Comparisons of stress distribution around a broken
fiber: SEM and FEM in the figures denote the
spring element model and finite element model,
respectively.
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Fig.4 Finite element model having twelve fibers in
unidirectional composite. The model is represented
by a30° wedge.

B9 5 2 & CHRIN L7z, #MERCH A R E TN KIET
BT, #HER Y OB O AR B ik o %
BRSNS % 728, BB L 7-#kHE & oS ey L 72
TIATIMZ T, EFBERFIET VB L KA E
TS &N U CHEAERM BEAE & MR 2 SR L o Tk
ELZT v FLARHETFTIVE BT %2475 7. 1E
TIEBCHIE TNV TIE, BRI &) M B ol
IAKLL, 7y ABMHETIVCTIE, SAEEYET
VAU BEMiiI e AR E Lz, FakL722o0F

This document is provided by JAXA.



P, HPSUE, AN, BENGC, HEESIE, ST S, A W, REAK

TN T, B O ARSI R 5 HEED %
WAEDRIET B0 Ic—E TR AV, LEA-T, B
B O A WHEARREULHRAER O BEEE IS C TR 4
CETHZ7, TNHDEFIVICH LT, A4
TRICTEEY 3 2L —3 3 Y &7V, RO BMID
737) FOHMARMEDI0% F TR L7z & & & Rl &
72, MAT, EBORBATEEEZETHHNT,
ﬁ(9>Kﬁ#%%ix7—uyﬁiuwéﬁmtt.

nL=—nsLs/In(1—Fs(c)) (9)

T, nldMAEAR, LGB RS % 5 NS Fi(o)
IFFREWERChH L. By I2ab—v 3 VI
oA S (s) 1210244, fAEE & (Ls) (X 3mm
7 & UNIZAlHED 7315513300 TH 5 .

3 X B B B
T800S 7 & UNIZ T700S & v TR L 72 — F 1At
ORISR T 2 ERRE R EHEY I 2 b —Ta y
I2& ATl E Dk % £ ZF AL Fig. 5 & Fig. 6 121
T.o%B, W, X (9) IRLAEH A XA —
)Y T TEYERWD Z L TEEBORBA R ERE

8
£
O 7 F ‘M
5 L —— S O ED
% AA A'
13 6 8
5 + Calculated (Unimodal)
% 5 F A Calculated (Bimodal)
g ® Experimental
m 4 1 1 1
100 1000 10000 100000 1000000
Size (mm)

Fig.5 Comparison of the size-scaled values obtained from
the SEM simulations and the experimental data for
T800S/alicyclic epoxy resin composites.

7
£ 6 r
<
=
o5t m&===a&mmrp
[
A7 # Calculated (Unimodal)
_% 4 F Acalculated (Bimodal)
g ® Experimental
Mo L . i
100 1000 10000 100000 1000000
Size (mm)

Fig.6 Comparison of the size-scaled values obtained from
the SEM simulations and the experimental data for
T700S/alicyclic epoxy resin composites.

L7zfER % /R L C\wb. Fig. 512719 T800S & w72
T, 2512 & 0455 N5 [IRIEIE O I Ml i6 1
GPa TH - 72DIZx LT, e il oo Bk & 45

WZH— A TV oA & v ﬁﬁv:1b~ya/f
136.6GPa T& V), EBE L KL THI %D E T
WTHotz, ), HiiERESmICEET 1 75
FaxHWBEY I 2L —3 3 »TlE, 5liEMEDF
Yl 136.4GPa TH » 72. ZDMEIL, EBFERORK
fﬁ“fv&)% 3GPa lZxf LT3 %DERTH Y, Fh

WRARER PN TELZ EERLTWA, Bifh
F'l?Eﬁ&T(WiT?OOS ORI B VTR
ENTHEY, Fig. 6 1IREND L1, REMHMEDH
Ak AfE O 53 A | TF/\W A TNoA & 72T HlRE R 1T
H—" 4 TNGAG & I a & i LT, FEE 3
L OHERACKRBTEL 8 0b2 b, MAT, B
ET A TV & W72 E O T ME ;t, H—TA7

A WA LI L TIRW S & A s, je ik
Tf@fE.ifiii TR B VT B HLoAE O 2 53 A AS— T [
IR ISR E BT LI e bh o7z, INHD
AL, —HIMOLRIRED S B2 bR L7280
W&, SRR I 0 HLAHE DR I 53 A | JJIJK’C%,AEszﬂZ
®Eiiﬁiﬁ&ﬁ:1£9ﬁiﬂﬁ£“%h IONTHOEDLLENHLI L%
AR LTBY, HEE IS o HAHE R RE oA 12 5
HEHEEE N DN E W A ARG E IS 5 2 <‘:T“
Joé Tl O B R EE AT & BEET T A LU H B 2
ERTHDTH 5.

KA, MRHERCH 2S5 TN AT IO W T,
B O A A IEELHE 70| ")JlJKfitTﬁ;’HwJ%'?)lx;B
B0 §7L\IHEE7|J;ET)I/75:H?I\/>’C By Ial—3
VAT o AR FIZ oW TR T 5. KAk YR TV
w7 i;%{j@r**b EOTADOMRE Fig. TITRT.
B, Hindlknt&mﬂﬂi AL T700S DA T A 7 V43 Ai
MW Fig. TIWORENDL LI, I T AD
F%?Jﬁ’:Ciusa“‘i(L@aa&kniﬁﬁd&J%—r)lx Jowf bR E BES
BN LD A, Fig. 8 (SRR O UL ICHFAE T

6.0
Hexagonal
= 50 I wonme Square T,
% 40 ——— Random
\; :
7]
£ 30
171
= 20
A 10 |
0-0 L L
0 1 2 3
Strain (%)

Fig.7 Comparison of bundle stress-strain curves obtained
from the SEM simulations : hexagonal, square and
random fiber packings.

PR AT L 530

This document is provided by JAXA.



EREFRET V& MV 7o —J710 e SRt/ T 8 % S A RE b [R5 )

1.10
s #Hexagonal
E 1.08 | ASquare
4= *Random
= X
2 106 |
5 104 |
=
S 102 } Aﬁ
g *e o
2 100 | ok e 4
7

0_98 L L 1 L il

0 1 2 3 4 5 6

Normarized distance

Fig.8 Comparisons of axial stress concentration on nearby

fibers around a broken fiber: hexagonal, square
and random fiber packings.

LMD ERREA R L TB Y, Mo
B THEIICAL LMETH A, BB, NAEEH L
FIZRCHE TV D T, AT AR O BT e %
IR ASHE oL 2 © Se B L 7ttt o0 & o0 BRE TR
AL LA IR L TBY, 7 7 ARHETFNIZOWN
Tdﬁﬁ%%ﬂ%%@ﬁ%%ﬁﬁttﬁ&ﬁtfw%
Fig. 8 IZ/REN B £ 912, WEWTAEL B (S A5 4E 3 4 il
HEDIE BRI BT b MEHERCA O\ S L E S
BN S, MRAMERLS 25 [IRRIE T~ K E
NSV EDDH D, Swolfs 5L, HREHZEZ
W2 2 & T—J 1M O [R5R K33y o
WEAREI L CTWa, FHEDIE, fhift% E RSB
LT v FABH) L 72 TS B THEWREGE O I <
AR S BAEZ I EP RIS R B 2 2 2R
LTWa., AT, BERrkHET e S e 3 4 ek

LIRAKDILIEFRIITNL.23TH L DD, FlE
SR AT TIODERREO BTN S W T & 2

LTwa. [ERIS, AWIZECHEH L holidh)e
TINZBWTYH, WD < \HFET AT &
B ) E AR

FHLTWLIEDRAEDLND
(Fig. 8). WA T, KGN L7284 05 [5ERAR
I O EAERIN L T, BRWrhHE T £ 2 AR AE $ 5 ikt
WCIHEFPEALICCWERETH L LD, 20
fEIZ/NE L, ARSI E 7 IV IE1.050, DU ILE )
ETIVIEL048B L T ¥ & A A E 7131066 T
Hotz. TNHLDOZ LD, KIFFETHOLNTVES
HRAHERCHIE 7V D IR 5 I I 2E PR o 72 5
FHRMEICKE LB RITSVEEZLNL.

HZ 7RI
O

T W

4 ¥ =
AHWFFETUL, fe Rl DS —J5 BN L 72 e Sk
w77 ATy 7 (—J) OMHERL AT B

55 RME T 24T HAYT, Mtz S ARy L 72

F284E 3 A

WHIMERE LT, <) v 7 2A%EARRIED
HEFTDMGFINEREEE L IThEZT T L2 H
WY 32— a v RERLZ. AT, Eh

BRETNVOGIRME T L L ComREN: % MEE

THHMNT, By Ial—Ya L FllEERE

EFHERE DR E T~ 72, BoNHMBIILD T L

BYTHA.

1. R D MR A6 (A T A T VoA %
WHTAZ LT, ﬁ*W{Tw“%%mwf%%
LT, FEBRIZ X DIE SN EME & R
BCFHITas t7b biroi.

L AR O E S %R BHRBEON LD 7z0|2
Eﬂ&ﬁﬁ@%ﬁ#%%%h mzfﬁﬂﬁﬁﬁ
D HBHERE IOV T L EOLLENH B T
k%i‘bf:.

. A THOWZRHRESMII B W TE, #iERdy 2
D INFES 2 5 O R I ATAE 5 B ikt o b o 4 rP AR 44
1252 B BIINS L, TSR L TH g

1252 % D/NEWT Ebhrsi.

Bl 3an
P

il

Z X ™

Curtin, W.A., J. Journal of the American Ceramic
Society, 74, (1991), 2837.

Curtin, W.A., Journal of Composite Materials, 34,
(2000), 1301.

Okabe, T. and Takeda, N., Composites Part A, 33,
(2002), 1327.

Okabe, T., Takeda, N., Kamoshida, Y., Shimizu, M.
and Curtin, W.A.,
Technology, 61, (2001), 1773.

Okabe, T., Sekine, H., Ishii, K., Nishikawa, M.
Takeda, N., Composites Science and Technology, 65,
(2005), 921.

Okabe, T., Ishi, K., Nishikawa, M. and Takeda, N.,
Advanced Composite Materials, 19, (2010), 229.
Watanabe, J., Tanaka, F., Okuda, H. and Okabe, T.,
3, (2014), 535
Watanabe, J., Tanaka, F. and Okabe, T., In . 38th
Conference of the Japan Society for Composite
Materials ; (2013), 171.

T800S and T700S carbon fiber date sheet <www.

£
=

»

Composites Science and

and

Advanced Composite Materials, 2

torayca.com>.

Okabe, T. and Takeda, N., Composites Science and
Technology, 62, (2002), 20.

Swolfs, Y., Verpoest, I. and Gorbatikh, L., Composites
Science and Technology, 114, (2015), 42

This document is provided by JAXA.



—

=
i X

FHCFRPDEIARIFMEIC R I THMROERE T h D &

B WMo

S

Effect of the Crimp Gap between Fiber Yarns on Tensile Properties of
Plain Woven CFRP Laminates

Junji NoDA and Masatoshi SEKI
(Department of Mechanical Engineering, Faculty of Engineering, Yamaguchi University, Ube)

The positive use of carbon fiber reinforced plastics (CFRP) contributes to the low carbon society because the

weight saving of their structures achieves the fuel-saving. Recently, the plain woven CFRP laminates are used for

structure of ship and automobile. In the laminating process of the plain woven CFRP laminates, the relative gap of

the crimp position between the periodical fiber undulations occurs. However, the relationship between this gap and

the mechanical properties has not been clarified enough. In this study, therefore, the effect of the relative gap of the

crimp position between the periodical fiber undulation on tensile strength and microscopic damages of plain woven

CFRP laminates was investigated experimentally and numerically. As the result, the tensile strength of CFRP

laminates with staggered sequence of the crimp gap was lower than that with symmetry sequence. These tensile

strengths were also related with mode I type transverse crack density occurring.

(Received November 11, 2015)
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1 Introduction

Carbon fiber reinforced plastics (CFRP) laminates have
often been used for aerospace structure because of their
superior specific stiffness and strength. Furthermore, plain
woven CFRP laminates are nowadays applied to many
industrial products such as leisure items, components of
cars and ships, reinforcement of bridge piers and others.
Especially, for the transporters, the application of CFRP as
some structures reduces their weight and cuts the amount of
CO: exhausted from them due to the light weight and high
stiffness of carbon fibers. Therefore, CFRP can achieve the
low carbon society and save the progress of the global
warming. Alongside these recent advances in CFRP the
searches for high performance structures have requirements
such as cost reduction and process omission. Woven fabric
CFRP with better specific stiffness and strength, better
dimensional stability, high toughness and efficient
manufacturability could bridge the gap between
performance and economy to a large extent. For the product

of plain woven CFRP, it is rare to use plain woven CFRP as

’ AR 20154F11H 11H
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laminae and almost used as laminates. Therefore, the
necessity of the study about the mechanical properties of
the plain woven CFRP laminates was demanded. Many
studies have focused on experimental and analytical
approaches to explore the mechanical properties of plain
woven CFRP laminates’ . Early works drew attention to
the elastic properties of the laminates with the undulation of
yarn or the gap between adjacent yarns'"”. Ishikawa et al”
have paid attention to the prediction of the strength of the
laminates with the undulation. On the laminating process,
the plain woven fabric is interwoven with equally textural
pitch, whereas the gap of each lamina is not adjusted. Thus
the crimp gap, that is the misalignment of the crimp
position on each lamina, arises in plain woven laminates.

” have evaluated the mechanical

Previous studies”
properties of plain woven CFRP without the crimp gap.
Some researchers revealed the effect of crimp gap on
Young’s modulus of plain woven FRP laminates
analytically""”.

It is well known that CFRP laminates fail due to the
accumulation of microscopic damages such as transverse

7)~10

cracks, delaminations and fiber breaks” . It is expected

that the occurrence of such damages are related to the

This document is provided by JAXA.
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degree of crimp gap, and finally it might influence the
strength of CFRP laminates. Although Ganesh et al’ have
investigated the strength of plain woven FRP laminates
with misalignment under shear loading, the relation
between the strength and the microscopic damages was not
elucidated. Thus, the purpose of this study is to clarify the
effect of crimp gap on microscopic damage and tensile
strength of plain woven CFRP laminates experimentally

and numerically.

2 Experimental Procedures

2+ 1 Materials and tensile tests

Plain woven CFRP laminates were prepared in this study.
The laminates consist of TR50S carbon fibers (TRK101-12
K Mitsubishi Rayon Co., Ltd) and epoxy resin. The
stacking sequence of the plain woven CFRP Jaminates was
[0/90],. These CFRP laminates had different crimp gaps
along the longitudinal direction, so that the crimp gaps were
measured by the optical microscopic photograph on the side
faces. It was confirmed in the present study that the crimp
gap along the width direction of specimens was negligible
amount. The gage length, width and thickness of the
specimens were 137, 15and 0.83mm, respectively. The
tapered GFRP tabs were bonded at the end of specimens.
The tensile tests were carried out at 1.5mm/min of the cross
head speed by using an Instron-type testing machine(IS-
5000, Shimadzu Co., Ltd),following JIS K 7083 (JIS:
Japanese Industrial Standards).
2+ 2 Laminates classification of erimp gaps

The crimp gap was observed through an optical
microscope on the side faces including warp yarns. Fig. 1
(a) and (b) show the crimp gap of symmetry and staggered
sequences.From this crimp gap, we supposed that the shape
of the in-plane warp yarns was a sine curve, and the relative

phase lag @ in the warp direction was defined as follows :

P

I L (1)

Where, @ : phase lag, Lue : unit cell length and L : crimp

Warp fibers Weft fibers

(a) Symmetry sequence (@=174")

7
harip s T eft fibher

(b) Staggered sequence (@=106")

Fig.1 Side observation of plain woven CFRP laminates.

(c) Symmetry sequence(a=180°)

Fig.2 Schematic models of woven fabric lamination.

gap. Also, we defined @=0" when the undulation of
adjacent warp yarns are the parallel sequence and a=180°
when the undulation of adjacent warp yarns are the
symmetry sequence. Furthermore, the staggered sequence
was defined in the range of 0°<e<180°. Fig. 2 (a), (b) and
(c) show the schematic models of laminate configurations
as parallel (@=0"), staggered (0°<a<180°) and symmetry

(@=180") sequences, respectively.

3 Experimental results
3+ 1 Transverse cracks
To investigate the relationship between the phase lag and
the transverse crack occurrence in weft yarns, the side in
plain woven CFRP laminates was observed after tensile

tests. Fig. 3 (a) and (b) show the examples of the observed

(a) Mode I type crack (b) Mode II type crack

Fig.3 Mode I and II type transverse cracks in weft yarns.

MY AT L 3k
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transverse cracks in weft yarns. The transverse crack in Fig. 6 g

3 (b) is inclined compared to the transverse crack in Fig. 3 E 5 ° ° O Mode 11

(a). It is known that the vertical cracks, as shown in Fig. 3 :E’ ° °* e

(a), often appear in CFRP, especially cross-ply CFRP é l - ; b s« °

laminates. On the other hand, the inclined shear-type crack, "g 3 ,?5. © %3 b ° e

as shown in Fig. 3 (b), is inherent in plain woven CFRP é 2t e ° ° o* . 9 e ©

laminates. Thus the vertical cracks and the shear-type é 1 o © 2 © ¢} 05 o Oo o

cracks can be classified into mode I and II type cracks, =

respectively. 0 a5 90 135 180
Phase lag a., ©

3+ 2 Effect of the crimp gap on the transverse cracks
occurrence

Fig.4 Relationship between transverse cracks density and
phase lag.

In order to explore the transverse crack occurrence

@ Warp yarn () :Weft yarn D) Crack
: Compression due to yarn undulation recorvery

Loading direction

(a-2) Crack occurrence mechanism for parallel sequence (@=25")

@ :Warp yarn () :Weftyarn (7 : Crack >
: Compression due to yarn undulation recorvery Loading direction

(b-2) Crack occurrence mechanism for staggered sequence (@=61")

(___):Weftyarn () :Crack I

: Compression due to yarn undulation recorvery Loading direction
(c-2) Crack occurrence mechanism for symmetry sequence (@=174")

Fig.5 Internal force models of the parallel, staggered and symmetry sequence.
SER284E 3 A = 23 —
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quantitatively, the relationship between the transverse crack
density and the phase lag was investigated. In this study the
transverse crack density means a number of mode I or II
type cracks per one layer divided by the observation length.
Fig. 4 shows the relationship between the transverse crack
density and the phase lag. It was found from this figure that
the mode IT type crack density decreases when @ is close to
180°, while mode I type crack density decreases when @ is
near 45° or 135°.

Fig.5 (a-1)~(c-2) show the edge observation and
schematics of crack occurrences for the parallel, staggered
and symmetry sequences of plain woven CFRP laminates.
As shown in Fig.5 (a-2), in the parallel sequence, the
compressive forces in weft yarns due to the undulation
recovery of warp yarn occur along same direction. It is
presumed that the force doesn’t affect the occurrence of
mode IT type cracks but mode I type cracks. As shown in
Fig. 5(c-2),in the symmetry sequence, the compressive
forces in weft yarns are faced. These faced forces help the
mode I type crack opening due to Poisson effects. Thus, the
mode I type cracks become easier to arise in the weft yarns
in the case of the symmetry sequence. On the other hands,
for the staggered sequence as shown in Fig. 5 (b-2),the
compressive force in weft yarns occurs to stagger directions
by gap of restraint from phase lag in each lamina. Therefore,
the shear force works to the inside weft yarns. Matsuda et
al” also demonstrated the occurrence of shear force in the
weft yarn owing to warp yarns analytically. Thus the mode
II type cracks become easier to arise in the staggered
sequence. In the case of @ =90° at the staggered sequence,
the mode I type crack density increases, because the length
of which the mode 1 type cracks can occur in the range of
arbitrary length (i.e. the unit cell length) increases, and the
compressive forces owing to warp yarn affect the
occurrence of mode I type crack uniformly along the
longitudinal direction.
3+ 3 Effect of the crimp gap on the tensile strength

Fig. 6 shows the relationship between the tensile strength
and the phase lag. It was found from this figure that the
tensile strength distribution against the phase lag has a local
minimum near @=45" and 135°. In other words, the tensile
strength was greatly affected by the phase lag.

Fig. 7 shows the relationship between tensile strength
and the mode T and II type transverse crack densities. In this
figure, the tensile strength increases with increase in mode I
type transverse crack density. On the other hand, the tensile
strength is not sensitive to mode II type transverse crack
density. The correlation coefficients of tensile strength with

mode I and II type transverse crack densities were 0.705

45 90 135 180
Phase lag a, ©

Fig.6 Relationship between the tensile strength and the

phase lag.

1000
& 800+
=
g L A o
;:3(, 600
5 400}

200} —— Mode [

-O- Mode II
0 . . . R .
1 2 3 4 5 6

Transverse crack density, /cm

Fig.7 Relationship between tensile strength and mode I
and II type crack densities.

and -0.276, respectively. From this result, it is suggested
that higher tensile stress is brought by accumulation of the
mode I type cracks, and occurrence of mode II type cracks
are not related with change in tensile stress. From Fig. 6 and
7, it is implied that there is a range of phase lag which

decreases the tensile strength.

4  Finite Element Analyses
4 -1 Effect of the crimp gap on the tensile strength
The experimental results discussed in previous section
indicated the importance of the phase lag to control the
failure mode and tensile strength. However, the stress
distribution change due to phase lag for plain woven
laminates is always complicated and it is necessary to verify

the experimental results by the numerical analysis. A three

E 18:47:01

Fig.8 FEM mesh for PARO.
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Fig.9 FEM mesh of warp and weft layer.
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dimensional finite element model of the plain woven
laminates withSkinds of phase lag for warp layers was
developed using the ANSYS 15.0 finite element code.
Finite element mesh and model size for example of PAR 0
(@=0")was shown in Fig. 8. The warp and weft layers were
modeled using 8-node hexahedron solid element and the
resin region was modeled using 4-node tetrahedron solid
element. The resin region elements shared the nodes with
some warp and weft layer elements on the boundary
between them. These warp and weft mesh in PAR 0 (¢=0°),
STA 45 (@=45"), STA 90 (@=90"), STA 135 (@=135") and
SYM 180 (2¢=180°) were shown in Fig. 9-(a)~(e),
respect’vely. The warp and weft layers have an off-axis
angle (¢ or ¢) along the x-direction and y-direction,
respectively. These layers with arbitrary angles are also
modeled as shown in Fig. 9. As the boundary condition, the
nodal displacements of y at OABC and DEFG planes in Fig.
8 are set as zero and the displacements of x at OAED plane
are also set as zero. The nodal displacements of x at CBFG
plane are set to arbitrary values corresponding to 1% strain.
The 3-dimensional off-axis stiffness matrix Q;,- based on
these angles was shown in appendix A. The material
constants of the warp, weft layers and resin elements are
shown in Table I and Table II.

TableI Material constants of transversely isotropic
materials for FE analysis.

Warp Weft
Young’s modulus £1, GPa 118 8.96
Young’s modulus £2, GPa 8.96 118
Young’s modulus £3, GPa 8.96 8.96
Shear modulus Gz, GPa 4.38 4.38
Shear modulus G23, GPa 3.01 4.38
Shear modulus Gs1, GPa 4.38 3.01
Poisson’s ratio V12 0.30 0.023
Poisson’s ratio Va3 0.49 0.30
Poisson’s ratio Vsi 0.023 0.49

Table I Resin material constants of isotropic materials for

FE analysis.
Young’s modulus Em, GPa 3.5
Poisson’s ratio Ym 0.39

4 + 2 Numerical analysis results

Fig.10 shows the calculated maximum values of ox
components for weft layer and resin elements normalized
by a mode I transverse crack occurrence stress (=75MPa)
onto the relationship between the mode I type transverse
crack density and phase lag as shown in Fig. 4. The element
positions located the maximum stress for all models were at

the resin region near the crimp warp or weft layers. It was
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found that the normalized maximum stress depends on the
phase lag and the normalized maximum stress decreases
when @ is near 45° or 135°. This dependence of the phase
lag on the mode I type transverse crack occurrence was
similarly with experimental results. Fig.11 shows the
calculated maximum values of 7w components for weft
layer and resin elements normalized by a mode II transverse
crack occurrence stress (=92MPa) onto the relationship
between the mode II type transverse crack density and
phase lag as shown in Fig.4. The element positions located
the maximum stress for all models were at the resin region
between the crimp warp layers. It was found that the
normalized maximum stress decreases when @ is close to
180°. This tendency of the phase lag on the mode II type

transverse crack occurrence was also agreement with
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experimental results. Finally, Fig.12 shows the calculated
maximum values of 0r components for warp layer elements
normalized by tensile strength of unidirectional laminates
(=2250MPa) onto the relationship between the tensile
strength and phase lag as shown in Fig.6. The local
maximum peaks of these normalized maximum stress didn’t
appear near @=45" and 135° at which the tensile strength
distribution against the phase lag has a local minimum as
mentioned above. Thereby, the dependence of phase lag on
the tensile strength could not be explained by the maximum
ox components for warp layer elements. The arrangement of
adjacent warp layers was then investigated since the
accumulation of fiber breakages in warp layers brought the
final failure of laminates. The o0r distributions for warp
layer in the case of all models are shown in Fig.13. The
adjacent elements in the neighbor warp layer of the warp
layer with maximum stress elements were denoted in these
figures. The distance between the maximum stress element
and the adjacent element was also shown in Fig.12. It was
presumed that these distances at @=45" and 135° has some
local minimum values, in sum, these elements are close, so
that the accumulation of fiber breakages easily occurs due

to the stress concentration near the first warp layer breaks.

5 Conclusions

In the laminating process of the plain woven CFRP
laminates, the relative gap of the crimp position between
the periodical fiber undulations unavoidably occurs. In this
study the effect of the relative gap of the crimp position
between the periodical fiber undulation on tensile strength
and microscopic damage occurrences of plain woven CFRP
laminates was investigated experimentally and numerically.
As the result, it was found that the mode I type transverse
crack density decreases when the phase lag, i.e.
misalignment of the crimp gap, is near 45° or 135°. It was
cleared from the analyses that the stress distributions in
weft yarns and resin regions were changed due to the
structural crimp gap and the change induced the crack
occurrence. Thus, the tensile strength was greatly affected
by the crimp gap change. It was presumed from analyses
that the change of distance between the warp layers due to
the crimp gap induced the accumulation of fiber breakages

which bring the final failure of the laminates.

Appendix A
Laminated composites are constructed from orthotropic
plies (laminae) containing unidirectional fibers or woven
fabric. Generally, in a macroscopic sense, the lamina is

assumed to behave as a homogeneous orthotropic material.

SPH284E 3

The constitutive relation for a linear elastic orthotropic

material in the fiber coordinate system is

o) [Qu Qu Qs 0 0 0]
02 Qi Q2 Qn 0 0 0 ]]e
O _|Qu @n Qu 0 0 0 ||es (A1)
T23 0 0 0 Qu 0 0 ||7
31 0O 0 0 0 Qs 0|7
T2 0 0 0 QGG, 712

where (0i, 7;) are the stress components and the
engineering strain components (&€:, 7;) are defined in a
manner analogous to them. The @; are elements of the
reduced stiffness matrix using the engineering constants (£,

Gy, Vi), as follows.

1 — v V31 + Vaala Vi + ViV 1
Qu=""——"""E, Q= Ei = Es

4 yi| B 4

- 1 — vy . ) T VsV g _ Vi + VsV :
Q2 == Es, Qu Y E 7 E.
D Gl 1T L _VptVswi g Vo tviva
@3 7 E2, Q Y £, Y £y

QM = G:;z, Q35 = Gz], Qli(i = Gl::
(A-2)

in which

A =1—vivs — VoV —Vigve — 2Vl (A—3)

The stress-strain relation for the transversely isotropic

material property symmetry case is shown as follows.

o) (@1 Q2 Qs 0 0 0 1(e &
02 Qu Qu Qs 0 0 0 &2 &2
03 Qi Qi @z 0 0 0 &3 &3
e [0 0 0 Qu 0 0 ye| TLOTN,
T31 0 0 0 0 Qu ' 0 731 731
Ti 00 0 0 0 5(@i=Qu)lye 710

(A-4)

In this study, the warp and weft layers have various off-axis
angles (¢ or ¢) along the x-direction and y-direction, as
shown in Fig. 9. Here, one case of them is explained as an
example. For a lamina whose principal material axes are
oriented at an angle with respect to the 2-3 coordinate

system(see Fig. A),the stresses and strains need to be

o » 1, x

Fig.A Counterclockwise rotation of principal material axes
(y-z) from arbitrary (off-axis) 2-3 axes.
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transformed. It may be shown that both the stresses and

strains transform according to
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where [T] and [T'] are the transformation matrices, and

[=cos¢, m=sing

(A-7)

From equations (A-4~0), it is possible to establish the stress

-strain relation in the off-axis coordinate system. The

stiffness relation becomes,

Ox Ex Q i
oy & O 12
0z &z Q .
=@
Tyz / Yz Q 14
Tax Yax 0
T o)l 0

(l} 12 Q 13 Q 14 ()
O 22 Q 23 O 24 ()
3 Q 23 Q 33 O 34 O
O 24 Q 34 Q 44 0

0 0 0 @

0 0 0 @

0 e
0 Ey
0 ||e:
0 |7
Qs ||7=
Qm;» T
(A-8)

where the over-tildes denote transformed stiffness elements

obtained from expression provided as follows,

B
Q 1= Qu, Q 1 =12Qu+m*Qs,
Q B =mEQ p+1tQ 1, Q = —ImQwz+1lmQs,
Qx =1Q u+m'Qu+21*m* (Qu +2Qu),
Qz;; =1%m (Qu + Qu—4Qu)+ (1" +7714) Q13,
Q~g4 =—01"m (Q1— Qi —2Qu)+1m* (Qu— Q1 —2Qu1),
Qu=m'Q u+1'Q s +202m?(Qus+2Qu),
Qu=—Im*(Qn — Qi —2Qu)+1%m (Q— Qs —2Qu),
Q u=02m*(Qu—2Qu+ Qu—2Qu)+ (I +m*) Qui,
Qs = 77;3 (Qu1— Q12) +1*Qus,
Q:‘,(s = —%(QH —QIZ*ZQH).QGG :%(Qn —Qu)+m?Qu
(A-9)
References
1) Ishikawa, T. and Chou, T. W., AIAA Journal, 21,
(1983), 1714.
2) Naik, N. K. and Shembekar, P. S., Journal of

10)

Composite Materials, 26, 15, (1992), 2196.

Ishikawa, T. and Chou, T. W., Journal of Material
Science, 17, (1982), 3211.

Ganesh, V. K., Ramakrishna, S., Teoh, S. H. and Naik,
N. K., Materials & Design, 18, 3, (1997), 175.
Matsuda, T., Nimiya, Y., Ohno, N. and Tokuda, M.,
Composite Structures, 79, (2007), 493.

Ganesh, V. K. and Naik, N. K., Composite Structures,
30, (1995), 179.

Fukunaga, H., Chou, T. W., Peters, P. W. M. and
Schulte, K., Journal of Composite Materials, 18,
(1984), 339.

Takeda, N. and Ogihara, S., Composites Science and
Technology, 52, (1994), 183.

Okabe, T., Takeda, N., Kamoshida, Y., Shimizu, M.
and Curtin, Science and
Technology, 61, (2001), 1773.

Noda, J., Okabe, T., Takeda, N. and Shimizu, M.,

Advanced Composite Materials, 15, 1, (2006), 81.

W. A., Composites

MES 2T 5 34%

This document is provided by JAXA.



CF/PAGIEERA D GRS | EE L < BHSEERC
PRI %%ﬁﬂ’géﬁfﬁsﬁﬁfﬁ;ﬁmﬁ%*

g = /NG I L T U AN TR IR
b & 1= ﬁﬁ**** & Eﬁ B

Proposal of Experimental Procedure for Evaluation of Strength of
Repaired Delamination by Thermal Fusion Bonding in CF/PA6 Laminates
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Generally, the repair effectiveness of damages, such as delamination and transverse cracks, in fiber reinforced
plastics has been evaluated based on the mechanical properties of specimens which include the repaired region.
However, to discuss its effectiveness in detail, we should extract the repaired region from laminates. In this study,
we tried to evaluate the effectiveness of repair using thermal fusion bonding (TFB) on the delamination generated
by out-of-plane impact in carbon fiber reinforced polyamide 6 cross-ply laminate. Interlaminar shear test using
double-notched specimen was also carried out to evaluate interlaminar shear strength at the region of repaired
delamination, directly. As a result, the mechanical properties of region of repaired delamination was not recovered
completely, while the delamination was closed geometrically by TFB in certain condition and the reflected wave
from the crack in ultrasonic inspection was disappeared. In addition, it was possible to evaluate the shear strength in
the region of repaired delamination by using interlaminar shear test using double-notched specimen.

(Received January 13, 2016)
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Fig.3 Typical stress-strain curve of CAR_TFB subjected
to impact energy of 2.0J/mm.
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Fig.7 Fracture surface of (a) 90 degree layer (b) 0 degree
layer of specimen with repaired delamination after
interlaminar shear test : arrows indicate sticking of
matrix resin on carbon fibers' .
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Development and Characterization of Thermoset CFRP
using Conductive Polymer Matrix
by
Tomohiro YOKOZEKI,

(Department of Aeronautics and Astronautics, University of Tokyo, Tokyo)
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and Masaru ISHIBASHI
(GSI Creos Corporation, Tokyo)

In this work, we describe the development of carbon fiber reinforced plastics (CFRP) using a polyaniline (PANI)
-based electrically conductive thermoset matrix to enhance its electrical properties. The conductive thermosetting
resin uses dodecylbenzenesulfonic acid (DBSA) and p-toluenesulfonic acid (PTSA) as dopants and divinylvenzene
(DVB) as the crosslinking polymer. The thermal and electrical properties of the PANI-based thermosetting resin are
characterized as part of the work. The developed resin is utilized to fabricate CFRP by a prepreg-based hot press
method. This paper reports on the electrical properties of the fabricated CFRPs, which exhibit excellent electrical
conductivity in the thickness direction. Finally, the electromagnetic shielding properties of the developed CFRP are
demonstrated and compared to traditional CFRP. (Received November 25, 2015)
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Key Words : Conductive Polymer, Composite Materials, Electrical Properties, Thermosetting Resin, Moldability
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Fig.1 Doping and curing mechanism of conductive matrix.
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Fig.2 DTA results from the PANI-based conductive
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Fig.3 Electrical conductivity of the PANI-based
conductive composites as a function of the
processing time at 110°C.
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Table I  Properties of CF/PANI.

Volume fraction of CF % 56.2
Void content % 2.8
In-plane conductivity S/cm 148
Out-of-plane conductivity S/cm 0.74
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Dispersion Simulations of Graphene in Epoxy Resin
by
Shogo YAMAZAKI and Jun KOYANAGI
(Department of Materials Science and Technology, Tokyo University of Science, Tokyo)

This paper simulates dispersion behavior of several types of graphene in epoxy resin. In general, mechanical
properties of graphene composites are improved in range of low fraction of the graphene content; however, the
mechanical properties with high fraction of the graphene content decrease due to aggregation of the nano-filler. It is
an important issue how the graphene disperses in polymer matrix. The present study numerically simulates the
dispersion of graphene, graphene oxide and aminated graphene in the epoxy resin by means of molecular dynamics
(MD). Before that, molecular orbital (MO) method is employed to estimate the electrostatic potential of graphene
and aminated graphene in order to give some information how the graphene themselves aggregate. MO results in
that aminated graphene is expected to disperse by electrostatic repulsion between the functional groups. A
dissipative particle dynamics (DPD) is then employed to demonstrate how each graphene disperse. For the result,
aminated graphene disperses in epoxy resin, because the graphene-graphene interaction is much less significant.
This study calculates a relationship between goodness of dispersion and amine-functionalize ratio.

(Received January 8, 2016)
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Key Words : Composite Materials, Dissipative Particle Dynamics, Molecular Orbital Method, Graphene,
Dispersion Behavior
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Fig.1 Electrostatic potential of graphene and aminated
graphene.
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34 DPDY3alb—Y 3>

DPD ¥ a2l —3 3 Vd&FETMDOREL D K&
BAT—=NTHY, KDL O TEIHEAMOBLT
2o, LT A LN THE. T 72,
TIMT T Ty, BT 7 2y, TARF VR
CBLTIEE/ =% 12DDPDRFEEZTID
DPD Fi - & 10022 F 5 2 LIk o TR v =& L
7= (Fig. 2 ). Bond_Potential {& Harmonic”, Angle_
potential |& Cosine”, Pair_Potential & Cosine & L 7.

B L7 AR A AR OfE % W, DPD ¥ 3 =
L—varyafro/. FHHEEMHFE LY 4 X13nm X
13nm X 13nm, 4t =4.5fs, b —% )V X7 » 7100000,
Dynamic_Algorithm (£ DPD, 79 7 x>, 73 /L7
FT7 2 RO 5 7 = > OFIZ40M8 & L7,

Fig.2 Coarse graining of (a)graphene, (b)aminated
graphene, (c)epoxy resin.
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Fig.3 DPD simulation of (a)graphene (b)aminated
graphene (c) graphene oxide in the epoxy resin.
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Fig.4 Ratio of functional contribution and the interaction
between different kinds of molecules.
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Proposal of Novel Interface-control Method in HAp/PLA Composites for
Bone Regeneration by Reaction-control Utilizing Photodissociable Protective Groups
by
Mototsugu TANAKA,
(Department of Mechanical Engineering, Kanazawa Institute of Technology, Nonoichi)

Ryohei YASUDA, Yusuke TsuDA
(Undergraduate Student, Kanazawa Institute of Technology, Nonoichi)

and Isao KIMPARA
(Research Laboratory for Integrated Technological Systems, Kanazawa Institute of Technology, Hakusan)

The biocompatible materials composed of hydroxyapatite (HAp) particles and poly-lactic acid (PLA) are one of
the most promising candidates as scaffold materials for bone regeneration, owing to the bone-conductivity of HAp
and the biodegradability of PLA. However, the poor fracture properties, mainly caused by the weak interface, are
one of the factors limiting their practical application. In this study, we tried the “hybrid” interface control in HAp/
PLA composite materials using both pectin and chitosan as the surface treatment polymers in consideration with the
biological affinity. Here, photo-dissociable protective groups, which can be eliminated from the protection site by
the irradiation of ultraviolet rays, were applied into carboxyl groups of pectin, in order to avoid the direct chemical
reaction between pectin and chitosan. In order to evaluate the effect of the hybrid interface control on fracture
properties of HAp/PLA composite materials, tensile tests for un-modified and hybrid-interface-controlled HAp/PLA
composite materials were carried out, followed by the observation of fracture morphologies and surfaces. Finally,
the effect of the hybrid interface control on the fracture behavior of HAp/PLA composite materials was discussed

from the viewpoint of the interfacial mesoscopic structures. (Received December 29, 2015)
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Key Words : HAp/PLA, Interface-Control, Bone Regeneration, Scaffold, Photodissociable Protective Groups
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Measurement of Impact Force from Lightning on Carbon Fiber Reinforced Plastic
by Using Optical Fiber Sensor
by
Yoshiaki AKEMATSU,
(Department of Industrial Information, Faculty of Industrial Technology, Tsukuba University of Technology, Tsukuba)

Kazuro KAGEYAMA
(Department of Technology Management for Innovation, The University of Tokyo, Tokyo)

and Hideaki MURAYAMA
(Department of Systems Innovation, School of Engineering, The University of Tokyo, Tokyo)

Carbon fiber reinforced plastic (CFRP) is widely used for many structures because of its high strength and rigidity
characteristics. However, impact damage such as in-flight lightning strike decreases the strength of the material. In
the case of metallic materials, there is only a low possibility of serious damage resulting from lightning strike, but
impact damage accumulation may occur in CFRP, and damage minimization measures are important. We have
investigated possibility to measure the impact force during lightning by using optical fiber sensor. As the results, a
gap voltage of several hundred volts results in lightning damage, and a crater forms along the current flow direction.
We found that the lightning trace depended on the direction of the carbon fibers and not on the direction of current
flow. The optical fiber sensor was able to measure the pressure from the lightning strike when the applied voltage

was several hundred volts. (Received July 21, 2015)
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Key Words  Optical Fiber Sensor, Carbon Fiber Reinforced Plastic, Lightning Test, Damage, Displacement
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Fig.2 Optical fiber sensor system.
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(b) Behavior of current and voltage after lightning

Fig.3 Typical current and voltage signal waveforms (Zn).
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Fig.6 Digital micrograph of the lightning trace when the
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Fig.7 Typical current and voltage signal waveforms for an
applied voltage of 500 V and an Electrode-Supply-
Point distance of 10 mm (The current flow is
perpendicular to the longitudinal axis of the fiber).
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Fig.8 Digital micrograph of the lightning trace when the
current flow is perpendicular to the longitudinal axis

of the fiber.
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Fig.10 Current and optical fiber sensor signals for an
applied voltage of 500 V.
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Fig.11 Comparison of time-frequency contourmap,
waveform and FFT analysis.
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Fig.12 Displacement behavior of optical fiber sensor.
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