
A Task Scheduling Method after Clustering for Data Intensive

Jobs in Heterogeneous Distributed Systems

Kazuo Hajikano*1, Hidehiro Kanemitsu*2, Moo Wan Kim*3, and Hee-Dong Kim*4

*1 Department of Information Technology and Electronics, Daiichi Institute of Technology.

k-hajikano@daiichi-koudai.ac.jp

*2 Global Education Center, Waseda University, Tokyo Japan. kanemih@ruri.waseda.jp

*3 Department of Informatics, Tokyo University of Information Sciences, Chiba Japan.

mwkim@rsch.tuis.ac.jp

*4 Hankuk University of Foreign Studies, Yongin Korea. kimhd@hufs.ac.kr

Abstract
Several task clustering heuristics are proposed for allocating tasks in heterogeneous systems to achieve a good
response time in data intensive jobs. However, it has been one of challenging problems that how each task should
be scheduled after a task allocation by a task clustering. We propose a task scheduling method after task clustering,
leveraging Worst Schedule Length (WSL) as an upper bound of the schedule length. In our proposed method, a
task in a WSL sequence is scheduled preferentially to make WSL smaller. Experimental results by simulation
show that the response time is improved in several task clustering heuristics. In particular, our proposed scheduling
method with the task clustering we proposed previously outperforms conventional list-based task scheduling
methods.

Category: Task Scheduling
Keywords: Task clustering, Task scheduling, Heterogeneous, Data intensive

I. INTRODUCTION

Recently, task execution models are becoming
more diverse, e.g., grid computing, cloud computing.
Especially, we are entering, so called, “Big Data” era
where massive ununiformed data are gathered from
the real world and webpages through internet,
searched and analyzed in real time manner. These data
are processed in parallel by heterogamous systems, i.e.,
many computational resources with various
processing speed and communication bandwidth,
connected over the network. Jobs running over such
environment are called data-intensive job such as
MapReduce, in which large data travel over tasks.
Therefore, computational resource allocations and

task scheduling methods for data-intensive jobs are
important to get efficient use of resources and quick
response time (hereinafter, we call it "schedule length")
for real time application.

On task scheduling methods for a work-flow type
job with precedence constraint among tasks over
heterogeneous distributed environment, methods
based on list scheduling, e.g., HEFT [1], PEFT [2],
CEFT [3] are well known. These methods are
effective for reducing the schedule length against
computationally intensive jobs. On the other hand,
these are considered not to get improvement as
expected about the schedule length in data intensive
jobs such as MapReduce because they try to insert
each task in the idle time for each processor without

A Task Scheduling Method after Clustering for Data Intensive

Jobs in Heterogeneous Distributed Systems

Kazuo Hajikano*1, Hidehiro Kanemitsu*2, Moo Wan Kim*3, and Hee-Dong Kim*4

*1 Department of Information Technology and Electronics, Daiichi Institute of Technology.

k-hajikano@daiichi-koudai.ac.jp

*2 Global Education Center, Waseda University, Tokyo Japan. kanemih@ruri.waseda.jp

*3 Department of Informatics, Tokyo University of Information Sciences, Chiba Japan.

mwkim@rsch.tuis.ac.jp

*4 Hankuk University of Foreign Studies, Yongin Korea. kimhd@hufs.ac.kr

Abstract
Several task clustering heuristics are proposed for allocating tasks in heterogeneous systems to achieve a good
response time in data intensive jobs. However, it has been one of challenging problems that how each task should
be scheduled after a task allocation by a task clustering. We propose a task scheduling method after task clustering,
leveraging Worst Schedule Length (WSL) as an upper bound of the schedule length. In our proposed method, a
task in a WSL sequence is scheduled preferentially to make WSL smaller. Experimental results by simulation
show that the response time is improved in several task clustering heuristics. In particular, our proposed scheduling
method with the task clustering we proposed previously outperforms conventional list-based task scheduling
methods.

Category: Task Scheduling
Keywords: Task clustering, Task scheduling, Heterogeneous, Data intensive

I. INTRODUCTION

Recently, task execution models are becoming
more diverse, e.g., grid computing, cloud computing.
Especially, we are entering, so called, “Big Data” era
where massive ununiformed data are gathered from
the real world and webpages through internet,
searched and analyzed in real time manner. These data
are processed in parallel by heterogamous systems, i.e.,
many computational resources with various
processing speed and communication bandwidth,
connected over the network. Jobs running over such
environment are called data-intensive job such as
MapReduce, in which large data travel over tasks.
Therefore, computational resource allocations and

task scheduling methods for data-intensive jobs are
important to get efficient use of resources and quick
response time (hereinafter, we call it "schedule length")
for real time application.

On task scheduling methods for a work-flow type
job with precedence constraint among tasks over
heterogeneous distributed environment, methods
based on list scheduling, e.g., HEFT [1], PEFT [2],
CEFT [3] are well known. These methods are
effective for reducing the schedule length against
computationally intensive jobs. On the other hand,
these are considered not to get improvement as
expected about the schedule length in data intensive
jobs such as MapReduce because they try to insert
each task in the idle time for each processor without

Kazuo Hajikano*1, Hidehiro Kanemitsu*2, Moo Wan Kim*3, and Hee-Dong Kim*4

A Task Scheduling Method after Clustering for Data Intensive
Jobs in Heterogeneous Distributed Systems

19第一工業大学研究報告
第28号（2016）pp.19－30

This document is provided by JAXA.

considering the actual data transfer time.
On the other hand, considering data communication

time among tasks, many task clustering heuristics
have been proposed for heterogeneous systems with
data communications localized in a cluster, e.g., RAC
[4], FCS [5], CHP [6], Triplet [7]. These are
considered to be effective for data intensive jobs.
These do not use the actual processing time and
communication bandwidth of each processor, do not
always achieve a good schedule length in all types of
applications and systems, and do not specify task
scheduling after clustering. Other task scheduling
methods considering data communication time, have
been proposed, e.g., [8], [9]. These duplicate tasks to
localize communications among tasks.

We propose a task scheduling method after
completion of task clustering and processor
assignment to the clusters, leveraging WSL (Worst
Schedule Length) [10], [11] affecting schedule length.
It works with conventional clustering heuristics and
improve their schedule length, using the actual
processor time and the communication bandwidth of
the assigned processer.

II. Assumed Mode

A. System Model

In this paper, we supposed off-line scheduling
instead of on-line scheduling where tasks are assigned
to processer after becoming ready to be executed, e.g.,
the method proposed in [12]. We assumed that a job is
expressed as a Directed Acyclic Graph (DAG), which
is known as a work-flow type job. Let Gs = (V, E, Vs

cls)
be the DAG, where V is the set of tasks, E is the set of
edges (data communications among tasks), and Vs

cls is
the set of task clusters including one or more tasks by
s task clustering steps. This means that Gs has (|V| - s)
unclustered tasks and |V| = |Vs

cls | for s = 0. The i-th
task is denoted as ni, and let w(ni) be the size of ni, i.e.,
w(ni) is the sum of unit time for processing by the
reference processor. We define data dependency and
direction of data transfer from ni to nj as ei,j, c(ei,j) is
the sum of unit time for transferring data from ni to nj
over the reference communication link. One constraint
imposed by a DAG is that a task cannot be started
execution until all data from its predecessor tasks

arrive. pred(ni) is the set of immediate predecessors of
ni, and suc(ni) is the set of immediate successors of ni.
If pred(ni) =∅, ni is called START task, and if suc(ni)
=∅, ni is called END task. If there are one or more path
form ni to nj, we denote such a relation as ni ≺	nj.

We assume that each processor is completely
connected to others over the network, with
heterogeneous processing speeds and communication
bandwidths. The set of processor is expressed as P
= {p1, p2, ・・・pn}, and the processing speed of pi
is denoted as αi when that of the reference processor is
set to 1. The execution time in the case that nk is
processed on pi is expressed as tp(nk, αi) = w(nk) /αi.
Let the set of communication bandwidths be β =
{β1, β2, ・・・・βn}, where that of the reference
communication link is set 1, and if c(ei,j) is sent from
pk to pl, the communication time is defined as the
communication speed Lk,l is defined as Lk,l = min{βk,
βl}, then let the communication time be tc(ei,j , Lk,l) =
c(ei,j)/ Lk,l .

B. Task Clustering

A task cluster is a set of tasks explicitly grouped
together before scheduling every task. As a result,
every task in a task cluster comes to be assigned to the
same processor. Let the i-th task cluster in Vs

cls be
clss(i). If ns

k is included in clss(i) by the (s + 1)th task
clustering, it is expressed by clss+1(i) ← clss(i) U {ns

k}.
If any two tasks, i.e., ni and nj are included in the same
cluster, they are assigned to the same processor. In this
case the communication time between ns

i and ns
j

becomes zero.
The total task size in a task cluster is called the task

cluster size, and let call the value of the task cluster
size divided by the processing time the task cluster
processing time, or T(clss(i), αp).

C. Schedule Length

In a DAG application, a task can start for execution
if every data from its immediate predecessors have
arrived. Let the start time of ni on pp be ts(ni, pp), let
the completion time of nj on pp be tf(nj, pp). Then tf(nj ,
pp) is defined as follows.

tf(nj , pp) = ts(nj , pp) + tp(w(nj), αp). (1)
When all the data from pred(nj) has arrived at nj , nj

20 第一工業大学研究報告　第28号（2016）

This document is provided by JAXA.

can start for execution immediately. However, even if
every data from pred(nj) has arrived at nj , nj cannot be
started until the execution of another task in the same
processor is finished. The time when all the data from
every immediate predecessor tasks has arrived at nj is
called as Data Ready Time (DRT) [10]. If we define
DRT of nj on pp when every task in pred(ni) is
schedule as tdr(ni, pq), it is derived as follow.
������� ���

= max����������������
������� ��� � ����������� �������� (2)

From (2), tdr(nj) is derived from the completion time
of tasks in pred(nj) assigned to the same processor and
the data arrival time from tasks in pred(nj) assigned to
other processors. In the former case, p = q and tc(c(ei,j),
Lp,q) = 0. On the other hand, the latter case requires
data transfer time. The start time of ni , i.e., ts(nj , pp)
is derived using DRT as follows.

 ts(nj, pq) = max { tf(ni , pq), tdr(nj , pq)}, (3)
where ni has been scheduled. In (3), the choice of

tf(ni , pq) affects the completion time of nj. If ts(nj ,
pq) is derived by tf(ni , pq), there must be an idle time
slot which can accommodate tp(nj , αq) and starts at
tf(ni , pq) in case of an insertion–based policy. On the
other hand, if ts(nj , pq) is derived by tdr(ni, pq), there is
data waiting time for data arrival from other
processors. If we define such a data waiting time as
tw(nj, pp), it can be expressed as follows.

������ ��� = � ���� ��������� ��� � ������� ���
������� ��� � ������ ���� ����������

(4)
During the time slot derived by (4), some tasks

come to be inserted by an insertion-based policy in
order to minimize their completion time. The schedule
length is expressed by
��������������� = max��������������

������� ����. (5)

D. Task Scheduling in Clusters

Fig.1 shows an example of a task clustering and
scheduling tasks. In this figure, (a) represents the
initial state of the DAG, and (b), (c), and (d) represent
the state after a task clustering has been finished.
Execution orders of tasks is different among (b), (c)
and (d).

In (b), schedule length in the order of ��� → �� →

�� is 23. In (c), the schedule length in the order of
��� → �� → �� is 24, because the data arrival time of
���� at �� is delayed by the increase of the start time
of �� . In (d), the schedule length is larger than that
of (b) and (c) by scheduling �� in ����1� at the
latest execution order.

It can be concluded that the schedule length is
varied depending on the execution order for each task
in clusters, even though the set of tasks belonging to
the cluster is same among (b), (c), and (d).

III. PREVIOUS WORK

In our previous work [10], [11], we presented a
processor assignment strategy for processor utilization.
The number of processors is limited by imposing the
lower bound for each cluster size. Under the constraint,
we theoretically showed that which processor should
be assigned the cluster (assignment unit). The
processor to be assigned is the one which has good
impact on minimizing indicative value for the
schedule length.

A. Related Results

Our previous works[10], [11] focus on how to
decide the lower bound of each assignment unit size
(sum of task size in the task cluster divided by the
processing speed) in order to find a subset of given
processors. Contributions of the literature [10], [11]
are: (i) Worst Schedule Length (WSL) was defined

Fig. 1. Task Scheduling after Task Clustering

2

2 4

32

510 6

(a) Initial State

1

3

1

5

6

4

2

4

2

2 4

32

510 6

(b) Task scheduling (SL=23)

1

3

1

5

6

4

2

4

2

2 4

32

510 6

(c) Task scheduling (SL=24)

1

3

1

5

6

4

2

4

2

2 4

32

510 6

(d) Task scheduling (SL=29)

1

3

1

5

6

4

2

4

21Hajikano, Kanemitsu, Moo Wan Kim and Hee-Dong Kim：A Task Scheduling Method after Clustering for Data Intensive Jobs in Heterogeneous Distributed Systems

This document is provided by JAXA.

and its effect on the schedule length was proposed, (ii)
the lower bound of the assignment unit size for a
processor was derived. From the following sections,
we briefly describe those two factors.

B. Worst Schedule Length (WSL)

 WSL is the maximum execution path length in case
that each task is executed as late as possible in a
processor, provided that there is no data waiting time
for each task once the processor starts execution.
Since WSL derivation requires the assignment and
clustering state M(Gs), at first we present the definition
of M(Gs). At the initial clustering state G0 , each task
belongs to a task cluster and suppose that it is assigned
to the virtual processor pi

vt ∈ Pvt having the
maximum processing speed and maximum
communication bandwidth, i.e.,

Let M : Gs → P be the assignment state after a

processor assignment is performed to Gs. M(G0)
corresponds to {(cls0(1), p1

vt), (cls0(2), p2
vt), ….,

(cls0(|V|), p|V|
vt)}, where pi

vt is a virtual processor
having the maximum processing speed and the
maximum communication bandwidth. From the initial
assignment state, each virtual processor is replaced
with an actual processor and the number of task
clusters is reduced by a processor assignment and a
task clustering, i.e., | M(Gs)| ≤ | M(G0)| for s � 0.

Table 1 shows notations for deriving WSL.
WSL(M(��)) is the maximum of LV(�������), which

corresponds to the maximum of ��������� , where
�� ∈ � �������� . ��������� is the maximum time
duration from the START task to the END task in case
that �� is scheduled as late as possible. That is,
WSL(M(��)) is the maximum of level value in all task
at the clustering state of M(��). For a task cluster
clss(i), top(clss(i)) is the set of tasks which can start
execution first in clss(i), and in(clss(i)) is the set of
tasks having incoming edges from other task clusters
and out(clss(i)) is the set of tasks having outgoing
edges to other task clusters. btm(clss(i)) is the set of
tasks having no immediate successor tasks in clss(i),
and dc(nk , clss(i)) is the set of tasks being one of
descendant tasks of nk in clss(i). S(nk , clss(i)) is the
time span from the start time of the task in top(clss(i))
to the start time of nk in case that tw(nk , pp) = 0 and
every task having no dependencies with nk is executed
before nk . TL(clss(i)) is the latest start time of the task
in top(clss(i)), and tlevel(nk) is the latest start time of
nk without data waiting time if nk ∉ top(clss(i)).
tlevel(nk) is derived by S(nk , clss(i)) if nk ∉
top(clss(i)), otherwise it is the latest data ready time.
blevel(nk) is the longest path length from nk to the
END task, and BL(clss(i)) is the maximum execution
path length including S(nk , clss(i)) and blevel(nk). If
LV(clss(i)) is defined as the sum of TL(clss(i)) and
BL(clss(i)), WSL at M(Gs), i.e., WSL(M(Gs)) is defined
as the maximum value of LV(clss(i)) where clss(i) ∈
Vs

cls .
EXAMPLE 3.1. Fig. 2 presents an example of

WSL derivation. (a) is the DAG at M(G0), and (b) is
the DAG at M(G4), i.e., four tasks have been included Table 1. Notation for WSL(M(Gs))

(Here, note nk ∈ clss(i)).

Fig. 2 Example of WSL derivation

A

B C

D E
F

G

H

4

2 6

4 8
2

6

2

2|0.5

2|0.5

1

0.5 1.5

1 2

1.5

0.5

8|2

2|0.5 6|1.5

2|0.5

6|1.5

8|2

4|1

2|0.5

0.5

Task ID

w X() p it X (,)

X Yc e ,()

A

B C

D E
F

G

H

4

2 6

4 8
2

6

2

2|0

2|0

1

0.5 3

1 4

1.5

1

8|0

2|1
6|1.5

2|0.5

6|1.5

8|2

4|0

2|1

0.5

Task
Cluster

Processor

0cls (A)

0cls (B) 0cls (C)

0cls (D)

0cls (E)

0cls (F)

0cls (G)

0cls (H)

X Y|

ip jp
assignassign

i i ip  (, ,)

4cls A()

4cls A()

4cls C()

4cls G()

4cls H()

1p 4 2(, ,)

c X Y i jt e L, ,(,)

Meanings of assigned values.

2p 2 4(, ,)4cls C()
vt
7p 4 4(, ,)
vt
8p 4 4(, ,)

0a The M G() state of (). 4b The G() stete of M().

4cls G()
4cls H()

Processor Assignment at (b).

22 第一工業大学研究報告　第28号（2016）

This document is provided by JAXA.

in task clusters. In both cases, bold arrows mean the
execution sequence dominating WSL. Suppose there
are three processors (pi, αi, βi) = (p1, 4, 2), (p2, 2, 4),
(p3, 4, 4). At (a), each task belongs to a task cluster
denoted by dashed box and assigned to a virtual
processor having the maximum processing speed
being 4 and the maximum communication bandwidth
being 4. As for cls0(A), we have the following result.
top(cls0(A)) = out(cls0(A)) = btm(cls0(A)) = {A}.
From this state, WSL(M(G0)) = 9.5 is decided by the
path, A, C, E, G, and H, which is the same as the
critical path length at M(G0). On the other hand, at (b)
there are four task clusters. At cls4(A), suppose cls4(A),
cls4(C), cls4(G), and cls4(H) are assigned to p1, p2, p7

vt,
and p8

vt , respectively. Then we have the following
result.
 top(cls4(A)) = {A}. in(cls4(A)) = ∅.
 out(cls4(A)) = {A, D}, btm(cls4(A)) ={D}.

At cls4(C), we have
 top(cls4(C)) = {C}. in(cls4(C)) = {C}.
 out(cls4(C)) = btm(cls4(C)) = {E, F}.

Since we have the following results as:
 dc(C, cls4(C)) = {C, E, F}. dc(E, cls4(C)) = {E}.
 dc(F, cls4(C)) = {F}.

We obtain the following values:
 TL(cls4(C)) = tlevel(C) = 2.
 S(E, cls4(C)) = 8 – 4 = 4.
 S(F, cls4(C)) = 8 – 1 = 7.
 blevel(E) = 9. blevel(F) = 3.5.
 BL(cls4(C)) = max {4 + 9, 7 + 3.5} = 13.

Then we have LV(cls4(C)) = 2 + 13 = 15. At the DAG
of (b), cls4(C) has two execution orders, i.e., C, E, F
and C, F, E. LV(cls4(C)) is taken when the execution
order is the former case (the dashed arrow means that
E starts execution after F is finished.). We obtain
LV(cls4(A)) = 14, LV(cls4(G)) = LV(cls4(H)) = 15. Then
we have WSL(M(G4)) = 15.

C. WSL Properties

The task clustering heuristic proposed in the
literature [10] performs to minimize WSL instead of
schedule length because the schedule length cannot be
decided until every task is scheduled by a task

scheduling method. According to the literature [11], it
is proved that both the upper bound and the lower
bound of the schedule length can be made smaller if
WSL is small. Thus, minimizing WSL by a task
allocation can lead to the reduction of the schedule
length.

D. Lower Bound of Assignment Unit Size

In the literature [10], ΔWSLup(M(Gs)) is defined as
an upper bound of WSL(M(GS)) - WSL(M(G0)). That
is, a small value of ΔWSLup(M(Gs)) means that WSL
can be made smaller by the s-th clustering step.
According to the literature [10], ΔWSLup(M(Gs)) is a
function of the lower bound, the processing speed, and
the communication bandwidth.

 At ΔWSL(M(Gs)), there are a number of task
clusters exceeding the lower bound, i.e., δ(αp, βp, Gs)
on a path belonging to the set of tasks dominating
WSL(M(Gs-1)), where αp and βp are variables that must
be determined. Thus,

�� � ������������������������
�� �

�����������
, (6)

ΔWSLup(M(Gs)) assumes the local minimum value
when δ(αp, βp, Gs) equals to the following value.

Fig. 3. Lower Bound Derivation at M(G5)

A

B C

D E
F

G

H

4

2 6

4 8
2

6

2

2|0

2|0

1

0.5 3

1 4

1.5

1

8|0

2|1
6|1.5

2|0.5

6|1.5

8|2

4|0

2|1

0.5

4cls A()

4cls C()

4cls G()

4cls H()

4a The G() stete of M().

A

C

E

G

H

4

6

8

6

2

2|0

1

3

4

1.5

6|1.5

6|1.5

2|1

0.5

 

5
opt 3 3b G
he
  

4

() (, ,) derivation with
 t path (A-C-E-G-H)
 being a part of A,C,F,E,G,H
 which dominates WSL(M(G)).

5
opt 3 3(, ,G)

26 8 8 9.3
2 2 3

  

    
 

A

B C

D E
F

G

H

4

2 6

4 8
2

6

2

2|0

2|0

1

0.5 3

1 4

3

1

8|0

2|1
6|2

2|0.67

6|0

8|2.67

4|0

2|1

1

5cls A()

5cls C()

5cls G()

5c The G() stete of M().

Task
Cluster

Processor
i i ip  (, ,)

5cls A() 1p 4 2(, ,)

2p 2 4(, ,)5cls C()
3p 2 3(, ,)5cls G()

Processor Assignment at (c).

23Hajikano, Kanemitsu, Moo Wan Kim and Hee-Dong Kim：A Task Scheduling Method after Clustering for Data Intensive Jobs in Heterogeneous Distributed Systems

This document is provided by JAXA.

�������, ��, ���

= �∑ ��������������≺

�� �
max����

�������
�� +

max��,���
�����,���
�� �	,

 (7)
where ������≺ is a path where each task belongs to
the set of tasks dominating WSL(M(Gs-1)). In (7),
δopt(αp, βp, Gs) is derived by tracing the path in the set
of tasks and edges dominating WSL(M(Gs-1)).

EXAMPLE 3.2 Fig. 3 shows an example of the
lower bound derivation presented in [10]. At (a), G
and H are un-clustered at M(G4). The path, A, C, E, G,
H is the path in which every task belongs to the set of
tasks {E, C, F, G, H} dominating M(G4). From this
path, δopt(αp, βp, G5) is derived as 9.3 by assuming the
next assigned processor is p3. Then cls5(G) includes
one of unclustered tasks, H. However, the total
execution time at cls5(G) at (c) is 3 + 1 = 4 < 9.3 and
then cls5(G) will be clustered into one of cls5(A) or
cls5(C) in the next task clustering step.

D. Existing Clustering Heuristics

Many task clustering heuristics have been proposed
for homogeneous system [14], [15], [16], [17]. In
homogenous systems, task assignment is not required.
As a result, a clustering priority in a task clustering
heuristic for homogeneous system directory affects
the schedule length. However, in heterogeneous
systems, system information, such as the processing
speed and communication bandwidth, is required for
deriving a clustering priority. Conventional task
clustering heuristics for heterogeneous systems do not
use actual processing time or communication time for
the clustering priority [4], [5], [6], [7]. The objective
of a clustering is to localize data communications, and
it is known that DAGs with larger data size have better
schedule length. Even though RAC [4] and FCS [5]
define the lower bound of task clusters, they can’t get
good schedule length for all DAG.

On the other hand, in literature [10], we proposed
the task clustering heuristic which derivate the lower
bound for each task cluster automatically and get good
schedule length for all DAGs. Proposed task
clustering heuristic consists of three phases based on
minimizing WSL. (i)Derive the lower bound for the
cluster size as (7), (ii) decide the processor to be

assigned, which minimize ΔWSL. Then (iii) merge
several tasks into a cluster until its size exceeds the
lower bound derived in (i). In other words, the
proposed method manages to generate the linear
cluster to minimize WSL.

IV. PROPOSAL

A. Basic Idea

In this section we propose a task scheduling method
that is performed after each task has been assigned
to a processor by a task allocation. If task allocation
is performed by a task clustering, each task is assigned
to a task cluster, i.e., a task cluster is an assignment
unit for each processor. Followings are features of our
proposal.

- Our proposal minimizes the WSL (Worst
schedule Length) to lower the upper and lower
bound of the schedule length.

- We use the actual processing speed and the
communication bandwidths of each processor
assigned to each task cluster for deriving the
scheduling. In the conventional list-based task
scheduling such as HEFT, CEFT and PEFT
adopt average processing time and the average
communication time for deriving the scheduling
priority.

B. Proposed Task scheduling

We present how the scheduling priority is derived
for each task. We call a task as a free task, whose every
immediate predecessor tasks have been scheduled.
The objective of the proposed scheduling is to
minimize WSL by choosing a task having the
maximum ����� value from the free task list. By
choosing such a task, we obtain the fact that WSL can
be made smaller as follows.

THEOREM 4.1.
Let WSL after m tasks have been scheduled be
����.
If a task �� � 	���������	�� ��,

						��������� = 	 max������������
�����������,	

is selected at the m-th task selection phase, then we
have

24 第一工業大学研究報告　第28号（2016）

This document is provided by JAXA.

																																						���� ≤ ������. (8)
Proof4.1.
First we define the two set of tasks as follow,
����� = ������ � 	���������� �������� ∩

																																																																		�������� ≠ ∅�.
����� = ������ � 	���������� �������� 	∩

																																																																�������� = ∅�.(9)
Without loss of generality, suppose that ��

belongs to a task cluster ������ and the level of
������ is defined as LV(K).
(i) Level of tasks in�����,
For each task �� � 	�����, there can be two cases,

i.e., whether �� belongs to ������ or not.
(i-i) The case of �� � ������.
If we have LV(K) = 	��������� before the m-th

task selection, we obtain LV(K) after �� is selected
as follows.
����� = 	 max��������������

������������ ≤
																																																															������������, (10)

where ���������� is ��������� after m tasks
have been scheduled.
(i-ii) The case of �� � ������.
In this case, ��������� is not affected by ��

selection. Thus, WSL is not increased.
(ii) Level of tasks in �����.
For each task �� � 	�����, ��������� is not

Fig. 4. Procedure for the Scheduling

affected by �� selection. Thus, WSL is not
increased.
From (i) and (ii), it leads that WSL is not increased

by choosing the task having the maximum ����� in
���������. □

As described in section III.C, minimizing WSL
contributes to lower the upper bound and the lower
bound of the schedule length. To minimize the WSL,
the strategy of our proposal is to reduce WSL for each
scheduling step. However, how to minimize WSL is
NP-complete problem as with the schedule length
minimization. That is, our proposal is based on a

INPUT: Clustered DAG G.
OUTPUT: Schedule of G.
Define the task cluster to which ni belongs by C(ni);
Define the processor to which ni is assigned by proc(ni);
Define USCHED to be set of unscheduled tasks;
Define FREEsched to be the set of tasks whose all immediate

predecessor tasks have been scheduled;
1: WHILE USCHED ≠ ∅ DO
2:

Find ni having a maximum of level(ni) in FREEsched.
If two or more tasks have the same maximum value,
the task ni having maximum blevel value is selected;

3: FREEsched ← FREEsched - {ni};
4: USCHED ← FREEsched - {ni};
5:

Insert ni into an idle time slot of proc(ni) s.t,
tf(ni, proc(ni)) is minimized by an insertion-based
policy.

6: Set tf(ni, proc(ni));
7: FOR nj ∊ suc(ni) DO
8: IF nk ∉ USCHED for∀nk pred(nj) THEN
9: FREEsched ← FREEsched ∪ {nj};

10: END IF
11: END FOR
12: END WHILE

(a) Before Scheduling Tasks

(b) Scheduling

(c) Gantt Chart

Fig. 5. Example of the Scheduling

A

B C

D E

H
G

J

4

8 6

4 8

6
6

4

2|0.7

2|0.7

1.3

2.7 2

1.3 2.7

2
2

6|0 2|0.7

6|0 8|0

4|0

3|0

1.3

F
2 0.7

I
2 0.7

K
2 0.7

6|0

12|0

10|0
2|0.7

1|0

2|0

16|0

Cls(E)
Cls(H)

cls(E) cls(H)
Step FREE

task
Level of FREE
task

Selected
task & FT

Step FREE
task

Level of FREE
task

Selected
task & FT

1 A level(A)=12.8 FT(A)=1.3

2 C level(C)=8
FT(C)=3.3

1 B level(A)=12.8
FT(B)=4.7

3 F level(F)=8 FT(F)=4

4 H level(H)=8 FT(E)=62 D, E level(D)=12.8,
blevel(D)=5.4
level(E)=12.8,
blevel(E)=6.8 FT(E)=7.4

3 D level(D)=12.8 FT(D)=8.7 5 J level(J)=8 FT(J)=9.4
4 G level(G)=12.8 FT(G)=10.7

5 I level(I)=12.8 FT(I)=11.4

6 K level(I)=12.8 FT(K)=12.8

p2

p7

A C

1.3 3.3

F

4.0

H

6.0

B

2.0 4.7

E

7.4

D

8.7

G

10.7

J

8.1

I

11.4

9.4

K

12.1 12.8

25Hajikano, Kanemitsu, Moo Wan Kim and Hee-Dong Kim：A Task Scheduling Method after Clustering for Data Intensive Jobs in Heterogeneous Distributed Systems

This document is provided by JAXA.

warranty for WSL reduction. Moreover, our proposal
has a practical time complexity (see Section IV.D) and
thus is said to be a cost-effective approach for
reducing both the upper bound and the lower bound of
the schedule length.

C. Procedure and Example

Figure 4 presents the procedures for proposed
scheduling. First, ��������� includes all of the
START tasks and USCED includes all of the tasks.
This procedure finishes when USCED becomes empty.
At line 2, the task to be scheduled is selected by the
�����. After the completion of task clusterings and
processor assignments to clusters, ��������� can be
derived with the actual processer speed and the
communication bandwidth of the processer which ��
has been assigned to. That is, we can derivate WSL.
In the scheduling phase, the task having the
maximum 	����� in ��������� is scheduled by
inserting it into an idle time of the processor. The task
is assigned to an idle time of �������� at line 5. After
the task is scheduled, each task in ������� becomes
a part of ��������� if all of its predecessor tasks
have been scheduled.

Example 4.1 Figure 5 shows an example of
scheduling tasks. Figure 5(a), (b) and (c) present the
DAG before scheduling each task, the task scheduling
result, and Gantt chart, respectively. In Fig. 5(a), the
DAG has two task clusters and each cluster is assigned
to each processor. Since there is only one START task
in Fig. 5(a), A is included in ��������� , and it is
selected for scheduling. Then, B in cls(E) and C in
cls(E) become free, and their	�����s are 12.8 and 8,
respectively; moreover, ����� ��� = 1.3. At step 2 of
cls(E) in Fig. 5(b), D and E are assigned to ��, but
their ����� s are same. In this case, their ������
values are compared at line 2 in Fig. 4.
Since ��������� = �.� � ��������� = 6.8 , E is
selected. At step3 of cls(E) in Fig. 5(b), D is selected
and its finish time is calculated. There is no idle time
between B and E according to Fig. 5(c), and D is
added after E. As a result, the finish time of D is 8.7.
Similarly, at step 4 of cls(E) in Fig. 5(c), there is no
idle time in B-E or E-D. Thus, G is added after D. At
step 5 of cls(E), step 5 of cls(H) and step 6 of cls(H),
I, J, and K are added, and the schedule time is 12.8.

D. Complexity of the Proposed Method

In this section, we analyze the complexity of the
proposed scheduling algorithm. At line 2 in Fig. 4, we
have |���������| ≤ 	 |�| and every task in
��������� is ordered according to nonincreasing
order of �����. Thus, one task is put in ���������
by log|���������| steps. As a whole, this operation
takes ��|�| log|�|�.

At line 5 in Fig. 4, an idle slot can be found by at
most the number of tasks assigned to the processer.
This takes |�|�.

At line 7 to 11, this requires
|�������| log|�������| steps. As a whole, it takes
��|�| log|�|�.

Therefore, the complexity of the proposed
scheduling is �|�|�, which is not higher than those of
existing scheduling [1], [2], [3].

V. Experiment

A. Objectives

We conducted the experimental simulations to
confirm advantages of our proposal against existing
methods in term of Schedule Length. Actually, the
Schedule Length Ratio (SLR) [1], [2] metric was used
to measure the performance of each scheduling
methods. The SLR is defined as follows;

��� = ��
∑ �������������

����������
, (11)

B. Comparison with Existing Scheduling
Methods.

Here, we conducted the experimental simulations to
confirm advantages of the proposed scheduling
method against existing methods in term of Schedule
Length Ratio (SLR).

1) Existing Scheduling Methods: Any task
clustering heuristics doesn’t specify the task
scheduling method after task clustering. Here, we
picked up following task scheduling methods after
clustering for comparison.

-Method 1: The proposed scheduling method.
-Method 2: The task with minimum rank_down (the

26 第一工業大学研究報告　第28号（2016）

This document is provided by JAXA.

longest path length from START task to the task)
is scheduled. [1]
-Method 3: The task with minimum value of sum
of rank_down and rank_up (the longest path length
from the task to the END task) is scheduled. [1]

-Method 4: The task with maximum rank_up is
scheduled. [1]

We supposed that Triplet [7] and RAC [4] are
clustering heuristics working under task scheduling
methods.

2) Experimental Environment: In the simulation,

two types of DAGs, i.e., random DAGs and Gaussian
Elimination DAGs were generated. We present each
condition as follow.

a) Random DAGs: In the simulation, 100
DAGs were generated under following conditions and
average of schedule lengths of DAGs were calculated
after scheduling tasks. For each DAG, the number of
tasks in the DAG was chosen from {50, 100, 300, 500,
1000} randomly, the max to min ratio in term of task
size was 100, the max to min ratio in term of data size
was 100, and the Communication to Computation
Ratio (CCR) [13], defined as the average
communication bandwidth divided by the average
processing speed, was chosen from {0.1, 0.5, 1, 3, 5,
10}. The maximum number of tasks on a path, i.e., the
depth, is defined by the Parallelism Factor (PF), which

is denoted by �|�| �⁄ ; in our experiments, α was
chosen from {0.5, 1.0, 2.0}. For each task, out degree
was randomly chosen from 1 to 5. For the
heterogeneity of the system, processing speed of a
CPU was chosen as normal distribution where the max
to min ratio were set to 2, 5 and 10, and
communication bandwidth were chosen as normal
distribution where the max to min ratio was set to 2, 5
and 10.

b) Gaussian elimination DAGs: In the
simulation, 100 DAGs were generated in case that
matrix size were 10, 30 and 50, and average of
schedule lengths of DAGs were calculated after
scheduling tasks. For each DAG, the max to min ratio
in term of task size was 100, the max to min ratio in
term of data size was 100, and the CCR was chosen
from {0.1, 0.5, 1, 3, 5, 10}. For the heterogeneity of
the system, processing speed of a CPU was chosen as
normal distribution where the max to min ratio were
set to 2, 5 and 10, and communication bandwidth were
chosen as normal distribution where the max to min
ratio was set to 2, 5 and 10.

The simulation environment was developed by
JRE1.6.0_0, the operating system was Windows XP
SP3, the CPU architecture was Intel Core 2 Duo 2.66
GHz, and the memory size is 2.0 GB.

3) Experimental Result for Each Clustering: Table

Table 2. Comparison of SLR among scheduling
method for random DAGs (1/2)

CCR Triplet w/
method 1

Triplet w/
method 2

Triplet w/
method 3

Triplet w/
method 4

0.1 1.438 1.483 1.44 1.421
0.5 2.013 2.211 2.108 2.093

1 2.511 2.475 2.497 2.602
3 4.014 4.213 4.159 4.186
5 4.616 4.672 4.702 4.815

10 8.319 8.467 8.513 8.344

Table 4. Comparison of SLR among scheduling
methods for Gaussian elimination DAGs (1/2)

CCR Triplet w/
method 1

Triplet w/
method 2

Triplet w/
method 3

Triplet w/
method 4

0.1 3.724 3.778 3.781 3.517
0.5 6.132 6.391 6.218 6.191

1 7.375 7.668 7.423 7.402
3 9.412 9.815 9.915 9.529
5 13.858 14.194 14.011 14.033

10 15.729 16.512 16.228 15.994

Table 3. Comparison of SLR among scheduling
method for random DAGs (2/2)

CCR RAC w/
method 1

RAC w/
method 2

RAC w/
method 3

RAC w/
method 4

0.1 2.017 2.271 1.938 1.998
0.5 2.736 2.994 2.866 2.831

1 3.813 4.017 3.905 3.982
3 7.298 7.419 7.498 7.418
5 9.371 9.667 9.891 9.776

10 12.732 13.044 13.318 13.417

Table 5. Comparison of SLR among scheduling
methods for Gaussian elimination DAGs (2/2)

CCR RAC w/
method 1

RAC w/
method 2

RAC w/
method 3

RAC w/
method 4

0.1 2.017 2.133 2.317 1.983
0.5 3.248 3.372 3.174 3.711

1 4.395 4.571 4.618 4.498
3 9.155 9.372 9.779 9.227
5 16.289 16.835 17.037 16.793

10 18.642 19.325 19.492 18.881

27Hajikano, Kanemitsu, Moo Wan Kim and Hee-Dong Kim：A Task Scheduling Method after Clustering for Data Intensive Jobs in Heterogeneous Distributed Systems

This document is provided by JAXA.

2 and 3 show comparison results for random DAGs in
terms of SLR. Table 2 and 3 are cases of Triplet and
RAC, respectively. For each value of CCR, SLRs for
Radom DAGs are derived with different scheduling
methods. Table 4 and 5 show the comparison results
for Gaussian Elimination DAGs in terms of SLR.
Table 4 and 5 are cases of Triplet and RAC,
respectively. For each value of CCR, SLRs for
Gaussian Elimination DAGs are derived with different
scheduling methods.

In any case, the proposed scheduling method get
better SLR than that of other scheduling methods if
CCR is equal to or larger than 0.5. That is, the
proposed method is suitable for data-intensive jobs
with larger CCR.

C. Comparison of Clustering Heuristics

In this experiment, we compared the SLR by
method 1 in the task clustering in [10], Triplet and
RAC with conventional list-based task scheduling
heuristics (HEFT, PEFT, and PEFT). We used same
experimental environment described in section V.B.2).
We call the proposed clustering heuristic in [10] as
clustering 1 in this section.

1) Experimental Results: Fig. 6 shows the

comparison results for SLR. For each value of CCR,
SLRs for Radom DAGs are derived with the proposed
scheduling methods working above clustering 1,
Triplet and RAC and with HEFT, PEFT and CEFT.
We can see that the proposed clustering heuristic [10]
with the proposed scheduling method has better SLRs,
if CCR is larger than 1.0. Fig. 7 shows experimental
results for SLRs on Gaussian elimination DAGs. We
can see that the clustering heuristic in [10] with the

0

2

4

6

8

10

12

14

0.1 0.5 1 3 5 10

SL
R

CCR

Fig. 6. Comparison of SLR among clustering methods for random DAG

Clustering 1 w/ method 1 Triplet w/ method 1 RAC w/ method 1 HEFT PEFT CEFT

0

2

4

6

8

10

12

14

16

18

20

0.1 0.5 1 3 5 10

SL
R

CCR

Fig. 7. Comparison of SLR among clustering methods for Gaussian elimination

Clustering 1 w/ method 1 Triplet w/ method 1 RAC w/ method 1 HEFT PEFT CEFT

28 第一工業大学研究報告　第28号（2016）

This document is provided by JAXA.

proposed scheduling method has better SLRs, if CCR
is equal to and larger than 3. That is, the proposed
scheduling method with the clustering heuristic
proposed in [10] is suitable for data intensive jobs with
larger CCR.

D. Discussion

 For both of Gaussian elimination DAGs and
Random DAGs, clustering 1 and xEFT (i.e., CEFT,
PEFT, HEFT) doesn’t make big difference in terms of
SLR in case that CCR is less than 3, because
delays caused by data-waiting time at each task affect
SLR a little. On the other hand, clustering 1 shows
better SLRs remarkably in case that CCR is equal to
and larger than 3. That is, bigger data-transferring
time makes bigger data-waiting time at each processer
and it is considered to contribute to make SLR worse
remarkably. The combination of clustering 1
minimizing WSL and proposed scheduling method,
i.e., method 1, which makes WSL smaller was proved
to be effective for larger CCR.

Therefore, the proposed scheduling method
working over the clustering heuristic in [10] is suitable
for work-flow type jobs handling massive data.

XI. CONCLUSION

In this paper, we proposed the task scheduling
method after completion of task clustering in
heterogeneous system. At the proposed method, tasks
on the path dominating WSL, i.e., with maximum
value of level, are preferred to be scheduled. As a
result, the Schedule Length Ratio (SLR) can be made
smaller than that of several existing method, if the
CCR is equal to or greater than 0.5.

Furthermore, the proposed scheduling method with
the task clustering heuristic proposed in [10] has been
confirmed to get smaller SLR than that of well-known
list scheduling method such as HEFT, CEFT and
PEFT, if CCR is equal to or bigger than 3 through the
experiment. In conclusion the proposed scheduling
method can be applied to execute data-intensive jobs
in heterogeneous systems.

REFERENCES

1. H. Topcuoglu, et el., “Performance-Effective and
Low-Complexity Task Scheduling for
Heterogeneous Computing,” IEEE Trans. on
Parallel and Distributed Systems, Vol. 13, No. 3.,
pp. 260-274,2002.

2. H. Arabnejad, et.el, “List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost
Table,” IEEE Trans. on Parallel and distributed
systems, vol. 25, No. 3, March 2014.

3. M. A. Khan, “Schedule for heterogeneous
systems using constrained critical paths,” Parallel
Computing, Vol 38, pp 175-193, 2012.

4. B. Jedari and M. Dehghan, “Efficient DAG
Scheduling with Resource-Aware Clustering for
Heterogeneous Systems,” Computer and
Information Science, Springer, Vol. 208, pp.249-
261, 2009.

5. S. Chingchit. M. Kumar, and L. N. Bhuyan, “A
Flexible Clustering and Scheduling Scheme for
efficient Parallel Computation, “ Proc. of the 13th
International and 10th Symposium on Parallel
and Distributed Processing, pp. 500-505, 1999.

6. C. Boeres, J. V. Filho, and V. E. F. Rebello, “A
Cluster-based Strategy for Scheduling task on
Heterogeneous Processors,” Proc. of the 16th
Symposium on Computer Architecture and High
performance Computing (SBAC-PAD’04), pp.
214-221, 2004.

7. B. Cirou and E. Jeannot, “Triplet: a Clustering
Scheduling Algorithm for Heterogeneous
Systems,” Proc. of 2001 International Conference
on Parallel Workshops (ICPPW’01), pp. 231-236,
2001.

8. S. G. Ahmad et al., "Data-Intensive Workflow
Optimization based on Application Task Graph
Partitioning in Heterogeneous Computing
Systems," Proc. of IEEE 4th International
Conference on Big Data and Cloud Computing, pp.
129-136, 2014.

9. Aida A. Nasr et al., “Task Scheduling Algorithm for
High Performance Heterogeneous Distributed
Computing Systems,” International Journal of
Computer Applications (0975 – 8887), Volume 110
– No. 16, pp. 23-29, Jan’ 2015

10. H. Kanemitsu et al., “A Processor Mapping
Strategy for Processor Utilization in a
Heterogeneous Distributed System,” Journal of

29Hajikano, Kanemitsu, Moo Wan Kim and Hee-Dong Kim：A Task Scheduling Method after Clustering for Data Intensive Jobs in Heterogeneous Distributed Systems

This document is provided by JAXA.

Computing, Vol. 3, Issue 11, pp. 1-8, 2011.
11. H. Kanemitsu et al., “On the Effect of Applying

the Task Clustering for Identical processor
Utilization to Heterogeneous Systems,” Grid
Computing – Technologies and Applications,
Widespread Converge and new Horizon, Intech
(ISBN: 978-953-51-0604-3), pp. 29 – 46, March,
2012.

12. W, Aheng and L. Tang, "A Priority-Based
Scheduling Heuristic to Maximize Parallelism of
Ready Tasks for DAG Applications," Proc. of the
15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing
(CCGrid2015), pp. 596-605, 2015.

13. O, Sinnen “Task scheduling for Parallel systems,”
Willey, 2007.

14. A. Gerasoulis and T. yang, “A Comparison of
Clustering Heuristics for Scheduling Directed
Acyclic Graphs on Multiprocessors,” Journal of
Parallel and Distributed Computing, Vol. 16, pp.
276-291, 1992.

15. V. Sarkar, “Partitioning and Scheduling Parallel
programs for Execution on Multiprocessors,”
Cambridge, MA: MIT Press, 1989.

16. M. Y. Wu and D. D. Gajski, “Hypertool: A
programming aid for message-passing systems,”
IEEE Trans. on Parallel and Distributed Systems,
Vol. 1, No. 3, pp. 330-343, 1990.

17. T. Yang and A. Gerasoulis, “DSC: Scheduling
Parallel Tasks on an Unbounded Number of
Processors,” IEEE Trans. on Parallel and
Distributed Systems,” Vol. 5, No. 9, pp. 951-967,
1994.

30 第一工業大学研究報告　第28号（2016）

This document is provided by JAXA.

