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Abstract 
Several task clustering heuristics are proposed for allocating tasks in heterogeneous systems to achieve a good 
response time in data intensive jobs. However, it has been one of challenging problems that how each task should 
be scheduled after a task allocation by a task clustering. We propose a task scheduling method after task clustering, 
leveraging Worst Schedule Length (WSL) as an upper bound of the schedule length. In our proposed method, a 
task in a WSL sequence is scheduled preferentially to make WSL smaller. Experimental results by simulation 
show that the response time is improved in several task clustering heuristics. In particular, our proposed scheduling 
method with the task clustering we proposed previously outperforms conventional list-based task scheduling 
methods. 
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I. INTRODUCTION 
 

Recently, task execution models are becoming 
more diverse, e.g., grid computing, cloud computing. 
Especially, we are entering, so called, “Big Data” era 
where massive ununiformed data are gathered from 
the real world and webpages through internet, 
searched and analyzed in real time manner. These data 
are processed in parallel by heterogamous systems, i.e., 
many computational resources with various 
processing speed and communication bandwidth, 
connected over the network. Jobs running over such 
environment are called data-intensive job such as 
MapReduce, in which large data travel over tasks. 
Therefore, computational resource allocations and 

task scheduling methods for data-intensive jobs are 
important to get efficient use of resources and quick 
response time (hereinafter, we call it "schedule length") 
for real time application. 

On task scheduling methods for a work-flow type 
job with precedence constraint among tasks over 
heterogeneous distributed environment, methods 
based on list scheduling, e.g., HEFT [1], PEFT [2], 
CEFT [3]  are well known. These methods are 
effective for reducing the schedule length against 
computationally intensive jobs. On the other hand, 
these are considered not to get improvement as 
expected about the schedule length in data intensive 
jobs such as MapReduce because they try to insert 
each task in the idle time for each processor without 
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considering the actual data transfer time. 
On the other hand, considering data communication 

time among tasks, many task clustering heuristics 
have been proposed for heterogeneous systems with 
data communications localized in a cluster, e.g., RAC 
[4], FCS [5], CHP [6], Triplet [7]. These are 
considered to be effective for data intensive jobs. 
These do not use the actual processing time and 
communication bandwidth of each processor, do not 
always achieve a good schedule length in all types of 
applications and systems, and do not specify task 
scheduling after clustering. Other task scheduling 
methods considering data communication time, have 
been proposed, e.g., [8], [9]. These duplicate tasks to 
localize communications among tasks. 

We propose a task scheduling method after 
completion of task clustering and processor 
assignment to the clusters, leveraging WSL (Worst 
Schedule Length) [10], [11] affecting schedule length. 
It works with conventional clustering heuristics and 
improve their schedule length, using the actual 
processor time and the communication bandwidth of 
the assigned processer. 

II. Assumed Mode 

A. System Model 

In this paper, we supposed off-line scheduling 
instead of on-line scheduling where tasks are assigned 
to processer after becoming ready to be executed, e.g., 
the method proposed in [12]. We assumed that a job is 
expressed as a Directed Acyclic Graph (DAG), which 
is known as a work-flow type job. Let Gs = (V, E, Vs

cls) 
be the DAG, where V is the set of tasks, E is the set of 
edges (data communications among tasks), and Vs

cls is 
the set of task clusters including one or more tasks by 
s task clustering steps. This means that Gs has (|V| - s) 
unclustered tasks and |V| = |Vs

cls | for s = 0. The i-th 
task is denoted as ni, and let w(ni) be the size of ni, i.e., 
w(ni) is the sum of unit time for processing by the 
reference processor. We define data dependency and 
direction of data transfer from ni to nj as ei,j, c(ei,j) is 
the sum of unit time for transferring data from ni to nj 
over the reference communication link. One constraint 
imposed by a DAG is that a task cannot be started 
execution until all data from its predecessor tasks 

arrive. pred(ni) is the set of immediate predecessors of 
ni, and suc(ni) is the set of immediate successors of ni. 
If pred(ni) =∅, ni is called START task, and if suc(ni) 
=∅, ni is called END task. If there are one or more path 
form ni to nj, we denote such a relation as ni ≺	nj. 

We assume that each processor is completely 
connected to others over the network, with 
heterogeneous processing speeds and communication 
bandwidths. The set of processor is expressed  as P 
= {p1, p2, ・・・pn}, and the processing speed  of pi 
is denoted as αi when that of the reference processor is 
set to 1. The execution time in the case that nk is 
processed on pi is expressed as tp(nk, αi) = w(nk) /αi. 
Let the set of communication bandwidths be β =  
{β1, β2, ・・・・βn},  where that of the reference 
communication link is set 1, and if c(ei,j) is sent from 
pk to pl, the communication time is defined as the 
communication speed Lk,l is defined as Lk,l = min{βk, 
βl}, then let the communication time be tc(ei,j , Lk,l)  = 
c(ei,j)/ Lk,l . 

B. Task Clustering 

A task cluster is a set of tasks explicitly grouped 
together before scheduling every task. As a result, 
every task in a task cluster comes to be assigned to the 
same processor. Let the i-th task cluster in Vs

cls be 
clss(i). If ns

k is included in clss(i) by the (s + 1)th task 
clustering, it is expressed by clss+1(i) ← clss(i) U {ns

k}. 
If any two tasks, i.e., ni and nj are included in the same 
cluster, they are assigned to the same processor. In this 
case the communication time between ns

i and ns
j 

becomes zero. 
The total task size in a task cluster is called the task 

cluster size, and let call the value of the task cluster 
size divided by the processing time the task cluster 
processing time, or T(clss(i), αp). 

C. Schedule Length 

In a DAG application, a task can start for execution 
if every data from its immediate predecessors have 
arrived. Let the start time of ni on pp be ts(ni, pp), let 
the completion time of nj on pp be tf(nj, pp). Then tf(nj , 
pp) is defined as follows. 

tf(nj , pp) = ts(nj , pp) + tp(w(nj), αp).           (1) 
When all the data from pred(nj) has arrived at nj , nj 
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can start for execution immediately. However, even if 
every data from pred(nj) has arrived at nj , nj cannot be 
started until the execution of another task in the same 
processor is finished. The time when all the data from 
every immediate predecessor tasks has arrived at nj is 
called as Data Ready Time (DRT) [10]. If we define 
DRT of nj on pp when every task in pred(ni) is 
schedule as tdr(ni, pq), it is derived as follow.   
������� ���  

= max����������������
������� ��� � ����������� �������� (2) 

From (2), tdr(nj) is derived from the completion time 
of tasks in pred(nj) assigned to the same processor and 
the data arrival time from tasks in pred(nj) assigned to 
other processors. In the former case, p = q and tc(c(ei,j), 
Lp,q) = 0. On the other hand, the latter case requires 
data transfer time. The start time of ni , i.e., ts(nj , pp) 
is derived using DRT as follows. 

 ts(nj, pq) =  max { tf(ni , pq), tdr(nj , pq)},      (3)                 
where ni has been scheduled. In (3), the choice of  

tf(ni , pq) affects the completion time of nj.  If ts(nj , 
pq) is derived by tf(ni , pq), there must be an idle time 
slot which can accommodate  tp(nj , αq) and starts at 
tf(ni , pq) in case of an insertion–based policy. On the 
other hand, if ts(nj , pq) is derived by tdr(ni, pq), there is 
data waiting time for data arrival from other 
processors. If we define such a data waiting time as 
tw(nj, pp), it can be expressed as follows. 

������ ��� = � ���� ��������� ��� � ������� ���
������� ��� � ������ ���� ����������

 

(4) 
During the time slot derived by (4), some tasks 

come to be inserted by an insertion-based policy in 
order to minimize their completion time. The schedule 
length is expressed by  
��������������� = max��������������

������� ����. (5) 

 

D. Task Scheduling in Clusters 

Fig.1 shows an example of a task clustering and 
scheduling tasks. In this figure, (a) represents the 
initial state of the DAG, and (b), (c), and (d) represent 
the state after a task clustering has been finished. 
Execution orders of tasks is different among (b), (c) 
and (d). 

In (b), schedule length in the order of ��� → �� →

�� is 23. In (c), the schedule length in the order of 
��� → �� → �� is 24, because the data arrival time of 
���� at �� is delayed by the increase of the start time 
of �� . In (d), the schedule length is larger than that 
of (b) and (c) by scheduling ��  in ����1�  at the 
latest execution order.  

It can be concluded that the schedule length is 
varied depending on the execution order for each task 
in clusters, even though the set of tasks belonging to 
the cluster is same among (b), (c), and (d). 

III. PREVIOUS WORK 

In our previous work [10], [11], we presented a 
processor assignment strategy for processor utilization. 
The number of processors is limited by imposing the 
lower bound for each cluster size. Under the constraint, 
we theoretically showed that which processor should 
be assigned the cluster (assignment unit). The 
processor to be assigned is the one which has good 
impact on minimizing indicative value for the 
schedule length. 

A. Related Results 

Our previous works[10], [11] focus on how to 
decide the lower bound of each assignment unit size 
(sum of task size in the task cluster divided by the 
processing speed) in order to find a subset of given 
processors. Contributions of the literature [10], [11] 
are: (i) Worst Schedule Length (WSL) was defined 

Fig. 1. Task Scheduling after Task Clustering 
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and its effect on the schedule length was proposed, (ii) 
the lower bound of the assignment unit size for a 
processor was derived. From the following sections, 
we briefly describe those two factors. 

B. Worst Schedule Length (WSL) 

 WSL is the maximum execution path length in case 
that each task is executed as late as possible in a 
processor, provided that there is no data waiting time 
for each task once the processor starts execution. 
Since WSL derivation requires the assignment and 
clustering state M(Gs), at first we present the definition 
of M(Gs). At the initial clustering state G0 , each task 
belongs to a task cluster and suppose that it is assigned 
to the virtual processor pi

vt ∈  Pvt having the 
maximum processing speed and maximum 
communication bandwidth, i.e.,  

Let M : Gs → P be the assignment state after a 

processor assignment is performed to Gs. M(G0) 
corresponds to {(cls0(1), p1

vt), (cls0(2), p2
vt), …., 

(cls0(|V|), p|V|
vt)}, where pi

vt is a virtual processor 
having the maximum processing speed and the 
maximum communication bandwidth. From the initial 
assignment state, each virtual processor is replaced 
with an actual processor and the number of task 
clusters is reduced by a processor assignment and a 
task clustering, i.e., | M(Gs)| ≤ | M(G0)|  for s � 0.  

Table 1 shows notations for deriving WSL. 
WSL(M(��)) is the maximum of LV(�������), which 

corresponds to the maximum of ��������� , where 
�� ∈ � �������� . ���������  is the maximum time 
duration from the START task to the END task in case 
that ��  is scheduled as late as possible. That is, 
WSL(M(��)) is the maximum of level value in all task 
at the clustering state of M(�� ). For a task cluster 
clss(i), top(clss(i)) is the set of tasks which can start 
execution first in clss(i), and in(clss(i)) is the set of 
tasks having incoming edges from other task clusters 
and out(clss(i)) is the set of tasks having outgoing 
edges to other task clusters. btm(clss(i)) is the set of 
tasks having no immediate successor tasks in clss(i), 
and dc(nk , clss(i)) is the set of tasks being one of 
descendant tasks of  nk in clss(i). S(nk , clss(i)) is the 
time span from the start time of the task in top(clss(i)) 
to the start time of nk in case that tw(nk , pp) = 0 and 
every task having no dependencies with nk is executed 
before nk . TL(clss(i)) is the latest start time of the task 
in top(clss(i)), and tlevel(nk) is the latest start time of 
nk without data waiting time if nk ∉  top(clss(i)). 
tlevel(nk) is derived by S(nk , clss(i)) if nk ∉ 
top(clss(i)), otherwise it is the latest data ready time. 
blevel(nk) is the longest path length from nk to the 
END task,  and BL(clss(i)) is the maximum execution 
path length including S(nk , clss(i)) and blevel(nk). If 
LV(clss(i)) is defined as the sum of TL(clss(i)) and 
BL(clss(i)), WSL at M(Gs), i.e., WSL(M(Gs)) is defined 
as the maximum value of LV(clss(i)) where clss(i) ∈ 
Vs

cls .  
EXAMPLE 3.1. Fig. 2 presents an example of 

WSL derivation. (a) is the DAG at M(G0), and (b) is 
the DAG at M(G4), i.e., four tasks have been included Table 1. Notation for WSL(M(Gs))  

(Here, note nk ∈ clss(i)). 

Fig. 2 Example of WSL derivation 
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in task clusters. In both cases, bold arrows mean the 
execution sequence dominating WSL. Suppose there 
are three processors (pi, αi, βi) = (p1, 4, 2), (p2, 2, 4), 
(p3, 4, 4). At (a), each task belongs to a task cluster 
denoted by dashed box and assigned to a virtual 
processor having the maximum processing speed 
being 4 and the maximum communication bandwidth 
being 4. As for cls0(A), we have the following result.  
top(cls0(A)) = out(cls0(A)) = btm(cls0(A)) = {A}. 
From this state, WSL(M(G0)) = 9.5 is decided by the 
path, A, C, E, G, and H, which is the same as the 
critical path length at M(G0). On the other hand, at (b) 
there are four task clusters. At cls4(A), suppose cls4(A), 
cls4(C), cls4(G), and cls4(H) are assigned to p1, p2, p7

vt, 
and p8

vt , respectively.  Then we have the following 
result.  
    top(cls4(A)) = {A}. in(cls4(A)) = ∅. 
    out(cls4(A)) = {A, D}, btm(cls4(A)) ={D}. 
 
At cls4(C), we have  
    top(cls4(C)) = {C}. in(cls4(C)) = {C}. 
    out(cls4(C)) = btm(cls4(C)) = {E, F}. 
 
Since we have the following results as:  
    dc(C, cls4(C)) = {C, E, F}. dc(E, cls4(C)) = {E}. 
    dc(F, cls4(C)) = {F}. 
 
We obtain the following values: 
     TL(cls4(C)) = tlevel(C) = 2. 
     S(E, cls4(C)) = 8 – 4 = 4. 
     S(F, cls4(C)) = 8 – 1 = 7. 
     blevel(E) = 9. blevel(F) = 3.5. 
     BL(cls4(C)) = max {4 + 9, 7 + 3.5} = 13. 
  
Then we have LV(cls4(C)) = 2 + 13 = 15. At the DAG 
of (b), cls4(C) has two execution orders, i.e., C, E, F 
and C, F, E. LV(cls4(C)) is taken when the execution 
order is the former case (the dashed arrow means that 
E starts execution after F is finished.). We obtain 
LV(cls4(A)) = 14, LV(cls4(G)) = LV(cls4(H)) = 15. Then 
we have WSL(M(G4)) = 15. 

C. WSL Properties  

The task clustering heuristic proposed in the 
literature [10] performs to minimize WSL instead of 
schedule length because the schedule length cannot be 
decided until every task is scheduled by a task 

scheduling method. According to the literature [11], it 
is proved that both the upper bound and the lower 
bound of the schedule length can be made smaller if 
WSL is small. Thus, minimizing WSL by a task 
allocation can lead to the reduction of the schedule 
length. 

D. Lower Bound of Assignment Unit Size  

In the literature [10], ΔWSLup(M(Gs)) is defined as 
an upper bound of WSL(M(GS)) - WSL(M(G0)). That 
is, a small value of ΔWSLup(M(Gs)) means that WSL 
can be made smaller by the s-th clustering step. 
According to the literature [10], ΔWSLup(M(Gs)) is a 
function of the lower bound, the processing speed, and 
the communication bandwidth. 

 At ΔWSL(M(Gs)), there are a number of task 
clusters exceeding the lower bound, i.e., δ(αp, βp, Gs) 
on a path belonging to the set of tasks dominating 
WSL(M(Gs-1)), where αp and βp are variables that must 
be determined. Thus,  

�� � ������������������������
�� �

�����������
,   (6) 

ΔWSLup(M(Gs)) assumes the local minimum value 
when δ(αp, βp, Gs) equals to the following value. 

 

Fig. 3. Lower Bound Derivation at M(G5) 
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�������, ��, ���  

= �∑ ��������������≺

�� �
max����

�������
�� +

max��,���
�����,���
�� �	, 

  (7) 
where ������≺  is a path where each task belongs to 
the set of tasks dominating WSL(M(Gs-1)). In (7), 
δopt(αp, βp, Gs) is derived by tracing the path in the set 
of tasks and edges dominating WSL(M(Gs-1)).  

EXAMPLE 3.2 Fig. 3 shows an example of the 
lower bound derivation presented in [10]. At (a), G 
and H are un-clustered at M(G4). The path, A, C, E, G, 
H is the path in which every task belongs to the set of 
tasks {E, C, F, G, H} dominating M(G4). From this 
path, δopt(αp, βp, G5) is derived as 9.3 by assuming the 
next assigned processor is p3. Then cls5(G) includes 
one of unclustered tasks, H. However, the total 
execution time at cls5(G) at (c) is 3 + 1 = 4 < 9.3 and 
then cls5(G) will be clustered into one of cls5(A) or 
cls5(C) in the next task clustering step.  

D. Existing Clustering Heuristics 

Many task clustering heuristics have been proposed 
for homogeneous system [14], [15], [16], [17]. In 
homogenous systems, task assignment is not required. 
As a result, a clustering priority in a task clustering 
heuristic for homogeneous system directory affects 
the schedule length. However, in heterogeneous 
systems, system information, such as the processing 
speed and communication bandwidth, is required for 
deriving a clustering priority. Conventional task 
clustering heuristics for heterogeneous systems do not 
use actual processing time or communication time for 
the clustering priority [4], [5], [6], [7]. The objective 
of a clustering is to localize data communications, and 
it is known that DAGs with larger data size have better 
schedule length. Even though RAC [4] and FCS [5] 
define the lower bound of task clusters, they can’t get 
good schedule length for all DAG.  

On the other hand, in literature [10], we proposed 
the task clustering heuristic which derivate the lower 
bound for each task cluster automatically and get good 
schedule length for all DAGs. Proposed task 
clustering heuristic consists of three phases based on 
minimizing WSL. (i)Derive the lower bound for the 
cluster size as (7), (ii) decide the processor to be 

assigned, which minimize ΔWSL. Then (iii) merge 
several tasks into a cluster until its size exceeds the 
lower bound derived in (i). In other words, the 
proposed method manages to generate the linear 
cluster to minimize WSL. 

IV. PROPOSAL 

A. Basic Idea 

In this section we propose a task scheduling method 
that is performed after each task has been  assigned 
to a processor by a task allocation. If task allocation 
is performed by a task clustering, each task is assigned 
to a task cluster, i.e., a task cluster is an assignment 
unit for each processor. Followings are features of our 
proposal. 

- Our proposal minimizes the WSL (Worst 
schedule Length) to lower the upper and lower 
bound of the schedule length.  

- We use the actual processing speed and the 
communication bandwidths of each processor 
assigned to each task cluster for deriving the 
scheduling. In the conventional list-based task 
scheduling such as HEFT, CEFT and PEFT 
adopt average processing time and the average 
communication time for deriving the scheduling 
priority. 

B. Proposed Task scheduling 

We present how the scheduling priority is derived 
for each task. We call a task as a free task, whose every 
immediate predecessor tasks have been scheduled. 
The objective of the proposed scheduling is to 
minimize WSL by choosing a task having the 
maximum �����  value from the free task list. By 
choosing such a task, we obtain the fact that WSL can 
be made smaller as follows. 

    
THEOREM 4.1.  
Let WSL after m tasks have been scheduled be 
����.  
If a task �� � 	���������	�� ��, 

						��������� = 	 max������������
�����������,	 

is selected at the m-th task selection phase, then we 
have                                               
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																																						���� ≤ ������.      (8) 
Proof4.1.  
First we define the two set of tasks as follow, 
����� = ������ � 	���������� �������� ∩

																																																																		�������� ≠ ∅�.  
����� = ������ � 	���������� �������� 	∩

																																																																�������� = ∅�.(9) 
Without loss of generality, suppose that �� 

belongs to a task cluster ������ and the level of 
������ is defined as LV(K).  
(i) Level of tasks in�����,  
For each task �� � 	�����, there can be two cases, 

i.e., whether �� belongs to ������ or not. 
(i-i) The case of �� � ������.  
If we have LV(K) = 	��������� before the m-th 

task selection, we obtain LV(K) after �� is selected 
as follows. 
����� = 	 max��������������

������������ ≤
																																																															������������, (10) 

where ����������  is ���������  after m tasks 
have been scheduled. 
(i-ii) The case of �� � ������.  
In this case, ���������  is not affected by �� 

selection. Thus, WSL is not increased. 
(ii) Level of tasks in �����. 
For each task �� � 	�����, ��������� is not 

Fig. 4. Procedure for the Scheduling 

affected by ��  selection. Thus, WSL is not 
increased.  
From (i) and (ii), it leads that WSL is not increased 

by choosing the task having the maximum �����  in 
���������. □ 

As described in section III.C, minimizing WSL 
contributes to lower the upper bound and the lower 
bound of the schedule length. To minimize the WSL, 
the strategy of our proposal is to reduce WSL for each 
scheduling step. However, how to minimize WSL is 
NP-complete problem as with the schedule length 
minimization. That is, our proposal is based on a 

INPUT: Clustered DAG G. 
OUTPUT: Schedule of G. 
Define the task cluster to which ni belongs by C(ni); 
Define the processor to which ni is assigned by proc(ni); 
Define USCHED to be set of unscheduled tasks; 
Define FREEsched  to be the set of tasks whose all immediate

predecessor tasks have been scheduled; 
1: WHILE USCHED ≠ ∅  DO 
2: 

 
Find ni having a maximum of level(ni) in FREEsched. 
If two or more tasks have the same maximum value, 
the task ni having maximum blevel value is selected; 

3:  FREEsched ← FREEsched - {ni}; 
4:  USCHED ← FREEsched - {ni}; 
5: 

 
Insert ni into an idle time slot of proc(ni) s.t,  
tf(ni, proc(ni)) is minimized by an insertion-based 
policy. 

6:  Set  tf(ni, proc(ni)); 
7:  FOR nj ∊ suc(ni) DO 
8:   IF nk ∉ USCHED for∀nk  pred(nj)  THEN 
9:    FREEsched ← FREEsched ∪ {nj}; 

10:   END IF 
11:  END FOR 
12: END WHILE 

 
(a) Before Scheduling Tasks 

 
(b)  Scheduling 

 
(c) Gantt Chart 

Fig. 5. Example of the Scheduling 
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warranty for WSL reduction. Moreover, our proposal 
has a practical time complexity (see Section IV.D) and 
thus is said to be a cost-effective approach for 
reducing both the upper bound and the lower bound of 
the schedule length. 

C. Procedure and Example 

Figure 4 presents the procedures for proposed 
scheduling. First, ���������  includes all of the 
START tasks and USCED includes all of the tasks. 
This procedure finishes when USCED becomes empty.  
At line 2, the task to be scheduled is selected by the 
�����. After the completion of task clusterings and 
processor assignments to clusters, ��������� can be 
derived with the actual processer speed and the 
communication bandwidth of the processer which �� 
has been assigned to. That is, we can derivate WSL. 
In the scheduling phase, the task having the 
maximum 	�����  in ���������  is scheduled by 
inserting it into an idle time of the processor. The task 
is assigned to an idle time of �������� at line 5. After 
the task is scheduled, each task in �������  becomes 
a part of ���������  if all of its predecessor tasks 
have been scheduled. 

Example 4.1 Figure 5 shows an example of 
scheduling tasks.  Figure 5(a), (b) and (c) present the 
DAG before scheduling each task, the task scheduling 
result, and Gantt chart, respectively. In Fig. 5(a), the 
DAG has two task clusters and each cluster is assigned 
to each processor. Since there is only one START task 
in Fig. 5(a), A is included in ��������� , and it is 
selected for scheduling. Then, B in cls(E) and C in 
cls(E) become free, and their	�����s are 12.8 and 8, 
respectively; moreover, ����� ��� = 1.3. At step 2 of 
cls(E) in Fig. 5(b), D and E are assigned to ��, but 
their ����� s are same. In this case, their ������ 
values are compared at line 2 in Fig. 4. 
Since ��������� = �.� � ��������� = 6.8 , E is 
selected. At step3 of cls(E) in Fig. 5(b), D is selected 
and its finish time is calculated. There is no idle time 
between B and E according to Fig. 5(c), and D is 
added after E.  As a result, the finish time of D is 8.7. 
Similarly, at step 4 of cls(E) in Fig. 5(c), there is no 
idle time in B-E or E-D. Thus, G is added after D. At 
step 5 of cls(E), step 5 of cls(H) and step 6 of cls(H), 
I, J, and K are added, and the schedule time is 12.8. 

D. Complexity of the Proposed Method 

In this section, we analyze the complexity of the 
proposed scheduling algorithm. At line 2 in Fig. 4, we 
have |���������| ≤ 	 |�|  and every task in 
���������  is ordered according to nonincreasing 
order of �����. Thus, one task is put in ��������� 
by log|���������| steps. As a whole, this operation 
takes ��|�| log|�|�.  

At line 5 in Fig. 4, an idle slot can be found by at 
most the number of tasks assigned to the processer. 
This takes |�|�.  

At line 7 to 11, this requires 
|�������| log|�������|  steps. As a whole, it takes 
��|�| log|�|�. 

Therefore, the complexity of the proposed 
scheduling is �|�|�, which is not higher than those of 
existing scheduling [1], [2], [3]. 

V. Experiment 

A. Objectives 

We conducted the experimental simulations to 
confirm advantages of our proposal against existing 
methods in term of Schedule Length. Actually, the 
Schedule Length Ratio (SLR) [1], [2] metric was used 
to measure the performance of each scheduling 
methods. The SLR is defined as follows; 

��� = ��
∑ �������������

����������
,    (11) 

B. Comparison with Existing Scheduling 
Methods. 

Here, we conducted the experimental simulations to 
confirm advantages of the proposed scheduling 
method against existing methods in term of Schedule 
Length Ratio (SLR). 
 

1) Existing Scheduling Methods: Any task 
clustering heuristics doesn’t specify the task 
scheduling method after task clustering. Here, we 
picked up following task scheduling methods after 
clustering for comparison. 

-Method 1: The proposed scheduling method. 
-Method 2: The task with minimum rank_down (the 
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longest path length from START task to the task) 
is scheduled. [1] 
-Method 3: The task with minimum value of sum 
of rank_down and rank_up (the longest path length 
from the task to the END task) is scheduled. [1] 

-Method 4: The task with maximum rank_up is 
scheduled. [1]    

We supposed that Triplet [7] and RAC [4] are 
clustering heuristics working under task scheduling 
methods. 

 
2) Experimental Environment: In the simulation, 

two types of DAGs, i.e., random DAGs and Gaussian 
Elimination DAGs were generated. We present each 
condition as follow. 

a) Random DAGs:  In the simulation, 100 
DAGs were generated under following conditions and 
average of schedule lengths of DAGs were calculated 
after scheduling tasks. For each DAG, the number of 
tasks in the DAG was chosen from {50, 100, 300, 500, 
1000} randomly, the max to min ratio in term of task 
size was 100, the max to min ratio in term of data size 
was 100, and the Communication to Computation 
Ratio (CCR) [13], defined as the average 
communication bandwidth divided by the average 
processing speed, was chosen from {0.1, 0.5, 1, 3, 5, 
10}. The maximum number of tasks on a path, i.e., the 
depth, is defined by the Parallelism Factor (PF), which 

is denoted by �|�| �⁄ ; in our experiments, α was 
chosen from {0.5, 1.0, 2.0}. For each task, out degree 
was randomly chosen from 1 to 5.  For the 
heterogeneity of the system, processing speed of a 
CPU was chosen as normal distribution where the max 
to min ratio were set to 2, 5 and 10, and 
communication bandwidth were chosen as normal 
distribution where the max to min ratio was set to 2, 5 
and 10.   

b) Gaussian elimination DAGs:  In the 
simulation, 100 DAGs were generated in case that 
matrix size were 10, 30 and 50, and average of 
schedule lengths of DAGs were calculated after 
scheduling tasks. For each DAG, the max to min ratio 
in term of task size was 100, the max to min ratio in 
term of data size was 100, and the CCR was chosen 
from {0.1, 0.5, 1, 3, 5, 10}. For the heterogeneity of 
the system, processing speed of a CPU was chosen as 
normal distribution where the max to min ratio were 
set to 2, 5 and 10, and communication bandwidth were 
chosen as normal distribution where the max to min 
ratio was set to 2, 5 and 10. 

The simulation environment was developed by 
JRE1.6.0_0, the operating system was Windows XP 
SP3, the CPU architecture was Intel Core 2 Duo 2.66 
GHz, and the memory size is 2.0 GB.  

 
3) Experimental Result for Each Clustering: Table 

Table 2. Comparison of SLR among scheduling  
method for random DAGs (1/2) 

CCR Triplet w/ 
method 1 

Triplet w/ 
method 2

Triplet w/ 
method 3 

Triplet w/ 
method 4

0.1 1.438 1.483 1.44 1.421
0.5 2.013 2.211 2.108 2.093

1 2.511 2.475 2.497 2.602
3 4.014 4.213 4.159 4.186
5 4.616 4.672 4.702 4.815

10 8.319 8.467 8.513 8.344
 
Table 4. Comparison of SLR among scheduling  
methods for Gaussian elimination DAGs (1/2) 

CCR Triplet w/ 
method 1 

Triplet w/ 
method 2

Triplet w/ 
method 3 

Triplet w/ 
method 4

0.1 3.724 3.778 3.781 3.517
0.5 6.132 6.391 6.218 6.191

1 7.375 7.668 7.423 7.402
3 9.412 9.815 9.915 9.529
5 13.858 14.194 14.011 14.033

10 15.729 16.512 16.228 15.994

Table 3. Comparison of SLR among scheduling  
method for random DAGs (2/2) 

CCR RAC w/ 
method 1

RAC w/ 
method 2

RAC w/ 
method 3 

RAC w/ 
method 4

0.1 2.017 2.271 1.938 1.998
0.5 2.736 2.994 2.866 2.831

1 3.813 4.017 3.905 3.982
3 7.298 7.419 7.498 7.418
5 9.371 9.667 9.891 9.776

10 12.732 13.044 13.318 13.417
 
Table 5. Comparison of SLR among scheduling  
methods for Gaussian elimination DAGs (2/2) 

CCR RAC w/ 
method 1

RAC w/ 
method 2

RAC w/ 
method 3 

RAC w/ 
method 4

0.1 2.017 2.133 2.317 1.983
0.5 3.248 3.372 3.174 3.711

1 4.395 4.571 4.618 4.498
3 9.155 9.372 9.779 9.227
5 16.289 16.835 17.037 16.793

10 18.642 19.325 19.492 18.881
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2 and 3 show comparison results for random DAGs in 
terms of SLR. Table 2 and 3 are cases of Triplet and 
RAC, respectively. For each value of CCR, SLRs for 
Radom DAGs are derived with different scheduling 
methods. Table 4 and 5 show the comparison results 
for Gaussian Elimination DAGs in terms of SLR. 
Table 4 and 5 are cases of Triplet and RAC, 
respectively. For each value of CCR, SLRs for 
Gaussian Elimination DAGs are derived with different 
scheduling methods. 

In any case, the proposed scheduling method get 
better SLR than that of other scheduling methods if 
CCR is equal to or larger than 0.5. That is, the 
proposed method is suitable for data-intensive jobs 
with larger CCR.  

 

C. Comparison of Clustering Heuristics 

In this experiment, we compared the SLR by 
method 1 in the task clustering in [10], Triplet and 
RAC with conventional list-based task scheduling 
heuristics (HEFT, PEFT, and PEFT).  We used same 
experimental environment described in section V.B.2). 
We call the proposed clustering heuristic in [10] as 
clustering 1 in this section.  

 
1) Experimental Results: Fig. 6 shows the 

comparison results for SLR. For each value of CCR, 
SLRs for Radom DAGs are derived with the proposed 
scheduling methods working above clustering 1, 
Triplet and RAC and with HEFT, PEFT and CEFT. 
We can see that the proposed clustering heuristic [10] 
with the proposed scheduling method has better SLRs, 
if CCR is larger than 1.0. Fig. 7 shows experimental 
results for SLRs on Gaussian elimination DAGs. We 
can see that the clustering heuristic in [10] with the 
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proposed scheduling method has better SLRs, if CCR 
is equal to and larger than 3.  That is, the proposed 
scheduling method with the clustering heuristic 
proposed in [10] is suitable for data intensive jobs with 
larger CCR.  

D. Discussion 

 For both of Gaussian elimination DAGs and 
Random DAGs, clustering 1 and xEFT (i.e., CEFT, 
PEFT, HEFT) doesn’t make big difference in terms of 
SLR  in case that CCR is less than 3, because  
delays caused by data-waiting time at each task affect 
SLR a little.   On the other hand, clustering 1 shows 
better SLRs remarkably in case that CCR is equal to 
and larger than 3.  That is, bigger data-transferring 
time makes bigger data-waiting time at each processer 
and it is considered to contribute to make SLR worse 
remarkably. The combination of clustering 1 
minimizing WSL and proposed scheduling method, 
i.e., method 1, which makes WSL smaller was proved 
to be effective for larger CCR. 

Therefore, the proposed scheduling method 
working over the clustering heuristic in [10] is suitable 
for work-flow type jobs handling massive data. 

XI. CONCLUSION 

In this paper, we proposed the task scheduling 
method after completion of task clustering in 
heterogeneous system. At the proposed method, tasks 
on the path dominating WSL, i.e., with maximum 
value of level, are preferred to be scheduled. As a 
result, the Schedule Length Ratio (SLR) can be made 
smaller than that of several existing method, if the 
CCR is equal to or greater than 0.5. 

Furthermore, the proposed scheduling method with 
the task clustering heuristic proposed in [10] has been 
confirmed to get smaller SLR than that of well-known 
list scheduling method such as HEFT, CEFT and 
PEFT, if CCR is equal to or bigger than 3 through the 
experiment. In conclusion the proposed scheduling 
method can be applied to execute data-intensive jobs 
in heterogeneous systems. 
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