MELiSSA

The European Project of Closed Life Support System

Ch. Lasseur, JAXA, January 17th, 2017
• founded in 1975
• executes European space policies
• 22 member states
• cooperation with NASA, Russia, Japan et cetera
• yearly budget > 4.4 miljard EURO
• ESTEC/ESA: largest research facility (Noordwijk, The Netherlands)
• approx. 2700 highly educated scientists
INTRODUCTION

ESTEC/ESA NOORDWIJK
ESA astronauts
Life Support Functions

- For the last 30 years ESA studied:
 - Air Recycling,
 - Water Recycling,
 - Waste Management,
 - Food Production and Preparation,
 - Quality control (chemical and microbiological),
 - Reliability & Safety Issues,
 - Modelling & System tools,
 - Ergonomics & Habitability

For all these functions, physical/chemical/biological processes are considered.
Today ➔ Tomorrow

«Juvenile» system

- Unlimited Resources
- Unlimited Waste

«Mature» system

- Low consumption of resources
- Quasi-cyclical flows of materials
ALiSSE Criteria

• Metric to evaluate and compare ECLSS:
 – Multi-parameters,
 • Efficiency,
 • Mass,
 • Energy, **ENRUM study,**
 • Safety,
 • Crew time.
The Concept
A Community
The Scientific Challenges

• Demonstration of the efficiency of each sub-process,
• Compatibility between processes (static and dynamic),
• Modelling and control of biological processes,
• Limitation/poisoning via traces elements,
• Very long term drift,
• Biosafety,
• Crew Acceptance of recycled products,
• …..
The Technological Challenges

• Robust modelling of all sub-systems,
• Modelling and control of A Closed loop system,
• Control of microbial consortium (axenicity),
• Detection (and modelling) of changes of nature of the sub-processes,
• To stay abreast of technological progress,
• Effects of Space Environment (reduced gravity, radiation,..)
•
The Management Challenges

- To Convince the investors for the 40 years (or more) of the project development,
- To identify and convince Customers,
- To manage a very large, multicultural, and multidisciplinary group,
- To structure the project and to allow an historical and comprehensive control of all the database
 - Raw data, models, reports, software, manpower, budget, ….
Roadmap

Technology demonstrators
- Generic life support platform
- Generic bioreactor
- Solid-liquid mixing
- Solid-liquid separator
- Gas-liquid mixing
- Gas-liquid separator
- MiDASS air

Precursors
- Air revitalisation (BIORAT 1)
- Urine treatment (BIORAT 2/UNICUM)
- Food complement (PFPU)
- Closed loop demonstrator (MPP)

Cis-Lunar mission
- Water re-use
- Waste collection
- MiDASS water

Various integration steps
Basic R&D
The Modelling Approach

• As mechanistic as possible.

• Requirements implies:
 – Mass balances to be considered: all elements and all phases
 – Energy balances to be considered
 – Rate limiting processes to be characterized
 – Prediction at nominal point
 – Usable for control purposes
 – Prediction at degraded modes.

• Even if very challenging, “we can... because we must”
The approach Inputs / Outputs

- Solid 1,
- Liquid 1,
- Gas 1

- Process
 - Bioreactor
 - FiltrationUnit

Energy

Solid 2, Liquide2
Gas 2

Waste
(liquid, solids, gas)

This document is provided by JAXA.
Nitrogen Transformation

\[\text{NH}_4^+ \rightarrow \text{COMPARTMENT III} \rightarrow \text{NO}_3^- \]

Nitrosoconomonas europaea

\[\text{NH}_4^+ \rightarrow \text{NO}_2^- \rightarrow \text{NO}_3^- \]

Nitrobacter winogradskyi

- Packed-bed reactors
- Immobilized cells
- Pilot scale reactors
- Several reactors
- Biofilm control

This document is provided by JAXA.
Model calibration/validation

Biological parameters:
- Pures cultures (batch reactors)
- Coculture (fixed-bed reactor and bioreactors)

Physical parameters:
- DTS: characterisation of the hydrodynamic model
- kLa: characterisation of the gas/liquid transfer rate
High Level of Prediction

Variation of the Dissolved Oxygen
The Producer

• Food, oxygen and water productions are organised via two processes:
 – An Algae compartment (IV a)
 – An Higher plant compartment (IV b)
Higher Plants Research
Modelling

- Light interception
- Photosynthesis
- Gas exchange
- Sap conduction: Xylem, Phloem
- Respiration
- Root absorption
- Storage
- Growth
- Temperature, photoperiod
- Development, Architecture & Morphology
- Water + minerals
- Atmosphere
Plant Characterisation
Unit preliminary design

- Objectives:
 - Characterize plant growth (gas exchanges, nutrient uptake, water uptake) under varying environmental conditions including root microbiology
 - Characterize plant composition (chemical and nutritional quality) under varying environmental conditions including root microbiology
 - Develop first principle mathematical model of plant growth
 - Develop predictive control algorithm for optimization and control of the MELiSSA Higher Plants Chamber
Crop cultivar test

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Annabelle</th>
<th>Bintje</th>
<th>Desiree</th>
<th>Innovator</th>
<th>Annabelle</th>
<th>Bintje</th>
<th>Desiree</th>
<th>Innovator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroponic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water (%)</td>
<td>78.2</td>
<td>81.1</td>
<td>84.2</td>
<td>77.9</td>
<td>81.8</td>
<td>76.5</td>
<td>79.7</td>
<td>77.6</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>1.62</td>
<td>1.20</td>
<td>1.58</td>
<td>1.39</td>
<td>1.33</td>
<td>1.57</td>
<td>1.49</td>
<td>1.43</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>0.06</td>
<td>0.04</td>
<td>0.08</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Total Dietary Fibers (%)</td>
<td>1.53</td>
<td>1.80</td>
<td>2.2</td>
<td>1.79</td>
<td>1.66</td>
<td>2.14</td>
<td>1.86</td>
<td>2.09</td>
</tr>
<tr>
<td>Minerals (%)</td>
<td>1.16</td>
<td>1.18</td>
<td>1.13</td>
<td>1.08</td>
<td>0.75</td>
<td>0.92</td>
<td>0.87</td>
<td>0.9</td>
</tr>
<tr>
<td>Of which (mg/100g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>504</td>
<td>507</td>
<td>477</td>
<td>440</td>
<td>432</td>
<td>248</td>
<td>234</td>
<td>192</td>
</tr>
<tr>
<td>Calcium</td>
<td>5.5</td>
<td>7.5</td>
<td>7.4</td>
<td>8.7</td>
<td>16.4</td>
<td>21</td>
<td>22.9</td>
<td>14.9</td>
</tr>
<tr>
<td>Magnesium</td>
<td>29.4</td>
<td>22.2</td>
<td>22.6</td>
<td>26.7</td>
<td>20.6</td>
<td>17</td>
<td>21.2</td>
<td>19.3</td>
</tr>
<tr>
<td>Iron</td>
<td>0.7</td>
<td>0.8</td>
<td>0.4</td>
<td>0.6</td>
<td>1.9</td>
<td>2.5</td>
<td>4.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Copper</td>
<td>1.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.16</td>
<td>0.3</td>
</tr>
<tr>
<td>Zinc</td>
<td>1.1</td>
<td>0.9</td>
<td>1</td>
<td>1.9</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
<td>0.26</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.18</td>
<td>0.11</td>
<td>0.13</td>
<td>0.13</td>
<td>0.15</td>
<td>0.11</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>108</td>
<td>87</td>
<td>89</td>
<td>90</td>
<td>32</td>
<td>23</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>Solanine (mg/kg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Chaconine (mg/kg)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Energy (for 100g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kcal</td>
<td>67.0</td>
<td>66.4</td>
<td>54.6</td>
<td>66.1</td>
<td>86.3</td>
<td>74.3</td>
<td>72.3</td>
<td>58.3</td>
</tr>
<tr>
<td>kJ</td>
<td>260.1</td>
<td>277.8</td>
<td>228.4</td>
<td>276.8</td>
<td>361.1</td>
<td>310.7</td>
<td>302.5</td>
<td>244.1</td>
</tr>
</tbody>
</table>
Participation in Bedrest

✓ 24 subjects (women).
✓ 3 groups: Controls – Exercise – Nutrition.
✓ Duration: 106 days for each successive period
Preliminary Space Experiments
Regularly in Space

- MESSAGE 1: October 2002
- MESSAGE 2: October 2003
- BASE: September 2006/October 2009
- NITRIMEL: August 2014
- DEMES & BISTRO: September 2015
ARTEMISS- In ISS September 2017
Oxygen/CO₂

CO₂

Micro-Algues

Nutriments

Oxygen

Proteines
Oxygen/CO$_2$
Integration for Ground Demonstration
Concordia Station

Altitude: 3233 m
Thickness ice layer: 3300 m
Distance from sea: > 1000km
Summer T°: -30°C
Winter T°: -60°C
Minimum T°: -80°C
Atmospheric pressure: 645 hPa
Today, based on all additional MELiSSA knowledge, developed as a second generation laboratory (new hardware, additional team skills, closer to industrial standards)

The MELiSSA Pilot Plant is now the primary European Facility for Life-Support ground demonstration attracting interests, collaborations and supports from all over the world
Space Design

– Preliminary sizing
– System studies
PS selected concepts for further analysis

1 - INFLATABLE DOME – ONE MEMBRANE
 - Axonometry
 - SICSA MarsLab Concept [2004]

2 - INFLATABLE CYLINDER W. INT. STRUCTURE
 - LGH Arizona University [on-going]
 - NASA/ILC Lunar Habitat [1996]
 - TASI/Aero Sekur STEPS2 [on-going]

3 - INFLATABLE CYLINDER W. INT. RIGID CORE
 - NASA/ILC Dover/TASI TransHab [2000]
 - NASA/Bigelow Genesis I, II and BEAM [on-going]
 - ESA/TASI/Aero Sekur IMOD [2006]
Terrestrial Interest
<table>
<thead>
<tr>
<th>SITE</th>
<th>PAYS</th>
<th>Année</th>
<th>Q.té (m³)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST THIBAULT DES VIGNES</td>
<td>FRANCE</td>
<td>1998</td>
<td>97 200</td>
<td>Elimination de la pollution carbonée</td>
</tr>
<tr>
<td>LAGNY T4</td>
<td>FRANCE</td>
<td>1998</td>
<td>18 000</td>
<td>Elimination de la pollution carbonée</td>
</tr>
<tr>
<td>PIAN SCAIROLO</td>
<td>SUISSE</td>
<td>1998</td>
<td>13 500</td>
<td>Nitrification</td>
</tr>
<tr>
<td>DAVYHULME - MANCHESTER</td>
<td>GRANDE-BRETAGNE</td>
<td>1998</td>
<td>2 700</td>
<td>Nitrification</td>
</tr>
<tr>
<td>COLOMBOIS - PARIS</td>
<td>FRANCE</td>
<td>1997</td>
<td>33 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>FRIELAS</td>
<td>PORTUGAL</td>
<td>1997</td>
<td>12 000</td>
<td>Elimination de la pollution carbonée</td>
</tr>
<tr>
<td>COLOMBIER</td>
<td>SUISSE</td>
<td>1997</td>
<td>28 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>ALTENRHEIN</td>
<td>SUISSE</td>
<td>1996</td>
<td>10 800</td>
<td>Nitrification</td>
</tr>
<tr>
<td>ARACHES</td>
<td>FRANCE</td>
<td>1996</td>
<td>85 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>HERFORD</td>
<td>ALLEMAGNE</td>
<td>1995</td>
<td>24 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>NEUCHATEL</td>
<td>SUISSE</td>
<td>1995</td>
<td>7 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>ALANYA</td>
<td>TURQUIE</td>
<td>1995</td>
<td>2 800</td>
<td>Nitrification</td>
</tr>
<tr>
<td>RAMBOUILLET</td>
<td>FRANCE</td>
<td>1995</td>
<td>10 100</td>
<td>Nitrification</td>
</tr>
<tr>
<td>ROME SUD</td>
<td>ITALIE</td>
<td>1994</td>
<td>9 100</td>
<td>Nitrification</td>
</tr>
<tr>
<td>LYON ST FONS</td>
<td>FRANCE</td>
<td>1993</td>
<td>20 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>DAMMARIE LES LYS - MELUN</td>
<td>FRANCE</td>
<td>1992</td>
<td>40 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>BLAGNAC</td>
<td>FRANCE</td>
<td>1992</td>
<td>13 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>MARIAGER</td>
<td>DANEMARK</td>
<td>1991</td>
<td>2 100</td>
<td>Nitrification</td>
</tr>
<tr>
<td>ASSENS</td>
<td>DANEMARK</td>
<td>1991</td>
<td>11 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>FREDERIKSHAVN</td>
<td>DANEMARK</td>
<td>1991</td>
<td>10 100</td>
<td>Nitrification</td>
</tr>
<tr>
<td>HOBRO</td>
<td>DANEMARK</td>
<td>1991</td>
<td>9 100</td>
<td>Nitrification</td>
</tr>
<tr>
<td>EVREUX</td>
<td>FRANCE</td>
<td>1991</td>
<td>20 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>CERGY</td>
<td>FRANCE</td>
<td>1991</td>
<td>40 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>NYBORG</td>
<td>DANEMARK</td>
<td>1991</td>
<td>13 000</td>
<td>Nitrification</td>
</tr>
<tr>
<td>ST JEAN D'ILLAC</td>
<td>FRANCE</td>
<td>1991</td>
<td>2 100</td>
<td>Nitrification</td>
</tr>
</tbody>
</table>
Water Recycling
Microbial Safety: MiDASS

- Fast Microbial Identification and quantification <3 hours
- Pan fungi, pan bacteria,
- Fully automated,
- Unique technology,
- Large terrestrial market: from hospital to pharmaceutical industry
- 50/50% investment with private industry
ALGOSOLIS
Green Building
XTU Initiative
Industrial Ecology

Diagram showing the interconnection of various industrial processes:
- Lake Tisso
- Tisso pipeline
- Statoil refinery
- Asnaesvaerket power station
- Novo Nordisk biotechnology facility
- Gyproc plaster board manufacturer
- District heating
- Future green houses
- Fish pond

Connections include:
- Water
- Sulfur
- Steam
- Cooling water
- Waste water
- Gas
- Waste heat
- Fly ash
- Biosludge fertilizer for farming
- Other

Products and flows:
- Sulfuric acid for sale
- Fly ash sold to cement manufacturers
- Steam, Cooling water, Waste water, Gas, Waste heat, Fly ash, Biosludge fertilizer for farming, Other
- Other
- Other
- Other
Conclusion

• Very high level of challenges,

• An existing community and 27 years of research,

• Objectives in line with Terrestrial and Space R&D and evolution, (e.g. Circular Economy),

• Very much open for collaboration.