M-3SⅡ型ロケットにおけるテレメータ・コマンド・集中電源

林　友直　横山　幸嗣　井上浩三郎　橋本　正之　
河端　正彦　大西　晃　大島　勉　加藤　輝雄　
瀬尾　基治　日高　正規

1．概要

M-3SⅡ型ロケットでは、M-3S型と異なり、新たに装備されたサブフースタ SB-735の性能計測等のために、サブフースタにテレメータ送信機を搭載した。また、サブフースタの分離状況を画像伝送するため第2段計器部に画像伝送用テレメータ送信機を搭載し、さらに3号機では新たに開発された第3段モーターの性能計測のために、第3段計器部を設けてテレメータ送信機を搭載する等の大幅なシステム変更がなされている。

搭載テレメータ送信機で新規に開発されたのは、画像伝送用テレメータ送信機で、M-3SⅡ型ロケットの試験機であるST-735ロケットで予備試験を行い、地上追尾糸を含めて総合的に性能の確認を行ったので、M-3SⅡ型1号機から本格的に搭載された。

地上系では、第2段モーターの燃焼ガスが通信回線に大きな障害をもたらす等の問題が生じ、2号機から高利得の18mパラボラアンテナを使用し、従来の高利得16素子アンテナに対する冗長系を構成した。

また、第3段目の機体振動計測データ等を伝送していた900MHz帯テレメータは3号機から送信周波数がS帯へ変更されたのに伴い、地上受信アンテナとしてはこれまで使用していた3mφパラボラアンテナをやめ衛星追跡用10mφパラボラアンテナを使用する事となった。

データ処理系では、計算機によるデータ処理が本格化し、姿勢制御系、計測系、テレメータ系のデータ処理のほか、従来のACOSやRS系でのデータ伝送に加えM管制室へもデータ伝送が出来るようになった。

コマンド系では、1～2号機は従来と同様であるが、3号機から第1段の制御項目等を増やす必要からトーン周波数を増し、コマンド項目を3項目から6項目にし、さらに操作上の安全性を向上させた。

集中電源は、充電効率や管理の点から見直しをはかり、従来M-3S型で用いられていた亜化銀亜鉛蓄電池に替わりニッケルカドミュウム蓄電池が使用されるようになった。

2．テレメータ

2.1 M-3SⅡの通信回線
M-38II型ロケットでは、各段でロケットの推力向上が図られ、これに伴う性能計測のため計測項目がM-3Sに比べ大幅に増えた。搭載されるテレメータ送信機もこれ等をふまえ、通信距離、ロケットの姿勢変化および各段燃焼ガスの影響を考慮し、総合的に通信回線設計を行った。

搭載系では、第2段計器部については直距離にして約2千Kmの通信回線を確保するためテレメータ送信機の送信電力を2〜5Wと大きくしている。

送信アンテナはロケットの姿勢変化を考慮して、300MHz帯テレメータについては胴体装着型フックアンテナを第2段計器部外壁に8本取り付け、各素子間に45度ずつの位相差を与え、複数の送信波に対してそれぞれ左旋または右旋円偏波をしてアンテナを共有させ、アンテナパターンの切れ込みを少なくしている。1、2号機に用いた900MHz帯テレメータは、逆L型アンテナ4本を第2段計器部外壁に取り付け、90度ずつの位相差を持たせている。更に、飛行中の途中から電界強度を上げるため第2段目タイマーからの信号を受け空中線切替器により第2段モータノズル部に取り付けられたノズルアンテナに切替えている。

3号機のS帯テレメータおよび第3段目に搭載された300MHz帯テレメータアンテナについては、まず前者は第2段計器部外壁にアンテナを2本取り付け送信機共用させ、地上から送信された電波をそれぞれのアンテナで受信し、レベルの比較を行った上でレベルの高い方のアンテナから送信するようになっている。後者については2・3段接手部にアンテナ子を90度間隔に4本取り付け、円偏波として送信している。

画像伝送に関しては、第2段計器部外壁に導波管開口型アンテナ2本を対する位置に取り付け、常に地上局に向いている側のアンテナが送信機と接続出来るようにコマンドで切り替えている。

サブブースタと第1段目に搭載されたテレメータ送信機は、それぞれサブブースタ分離、第1段切り離しまでのデータ伝送を担当しており、通信距離が短いため送信電力も1Wとした。送信アンテナは、ロケットの形状からも制約もありサブブースタはサブブースタ頭部に、第1段テレメータについては、尾翼先端部にフック型アンテナをそれぞれ1本取り付けている。さらに、3号機では第1段モータの燃焼ガスによる電波減衰を軽減するため、第1段テレメータの送信アンテナを第2段目搭載のテレメータと共用させるようにした。

地上受信アンテナ系では、長距離伝送を行う第2段搭載テレメータのうち、FM・PM方式とPCM-PSK方式のテレメータ受信については、1号機では高利得16素子アンテナを共用した。しかし、後述するα角（ロケットの機軸と送受信アンテナ間を結ぶ線とのなす角）の関係で第2段モータの燃焼ガスによる影響が大きく回線に支障をきたしたため、2号からは回線余裕のある18mφパラボラアンテナを使用し、16素子アンテナをバックアップとした冗長構成をとった。SS-FM方式テレメータの受信については、2号機では3mφのパラボラアンテナを使用したが、3号機から周波数をSバンドに変更したため、衛星運用で使用している10mφアンテナを共用した。

画像伝送を行ったテレメータの受信には、2mφのパラボラアンテナを使用した。

第1段およびサブブースタに搭載したテレメータの受信は、距離が近い事もあり中利得4素子アンテナを用いている。

受信復調機方式としては、FM受信装置は位相同期検波方式による高感度受信復調方式で
図1-1 300MHz帯テレメータ受信系統図

図1-2 S帯テレメータ受信記録装置系統図

図1-3 画像伝送用テレメータ受信記録装置系統図

FM受信装置は水晶制御2重スーパーヘテロダイなの受信方式である。画像伝送の受信装置は広帯域のFM方式を用いている。

M-3SⅡ型で使用したアンテナおよび受信機の系統図を3号機について図1-1〜1-3に、また、これらの主要性能を表1に示す。

2.2 M-3SⅡ型搭載テレメータ

M-3SⅡ1号機からサブブースタがSB-735になり、この性能計測のためにサブブースタ頭部にPCM方式のテレメータ送信機が搭載された。3号機からは、計測項目の減少もあり、サブブースタ計測データは第1段目搭載テレメータ送信機に統合された。

第1段目に搭載されたテレメータ送信機は、2号機まではFM/PCM-PM方式の、所謂
<table>
<thead>
<tr>
<th>受信機</th>
<th>300MHzFM テレメータ受信装置</th>
<th>300MHzPCM 受信装置</th>
<th>S帯テレメータ受信装置</th>
</tr>
</thead>
<tbody>
<tr>
<td>型式</td>
<td>30MHz帯</td>
<td>30MHz帯</td>
<td>30MHz帯</td>
</tr>
<tr>
<td>中継機</td>
<td>型式：反射型アンテナ高利得16素子 中利得 4 素子</td>
<td>型式：反射型アンテナ高利得16素子 中利得 4 素子</td>
<td>型式：パラボラ10mφ</td>
</tr>
<tr>
<td>受信周波数</td>
<td>305.0, 305.6, 306.2, 298.1MHzの4波</td>
<td>305.0, 305.6, 306.2, 298.1MHzの4波</td>
<td>受信周波数：2289.3, 2289.6MHz</td>
</tr>
<tr>
<td>受信方式</td>
<td>位相同期検波方式</td>
<td>位相同期検波方式</td>
<td>受信方式：SSB-PM, 2相PSK</td>
</tr>
<tr>
<td>最低受信レベル</td>
<td>－10dBm</td>
<td>－10dBm</td>
<td>力率：－60～－10dBm</td>
</tr>
<tr>
<td>固波数</td>
<td>295～300MHz</td>
<td>位相同期検波方式</td>
<td>復調モード：FM 復調/非同期 PM (SSB-PM)</td>
</tr>
<tr>
<td>利得</td>
<td>23dB以上</td>
<td>23dB以上</td>
<td>同期復調(BPSK)</td>
</tr>
<tr>
<td>43.5dB 以上</td>
<td>43.5dB 以上</td>
<td></td>
<td></td>
</tr>
<tr>
<td>録音指数</td>
<td>0.5dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 1 地上系主要性能

ハイブリッドテレメータ送信機

ハイブリッドテレメータ送信機であったが、3号機からはサブプースターに搭載したテレメータ送信機と統合したPCM方式のテレメータ送信機となった。

第2段目に搭載された送信系としては、1号機から新たにサブプースターの分離画像を伝送するためのテレメータ送信機が搭載された。画面数は1号機では白黒1画面であったが、2号機からは白黒2画面、さらに3号機ではカラー2画面と改善されてきた。

その他のテレメータ送信機は、2号機まではM-3S型と同じであるが、3号機では二点の大幅な変更がなされた。すなわち1点は、SS-FM方式テレメータ送信機の周波数帯が900MHz帯からS帯に変更された事と、もう1点は3段目円形モータの変更に伴い、この性能計測のため第3段計器部が設けられPCM-PM方式のテレメータ送信機が搭載されたことである。また、これとともに第2段計器部に搭載されていたFM-PM方式のテレメータ送信機は削除された。

1号機の搭載テレメータ諸元を表2-3に示す。

2.3 テレメータ送信機の仕様

M-3S型の2号機までは第2段計器部に4台、第1段計器部およびサブプースター部に各1台ずつ計6台のテレメータ送信機を搭載した。また、3号機からは第3段計器部に1台、第2段計器部に3台と第1段計器部に1台の計5台のテレメータ送信機を搭載した。

各テレメータのチャネル配分についてはSESデータセンタ発行の各実験計画書を参照願いたい。
表2 M-3SⅡ-1号機搭載テレメータの諸元

| 呼称 | 第2設計器部 | 第3設計器部 | 第4設計器部 | 第5設計器部 | サブシステム
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TM-1</td>
<td>TM-2</td>
<td>TM-3</td>
<td>TM-4</td>
<td>TM-5</td>
</tr>
<tr>
<td>稼載数</td>
<td>225.8kHz</td>
<td>226.1kHz</td>
<td>226.2kHz</td>
<td>226.5kHz</td>
<td>226.8kHz</td>
</tr>
<tr>
<td>設定方式</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
</tr>
<tr>
<td>伝送内容</td>
<td>機体振動</td>
<td>機体振動</td>
<td>機体振動</td>
<td>機体振動</td>
<td>機体振動</td>
</tr>
<tr>
<td></td>
<td>速度</td>
<td>速度</td>
<td>速度</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td></td>
<td>温度</td>
<td>温度</td>
<td>温度</td>
<td>温度</td>
<td>温度</td>
</tr>
<tr>
<td></td>
<td>データ</td>
<td>データ</td>
<td>データ</td>
<td>データ</td>
<td>データ</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
</tbody>
</table>

表3 M-3SⅡ-2号機搭載テレメータの諸元

| 呼称 | 第2設計器部 | 第3設計器部 | 第4設計器部 | 第5設計器部 | サブシステム
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TM-1</td>
<td>TM-2</td>
<td>TM-3</td>
<td>TM-4</td>
<td>TM-5</td>
</tr>
<tr>
<td>稼載数</td>
<td>225.8kHz</td>
<td>226.1kHz</td>
<td>226.2kHz</td>
<td>226.5kHz</td>
<td>226.8kHz</td>
</tr>
<tr>
<td>設定方式</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
</tr>
<tr>
<td>伝送内容</td>
<td>機体振動</td>
<td>機体振動</td>
<td>機体振動</td>
<td>機体振動</td>
<td>機体振動</td>
</tr>
<tr>
<td></td>
<td>速度</td>
<td>速度</td>
<td>速度</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td></td>
<td>温度</td>
<td>温度</td>
<td>温度</td>
<td>温度</td>
<td>温度</td>
</tr>
<tr>
<td></td>
<td>データ</td>
<td>データ</td>
<td>データ</td>
<td>データ</td>
<td>データ</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
</tbody>
</table>

表4 M-3SⅡ-3号機搭載テレメータの諸元

<table>
<thead>
<tr>
<th>呼称</th>
<th>第2設計器部</th>
<th>第3設計器部</th>
<th>第4設計器部</th>
<th>第5設計器部</th>
</tr>
</thead>
<tbody>
<tr>
<td>第2設計器部</td>
<td>TM-1</td>
<td>TM-2</td>
<td>TM-3</td>
<td>TM-4</td>
</tr>
<tr>
<td>第3設計器部</td>
<td>225.8kHz</td>
<td>226.1kHz</td>
<td>226.2kHz</td>
<td>226.5kHz</td>
</tr>
<tr>
<td>設定方式</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
<td>FM/PSK</td>
</tr>
<tr>
<td>伝送内容</td>
<td>機体振動</td>
<td>機体振動</td>
<td>機体振動</td>
<td>機体振動</td>
</tr>
<tr>
<td></td>
<td>速度</td>
<td>速度</td>
<td>速度</td>
<td>速度</td>
</tr>
<tr>
<td></td>
<td>温度</td>
<td>温度</td>
<td>温度</td>
<td>温度</td>
</tr>
<tr>
<td></td>
<td>データ</td>
<td>データ</td>
<td>データ</td>
<td>データ</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
<tr>
<td></td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
<td>メッシュ状態</td>
</tr>
</tbody>
</table>

2.3.1 TM-1

TM-1はFM-PM変調方式により伝送する14チャネル多重テレメータ送信装置で、送信機と機器が一体化した形式となっている。ただし、この方式のテレメータ送信機の搭載は2号機までで、3号機では2号機まで第1段計器部に搭載されていたFM/PCM-PM方式テレメータ送信機のFM部分を除いたPCM-PM方式のテレメータ送信機がTM-1として第3段計器部に搭載された。

外観図を図2に示す。

2.3.2 TM-2

TM-2は各種データをPCM-PSK方式で地上に伝送する多重テレメータ送信装置で、アナログデータ、デジタルデータの入力数およびその入力速度により最大49チャネルまで色々な
表5 FM-PM方式テレメータ

<table>
<thead>
<tr>
<th>送信出力</th>
<th>5 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>送信方式</td>
<td>FM-PM</td>
</tr>
<tr>
<td>傾送送波周波数</td>
<td>295.0 MHz ± (5 × 10^{-5})</td>
</tr>
<tr>
<td>最大周波数偏差</td>
<td>±120 kHz</td>
</tr>
<tr>
<td>傾送送波周波数</td>
<td>IRIG BAND 2～15</td>
</tr>
<tr>
<td>傾送送最大偏差</td>
<td>中心周波数の±7.5%</td>
</tr>
<tr>
<td>チャネル数</td>
<td>14</td>
</tr>
<tr>
<td>入力信号</td>
<td>0～±5 V</td>
</tr>
<tr>
<td>入力インピーダンス</td>
<td>350 kΩ 以上</td>
</tr>
<tr>
<td>変調直線性</td>
<td>±2%以内</td>
</tr>
<tr>
<td>使用電力</td>
<td>18V, 1.4A以下</td>
</tr>
<tr>
<td>アンテナ VSWR</td>
<td>2.0以下</td>
</tr>
</tbody>
</table>

表6 PCM-PSK方式テレメータ

<table>
<thead>
<tr>
<th>送信出力</th>
<th>2 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>送信方式</td>
<td>PCM-PSK</td>
</tr>
<tr>
<td>傾送送波周波数</td>
<td>298.1 MHz</td>
</tr>
<tr>
<td>位相偏移</td>
<td>±π/2 RAD</td>
</tr>
<tr>
<td>符号形式</td>
<td>NRZ-L</td>
</tr>
<tr>
<td>ビット・レート</td>
<td>102.4 K bits/sec</td>
</tr>
<tr>
<td>1ワード当りのビット数</td>
<td>8 bits/word</td>
</tr>
<tr>
<td>1フレーム当りのワード数</td>
<td>64 words/Frame</td>
</tr>
<tr>
<td>フレーム・レイト</td>
<td>200 Frames/sec</td>
</tr>
<tr>
<td>フレーム同期パターン</td>
<td>2 words (16 bits)</td>
</tr>
<tr>
<td>サブフレーム同期パターン</td>
<td>1 Word (8 bits)</td>
</tr>
<tr>
<td>アナログ入力電圧</td>
<td>0～5.0 V</td>
</tr>
<tr>
<td>アナログ入力インピーダンス</td>
<td>100 kΩ以上</td>
</tr>
<tr>
<td>アナログ最大入力数</td>
<td>49チャンネル</td>
</tr>
<tr>
<td>デジタル入力</td>
<td>C-MOSレベルの“1” "0" 8bits信号を1チャンネルとしてワードの後半でシフトレイト294.8 KBPSでシリアル入力する。</td>
</tr>
<tr>
<td>デジタル最大入力数</td>
<td>16チャンネル</td>
</tr>
<tr>
<td>クロック周波数安定度</td>
<td>±10^{-4}以下</td>
</tr>
<tr>
<td>消費電力</td>
<td>約15 W</td>
</tr>
</tbody>
</table>

コミュニケーションレシオを持ったチャネル構成を組み合せて諸要求に柔軟に対応する事が出来る。

伝え項は CN, 第2段 TVC, TSL 等の第2段飛行制御関係が主で, 一部 TM-1と冗長構成をとっている。

外観図を図3に示す。
表7 SS-FM方式テレメータ

<table>
<thead>
<tr>
<th>项目</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>送信出力</td>
<td>3 W</td>
</tr>
<tr>
<td>送信方式</td>
<td>SS-FM</td>
</tr>
<tr>
<td>設定周波数</td>
<td>915 MHz ± (1 × 10^{-5})</td>
</tr>
<tr>
<td>最大周波数偏移</td>
<td>± 303 kHz</td>
</tr>
<tr>
<td>副設定周波数</td>
<td>4.74 kHz (x 1, 2, 3, 4, 5, 6)</td>
</tr>
<tr>
<td>チャネル数</td>
<td>6</td>
</tr>
<tr>
<td>信号周波数帯域</td>
<td>10 Hz ～ 3 kHz</td>
</tr>
<tr>
<td>信号入力レベル</td>
<td>0 dBm ～ -30 dBm</td>
</tr>
<tr>
<td>信号周波数特性</td>
<td>± 2 dB 以下</td>
</tr>
<tr>
<td>信号出力レベル特性</td>
<td>± 1 dB 以内</td>
</tr>
<tr>
<td>使用電力</td>
<td>1.5A/+18V, 60mA/-18V</td>
</tr>
<tr>
<td>アンテナVSWR</td>
<td>1.5以下</td>
</tr>
</tbody>
</table>

表8 FM/PCM-PM方式テレメータ性能諸元

1. **送信機**
 - 発信型式：FM/PCM-PM
 - 発信方式：FM/PCM-PM
 - 設定周波数：296.2 MHz ± (5 × 10^{-5})
 - 最大周波数偏移：± 120 kHz
 - 送信出力：1.0 W 以上
 - アンテナ定在波比：2以下

2. **アナログ・デジタル・チャンネル**
 - チャンネル数：14 CH
 - 入力信号：0 ～ +5 V
 - 入力インピーダンス：350 kΩ 以上
 - 副設定周波中心周波数：IRIG BAND 2 ～ 15
 - 副設定周波最大偏移：中心周波数の±7.5%
 - 変調源直線性：± 2% 以内
 - 校正信号：0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 の11点
 - 校正時間：約32秒
 - 校正信号送出方式：自動
 - 校正信号精度：±0.5％フルスケール

3. **デジタル・デジタル・チャンネル**
 - 変調形式：PCM NRZ-M-PSK
 - サブキャリア周波数：64 kHz
 - ビットレート：25.6 Kビット/秒
 - ワード構成：1 ～ 30ビットまで可変長
 - 6ビット標準
 - フレーム構成：マイナフレーム 32ビット/マイナフレーム
 - メジャフレーム 16マイナフレーム/メジャフレーム
 - フレーム同期：16ビット
 - フレームカウント：16ビット
 - 即時可能な観測装置数：7台
表9 FM方式 TV伝送テレメータの性能諸元

<table>
<thead>
<tr>
<th>項 目</th>
<th>主要性能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 撮像素子</td>
<td>インターライン CCD 固体撮像素子 画素数199,920素子 (有効画素数490V ×384H)</td>
</tr>
<tr>
<td>2. テレビジョン方式</td>
<td>日本標準テレビジョン方式 水平285TV本 垂直350TV本 (フィールド積算) 50dB以上 F1.4 2ルクス (実用範囲) 60コマ/秒</td>
</tr>
<tr>
<td>3. 解像度</td>
<td></td>
</tr>
<tr>
<td>4. S/N</td>
<td></td>
</tr>
<tr>
<td>5. 最低被写体照度</td>
<td></td>
</tr>
<tr>
<td>6. 変調感度</td>
<td></td>
</tr>
<tr>
<td>7. 変調周波数範囲</td>
<td></td>
</tr>
<tr>
<td>1. 撮像素子</td>
<td>インターライン CCD 固体撮像素子 画素数199,920素子 (有効画素数490V ×384H)</td>
</tr>
<tr>
<td>2. テレビジョン方式</td>
<td>日本標準テレビジョン方式 水平285TV本 垂直350TV本 (フィールド積算) 50dB以上 F1.4 2ルクス (実用範圍) 60コマ/秒</td>
</tr>
<tr>
<td>3. 解像度</td>
<td></td>
</tr>
<tr>
<td>4. S/N</td>
<td></td>
</tr>
<tr>
<td>5. 最低被写体照度</td>
<td></td>
</tr>
<tr>
<td>6. 変調感度</td>
<td></td>
</tr>
<tr>
<td>7. 変調周波数範囲</td>
<td></td>
</tr>
<tr>
<td>1. 送信電力</td>
<td>2±0.4W</td>
</tr>
<tr>
<td>2. 変調方式</td>
<td>FM</td>
</tr>
<tr>
<td>3. 周波数</td>
<td>927MHz</td>
</tr>
<tr>
<td>4. 周波数安定度</td>
<td>±1×10^-4以下</td>
</tr>
<tr>
<td>5. スプリアスレベル</td>
<td>-60 dBc 以下</td>
</tr>
<tr>
<td>6. 変調感度</td>
<td>2MHz/V</td>
</tr>
<tr>
<td>7. 変調周波数範囲</td>
<td>10Hz～3MHz</td>
</tr>
</tbody>
</table>

3号機

<table>
<thead>
<tr>
<th>項 目</th>
<th>主要性能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 撮像素子</td>
<td>インターライン CCD 撮像素子</td>
</tr>
<tr>
<td>2. テレビジョン方式</td>
<td>日本標準テレビジョン方式 内部同期/外部同期(自動切替) 水平280本、垂直350本 47dB</td>
</tr>
<tr>
<td>3. 解像度</td>
<td>F1.4 2ルクス (AGC ON)</td>
</tr>
<tr>
<td>4. S/N</td>
<td></td>
</tr>
<tr>
<td>5. 最低被写体照度</td>
<td></td>
</tr>
<tr>
<td>6. 変調感度</td>
<td></td>
</tr>
<tr>
<td>7. 変調周波数範囲</td>
<td></td>
</tr>
<tr>
<td>1. 送信電力</td>
<td>2W±0.4W</td>
</tr>
<tr>
<td>2. 変調方式</td>
<td>FM</td>
</tr>
<tr>
<td>3. 周波数</td>
<td>12.8GHz 帶</td>
</tr>
<tr>
<td>4. 周波数安定度</td>
<td>±30×10</td>
</tr>
<tr>
<td>5. スプリアスレベル</td>
<td>振幅変調</td>
</tr>
<tr>
<td>6. 変調度</td>
<td></td>
</tr>
<tr>
<td>7. 変調周波数範囲</td>
<td>4.19MHz 帯</td>
</tr>
<tr>
<td>1. 入力系統</td>
<td>2</td>
</tr>
<tr>
<td>2. 出力系統</td>
<td>1</td>
</tr>
<tr>
<td>3. クロストーク：カメラチャンネル間</td>
<td>45dB以上、3.58MHzにて</td>
</tr>
<tr>
<td>電源</td>
<td>+12V</td>
</tr>
<tr>
<td>-9V</td>
<td></td>
</tr>
<tr>
<td>-12V</td>
<td>2200mA</td>
</tr>
<tr>
<td>3200mA</td>
<td></td>
</tr>
<tr>
<td>1300mA</td>
<td></td>
</tr>
</tbody>
</table>
2.3.3 TM-3

TM-3は計測器からの信号をSS-FM変調方式で伝送する6チャンネル多重テレメータ送信装置で、端局と送信機が一体となった型式となっている。2号機までは送信周波数は900MHz帯であったが、3号機ではS帯に変更されている。

外観図を図4-1、4-2に示す。伝送項目は、機体振動等の高い周波数成分を含む情報等である。

2.3.4 TM-4

TM-4はFM変調方式により画像伝送を行うテレメータで、送信機とカメラ制御部は第2段計器部に搭載されており、カメラヘッド部はノーズファリング接続部に取り付けられ、ロケット機軸に対し約20度外側に視野を持たせサブノースを視野内にいない。1号機では白黒1画面、2号機からは白黒2画面の伝送を行い、3号機ではさらにカラー2画面を伝送した。
2.3.5 TM-5

TM-5は送信周波数と送信電力を変えているほかはTM-2と同じ方式をとっている。
2号機まではサブアースタ部に、3号機からは第1段計器部に搭載されている。

2.4 テレメータ受信装置とデータ処理

2.4.1 テレメータ受信装置

M-3SII型の受信に応じた受信装置は、FMテレメータ装置2系統、ハイブリッドテレメータ装置1系統、PCMテレメータ装置2系統、SS-FM900MHzテレメータ装置1系統および画像送信帯域FMテレメータ装置がKSCテレメータセンターに設置されている。
さらに、3号機ではS帯テレメータ受信装置が10mトラッキングアンテナ局舎に設置（図6）され、テレメータセンタに設置されている復調装置に接続されている。

FM復調装置は、IRIG標準方式BAND1～15のものが2系統で、その復調信号はパッチパネル盤を介しペン書き記録器等に出力され、リアルタイム及び再生において任意に選択が可能である。

ハイブリッドPCM復調装置はロケットごとにフォーマット記録されたROMによってチャネルデータと8ビットパラメータのフォーマッティング出力およびD/A変換した任意チャネルのアナログ信号を出力する。

高速PCM復号化装置は、デジタル出力としてPCMビットシリアルの出力および各チャネルの8ビットD/A変換器のアナログ電圧を出力する。

900MHz（3号機ではS帯）のSS-FM受信装置の端局部は、共通部1ユニット、チャネル
ル部8ユニットで構成され、帯域3KHzの復調信号を出力する。
画像伝送の帯域FM受信装置は、TV信号を復調するので、周波数変換盤と1.9GHz
帯FM受信回路とで構成され、ビデオ信号のTV画面表示とビデオ録画を行う。
記録装置としては主として8チャネルペン書き記録器が必要台数用いられ、リアルタイム
及びデータレコーダ再生時に上記復調装置の出力記録を行う。
磁気テープ記録装置は、AMPEXデータレコーダ２台を用い１/２インチ、7トラックテー
プに、各受信機のビデオ信号と時刻信号に受信機AGC信号を付加して同時に記録するよう
になっている。
受信アンテナは300MHz帯用に16素子の高利得アンテナと４素子の中利得アンテナが２
台、900MHzの３mΦと９GHz帯の２mΦのパラボラアンテナが設置されている。
また、1号機で第2段モータの燃焼ガスが通信回線に大きな影響をもたらすことが判り、
2号機からは衛星追跡用に用いられていた18mΦパラボラアンテナを16素子アンテナに替わ
り使用した。図7にKSCでのアンテナ群を示す。
さらに、3号機ではS帯テレメータの受信に10mΦパラボラアンテナを衛星追跡と共用さ
せた。
2.4.2データ処理
テレメータデータ処理システムは、U-1500Ⅱ計算機２台により構成されておりPCM系
テレメータデータの取り込み、取得データの表示、RS系へのデータ伝送などの基本機能を
備えており、ロケットが飛行中に、地上装置の一部に万一生じたデータ取得や伝
送に支障をきたさないように冗長構成がとられている。データの表示は、姿勢制御系につい
ては姿勢角、各段エンジンの動作状況等、計測系については物理量に変換された加速度や振
動等の機体情報等、テレメータ系については各テレメータの受信入力レベルがグラフィック
ディスプレイやキャラクタディスプレイ画面、ペン書き記録器等に出力される。さらに、M
管制室、コントロールセンタに対してテレメータデータの分配を行っており、動作チェック
及びフライト時には各作業場所においてテレメータデータのモニタが可能となっている。
また、後処理としてデータのCCT（Computer Compatible Tape）がつくられてユーザの解
析用に提供されている。
図8にロケットテレメータデータ処理システム全体構成を示す。
2.5 飛しょう結果
2.5.1 M-3SⅡ-1号機
M-3SⅡ-1号機に搭載した各テレメータの受信入力レベルを図9～14に示す。
第2段計器部に搭載したテレメータについては、全体的に第2段モータの燃焼ガスによる
影響が大きく見られる。特に第2段モータ点火直後から10数秒間はレベルの低下が大きく、
データ判定に支障をきたした。その他は、計算値にほぼ合っており、全体的には回線は正常
であった。
画像伝送を行ったTM-4は、地上アンテナの追尾精度が充分得られなかったため、受信入
力レベルがやや変動し、一部計算値より低くなる結果を生じた。しかし、本来の目的とする
サブブースタ分離の状況等の画像は鮮明に写し出すことが出来、解析に充分な映像を得ること
が出来た。
第1段計器部に搭載したテレメータTM-5については、発射後第1段モータの分離まで受
信入力レベルがかなり低い値となっている。この主な原因はM-3S型の時と同様、アンテ
ナが第1段ノズル部のすぐ近くにあるため、第1段モータの燃焼ガスによる減衰を受けてい
る事等が考えられる。しかし、距離が近いためデータ取得には支障をきたしていない。
図9 M-3S-II 型ロケットにおけるテレメータ・コマンド・集中電源

図10 M-3S-II 型ロケットにおけるテレメータ・コマンド・集中電源
図11 M-3SⅡ-1 TM-3受信入力レベル

図12 M-3SⅡ-1 TM-4受信入力レベル
図13 M-3SII-1 TM-5受信入力レベル

図14 M-3SII-1 TM-6受信入力レベル

周波数 F : 295.6 MHz
送信電力 P_t : 1.0 W
送信アンテナ利得 G_t : 0.0 dB
送信フィード損失 L_T : 0.5 dB
受信アンテナ利得 G_r : 19.0 dB
受信フィード損失 L_R : 3.4 dB
サブブースタに搭載したテレメータ TM-6はサブブースタ分離後は良好なレベルで受信され、有効なデータを得ることができた。搭載後が分離後、着水までは複雑な姿勢変化により大幅なレベル変動が見られる。

2.5.2 M-3S II -2号機

搭載した各テレメータの受信入力レベルを図15-20に示す。

全体的に、1号機よりも大きくは変わらないが、第2段モータの燃焼ガスによる第2段計器部、搭載のテレメータの影響は、受信アンテナに18mΦパラボラアンテナを使用し地上系を強化したこともあり、1号機で見られた点火後10数秒間のLock-Offは2号機では見られなかった。

画像伝送を行った TM-4については、搭載アンテナの取り付け位置の変更と受信アンテナの電気軸、光軸の軸合わせの見直しを行った結果、1号機に比べレベルは改善され、計算値とよく一致している。画像も左右のサブブースタ分離、1、2段接手の開閉、NF開頭等の模様を鮮明に写し出し、解析に充分な映像記録を得ることが出来た。

2.5.3 M-3S II -3号機

図21-25に各テレメータの受信入力レベルを示す。

第2段計器部に搭載したテレメータについては、全体的に第2段モータの燃焼ガスの影響が大きく、第2段モータ点火から燃焼終了までレベルの低下が大きく、データの質が低下した。しかし、平均的にはデータの判定は可能であった。その他は、おおむね計算値に合っており良好であった。

画像伝送を行った TM-4については、受信入力レベルは計算値に対して全体的に低目であった。原因として地上アンテナのスレーブ系における指向誤差が考えられる。この結果、サブブースタの分離状況を画面で確認することが出来なかったが、その後の飛行状況に
図16 M-3SⅡ-2 TM-2受信入力レベル

図17 M-3SⅡ-2 TM-3受信入力レベル
図18 M-3SⅡ-2 TM-4受信入力レベル

図19 M-3SⅡ-2 TM-5受信入力レベル
関する映像記録は得ることが出来た。

なお、4号機では、受信アンテナを直接精度レーザー探傷データ上に取り付け、追尾精度を上げ良好な結果を得ている。第3段計器部に搭載したTM-1については、第2段計器部に搭載したテレメータと同様第2段モータの燃焼ガスの影響が見られる。しかし、アンテナ取り付け位置の関係でTM-2と同じ周波数帯を使用しているにもかかわらず、その影響は少ない。それ以外は計算値によく合っていることができる。

第1段計器部に搭載したTM-5は、今号機から送信アンテナを尾翼先端から、第2段搭載のテレメータアンテナと共用させたため、第1段モータ燃焼ガスの影響は2号機に比べ20dB程改善され、ノイズの少ないデータを得ることが出来た。

2.5.4 第2段モータの燃焼ガスによるレベル低下の検討

1～3号機の受信入力レベルを見てみると、1号機では第2段モータ点火後10数秒間のレベルの低下は大きく、データ取得に影響を及ぼし姿勢制御系のデータ判定に困難をきたした。

そこで、2号機では受信アンテナに高利得の18mφアンテナを使用する等地上空を強化し、受信レベルの向上を図った。その結果、第2段モータの点火直後は瞬時にレベル低下はあったものの、その後はレベルの低下は減少し受信状況はおおむね良好であった。

3号機では、2号機と同じ受信体制がとられたにもかかわらず1号機よりさらにレベル低下は大きい。

この原因究明のため、1～3号機について、ロケットの機軸と送受信アンテナ間を結ぶ線のなす角α（Look-Angle）の発射後の変化を求めた。結果は図26に示す通りで、これより、明らかに相違のあることがわかる。

2号機の第2段モータ燃焼中のα角度は15度位であるのに比べ、1号機は12～13度、3号
図21 M-3SⅡ-3 TM-1受信入力レベル

図22 M-3SⅡ-3 TM-2受信入力レベル
図23 M-3SII-3 TM-3受信入力レベル

図24 M-3SII-3 TM-4受信入力レベル
図25 M-3SⅡ-3 TM-5受信入力レベル

図26 M-3SⅡ-1 ～ 3におけるLook Angle
機ではさらに低い7～9度であった。
これにより、α角が受信レベルの低下の大きさに関係している事が推定される。
この事をさらに明確にするため、1～3号機のデータから求めた、第1段の第2段モータ爆燃によるレベル低下とα角との関係を図27に示す。
これにより、第1段モータについては5度、第2段モータについては15度以上のα角をとることができれば、大きな影響を受けることはないと考える。
今後、飛しょう軌道でα角が15度以内が予想される場合はダウンレンジの設置などの対策を講じる必要がある。

3. コマンド

3.1 コマンド回線

コマンドは図10に示すように、飛翔保安の他に最終段を点火させる瞬発コマンドの役割を持っている。そこで、真下家にて数千Kmの回線を確保する必要があり、送信機としてはダブルスベースヘルタロダイニ方式として高感度受信機になっている。

コマンドアンテナはニックの姿勢変化に対して、常に地上からコマンド電波を受信できるようにする必要がある。そのため第2段計器部外壁に90度おきに4本を取り付け、180度で相対する2本を対として、2組をアンテナ切替スイッチで0.5Hzの間隔で切り替え、コマンド受信機に結合させている。

地上のコマンド送信電力は1kWであるが、飛翔前試験時にコマンド受信機の過大入力をさけるため、300Wの低出力で切り替え可能である。

送信アンテナは遠距離用の十字型ダイポール4素子使用したNarrow Beamと近距離用の1素子を使用したWide Beamの2つをもち、切り替えで使用できるようになっている。

3.2 コマンド受信機

コマンド受信機は、第2段計器部に搭載されている。

図28にコマンド受信機系統ブロックを示す。受信回路はダブルスベースヘルタロダイニ方式である。2号機までコマンド信号は可聴周波数帯3波を用い、受信機ではこれらのうち2波が同時かつ0.2秒以上継続して受信された時、リレーが動作しタイマーに信号を送るようになっていたが、3号機からは可聴周波数1波を追加して4波とし、制御項目を3項目から6項目に改めた。

また、オペレーターはリレーからフォトカプラに変更して耐環境性能の向上をはかると同時に、スケルトン回路を採用してノイズによる誤動作を防ぎ、更にデコーダ部に冗長回路を構成して信頼性向上をはかる等の改善がなされている。また、電源の瞬断に備えてフローティング方式のバックアップ電池をそなえている。

表に主要性能を、図29に外観を示す。

3.3 コマンド送信装置

コマンド信号は、水晶制御された可聴周波数帯4波（M-3SⅡ-3号機以降）のうちの2波で搬送波を位相変調している。位相変調された搬送波は帯域TWT（進行波管）により增幅され1kWの出力で送信される。

コマンド送信機本体は気象台地トラッキングセンタ内に設置されている。コマンド操作は
図27 第1段及び第2段モータ燃焼ガスによるレベル低下とα角の関係
表10 コマンド項目 (M-3S II - 3号機)

<table>
<thead>
<tr>
<th>コマンド名称</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-A1</td>
<td>M-EPT, TSL STOP</td>
</tr>
<tr>
<td>CM-A2</td>
<td>B1・B2 SO, M-EPT・TSL STOP</td>
</tr>
<tr>
<td>CM-A3</td>
<td>MN-TV1 CUT, SMRC CUT</td>
</tr>
<tr>
<td>CM-A4</td>
<td>B1-TV1 CUT</td>
</tr>
<tr>
<td>CM-A5</td>
<td>TSL CUT</td>
</tr>
<tr>
<td>CM-A6</td>
<td>EPT-SA START, B2 SEPARATION</td>
</tr>
</tbody>
</table>

図28 コマンド受信機系統ブロック図

コントロールセントラ内の操作卓からリモートコントロールされる（図30）。操作卓では、保安監視テレメータ装置から送られてきたコマンドアンサブック信号、コマンド AGC データ等を CPU に取り込み、CRT 画面に表示させて、その運用性の向上を図っている。

図31にコマンド送信装置の系統図を、表12に送信機および空中線の主要性能を示す。

3.4 飛しよう結果

図32に3号機に搭載したコマンド受信機の有直離に対する地上からのコマンド送信電波の受信入力レベルを示す。

テレメータと同様に第2段モータの燃焼ガスによる影響が見られるが、スレッショルドレベルより充分なマージンをもっており、回線上問題はなかった。

1 - 3号機とも、ロケットがほぼ予定軌道を飛しようしたため、RS、RG 系のコマンド
表11 コマンド受信機の主要性能（M-3S II-3号機）

<table>
<thead>
<tr>
<th>受信方式</th>
<th>受信周波数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ダブルスーパーベロダイン 450 MHZ</td>
</tr>
<tr>
<td>最低受信レベル</td>
<td>-97dBm以下</td>
</tr>
<tr>
<td>受信帯域幅</td>
<td>±45kHz以上</td>
</tr>
<tr>
<td>コマンド・トーン</td>
<td>4波</td>
</tr>
<tr>
<td>アンテナ型式</td>
<td>腐体装着型フックアンテナ</td>
</tr>
<tr>
<td>アンテナ・VSWR</td>
<td>2.0以下</td>
</tr>
<tr>
<td>入力インピーダンス</td>
<td>50Ω</td>
</tr>
<tr>
<td>消費電力</td>
<td>+18V, 7W以下</td>
</tr>
<tr>
<td></td>
<td>-18V, 2W以下</td>
</tr>
</tbody>
</table>

図29 450MHzコマンド受信機

図30 コマンド送信卓

送信は行われなかった。

4. 集中電源

集中電源には従来、酸化亜鉛蓄電池が用いられてきたが、M-3S II型から、充電効率や容量管理等の面から見直しがはかれ、ニッケルカドミウム蓄電池を使用する事になった。

これに伴い、蓄電池容量、形状、重量等の変更がなされた。

搭載場所は、第2段計器部、第1段計器部およびサブフースタ計器部（R側およびL側）である。3号機では、第3段計器部にも搭載された。

供給電圧は全て±18Vの2系統である。
4.1 ニッケルカドミウム蓄電池

ニッケルカドミウム蓄電池は酸化亜鉛蓄電池と比べると以下に示す様々な長所と短所が挙げられる。

長所：1) 電池の動作寿命、保存寿命が長い。
2) 充放電時のガスの発生が少ない。
3) 電解液の漏れがない。
4) 過充電にたいして強い。
5) ロケットに搭載したまま充電が可能である。
図32 M-3SⅡ-3号機第2段搭載コンサント受信機の受信入力レベル

図33 M-3SⅡ-1号機搭載の集中電源
表13 M-3S II型ロケットにおける電源、コマンド・集中電源 消費電力（設計MAX値：mA）

<table>
<thead>
<tr>
<th></th>
<th>SB(L)-PS</th>
<th>SB(R)-PS</th>
<th>B1PL-PS</th>
<th>B2PL(A)-PS</th>
<th>B2PL(B)-PS</th>
<th>B3PL-PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-3SH-1</td>
<td>+18V -18V</td>
<td>+18V -18V</td>
<td>+18V -18V</td>
<td>+18V(B)</td>
<td>+18V(B) -18V</td>
<td>+18V -18V</td>
</tr>
<tr>
<td></td>
<td>2815</td>
<td>2870</td>
<td>710</td>
<td>460</td>
<td>1400</td>
<td>130</td>
</tr>
<tr>
<td>M-3SH-2</td>
<td>1000</td>
<td>1450</td>
<td>900</td>
<td>500</td>
<td>1400</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>4800</td>
<td>2535</td>
<td></td>
<td></td>
<td>9200</td>
<td></td>
</tr>
<tr>
<td>M-3SH-3</td>
<td>950</td>
<td>500</td>
<td>950</td>
<td>500</td>
<td>850</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>3800</td>
<td>2520</td>
<td>1500</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

短所：同じ電流容量にたいして、容量、重量が大きくなる。

ロケットの計器部搭載場所の作業性、有効利用等を考慮し、ニッケルカドミウム蓄電池の
長所を生かし、これを採用する事により、ロケットに搭載された状態での充電が可能となり、
充電管理、作業性の向上をはかることが出来た。図33に、代表的に1号機の第2段計器部に
搭載した集中電源の外形寸法、内部構成図を、表13に1～3号機に搭載した集中電源の消費
電流（設計最大値：mA）を示す。

4.2 充電
充電はロケット外壁に設けられた専用コネクタより行う。
KSCのM組立室およびM整備塔における充電には、地上回線を使用し、Mチェックアウト室に設置された充電装置で遠隔操作により行われる。
充電中は充電電圧、充電電流、蓄電池温度がデータとして監視することが出来、これらは
パソコンに収録し検討資料として活用される。
図34に3号機の第2段計器部に搭載した集中電源充電記録の1例を示す。

4.3 飛しょう結果
飛しょう8分前に外部電源から内部電源への切り替えが行われ、搭載機器に集中電源から
の電源供給が開始される。飛しょう中の電源電圧はテレメータにより監視することが出来る。
これより、各号機とも集中電源は正常で、最後まで所定の電圧を各搭載機器に供給していた
ことがわかる。
図35に、代表的に3号機の第2段計器部に搭載した集中電源関連データのテレメータ記録
を示す。

5. おわりに

M-3S II型ロケットではペイロード可搬能力向上のため、推進系や機体系の改良に伴い、
搭載テレメータ系もかなりのシステム変更がなされた。

大きな変更として、
1. サブブースタの分離や第1段モータ分離、ノーズフェアリング開頭等の状況を画像伝
送するためのテレメータ送信機を第2段計器部に搭載。
2. サブブースタSB-735の各種計測データ伝送のためサブブースタ計器部にテレメータ
送信機を搭載。
ただし、これは2号機までで、3号機以降は第1段計器部に搭載されているテレメータ送信機でサブブースタの情報伝送を行った。

3. 3号機では、第3段球形モーターの計測データ伝送のため第3段計器部にテレメータ送信機を搭載。

4. 3号機から、900MHz SS-FM方式テレメータ送信機の周波数をS帯に変更。

5. 3号機から、第1段搭載テレメータの送信アンテナの位置を、尾翼先端から第2段計器部外壁に変更。
が挙げられる。

飛しよう結果では、まず第2段計器部に搭載した各テレメータは、1号機で第2段モータの燃焼ガスの影響により回線にかなりの劣化をきたした。これは、M-3S型の時には顕著でなかった現象である。このため、2号機から受信アンテナに18mΦパラボラアンテナを使用する等地上系の強化を図ったが、必ずしも十分な対策にはなっていない。原因として、推進薬の材質やLook Angle（α角）等が考えられるが、今後、充分な検討を要する問題である。

第1段計器部に搭載した300MHz帯テレメータについては、送信アンテナ位置の関係で、2号機ではM-3S型の時と同じく、第1段モータ燃焼ガスの影響が見られ受信状況は充分ではなかったが、3号機では第2段計器対策のテレメータアンテナと共用させたところ受信レベルは大幅に改善された。

コマンド受信機については、2号機ではコマンド項目は3項目しかなく、一方制御項目は5項目であったため、飛しょうの途中でタイム信号による切り替えを行い、前半と後半で制御項目を分けることで対処した。

しかし、3号機から制御項目の見直しが計られ、さらに安全性も配慮し、コマンド項目を6項目とすることになり、このため可聴波数1波が追加された。

さらに、コマンド受信機の回路の見直しを行いノイズによる誤動作を極力おさえるとともに信頼性も強化された。

実際の飛しょうでは各号機とも、コマンド送信は行われなかっただが、充分にその役割をはたした。

集中電源としては、従来の酸化亜鉛蓄電池にかわりニッケルカドミウム蓄電池が採用され、充電管理等が行いやすくなった。また、飛しょう中は、各機器に安定な電圧を供給することが出来た。

データ処理システムも本格化し、小型計算機2台を稼動させ、従来の処理に加えM管制室へのデータ伝送が出来るようになった。

終わりに、関係実験班各位、テレメータ、コマンドおよび集中電源の製作を担当されたNEC、富士通、松下通信、湯浅電池並びにデータ処理システムを担当されたFHLの関係各位に深甚の謝意を表する次第である。