K-10-11号機太陽センサデータ処理回路（SASE）

東口 實，小尾 新三・吉本 聖志*

Data Processing Circuit of Solar Sensor Borne on K-10-11 Rocket

By

Minoru HIGASHIGUCHI, Shinzoo OBI and Seiji YOSHIMOTO

Abstract: The data processing circuit to obtain sun orientation error voltage applied
for the 3-axis attitude control system of the K-10-11 rocket is described. 2-set
of four solar cells are utilized for sources of each fine and coarse attitude error
sensors. A combination of sum and/or difference of 4 of solar cells produces pitch
and yaw error voltage outputs. Then combination of fine and coarse error outputs
provides the sensitivity of 2.5 V/degree about zero error position, and the output
voltage greater than 4 volts having proper polarity up to ±90° error angle.

From flight test results, the offset voltage appeared in the output of this
processing circuit was about 40 mV (1 arc-sec in sun orientation error) and the
unbalance in solar cell outputs induced from solar intensity variation was estimated.

概要

K-10-11号機の三軸姿勢制御に使用した太陽角誤差電圧出力データ処理回路について述べる。4個
の太陽電池を二組使用して精細の姿勢誤差出力を得ている。太陽電池4個の出力の和差をとることによ
りピッチ、ヨー誤差出力を得ている。また精細および粗の出力を組合わせて零附近で2.5 V/度の出力を、また
±90°の範囲で対応する極性の4V以上の出力透明を得ている。

飛行実験の結果との比較の出力オフセットは40 mV（1'角）であり、太陽光強度の変化による太
陽電池出力の不均衡を評価できた。

1. はじめに

サンセンサエレクトロニクス部（SASE）はファイン（高精度）、コース（広視野）の2
種類のサンセンサ（SAS）出力を增幅演算し、太陽中心を目標点としたロケットの姿勢誤差

*日本電気株式会社，宇宙開発事業部
角をピッチ，ヨーの電圧信号出力の形で姿勢安定装置等（CNE）に供給する。サンセンサ
エレクトロニクス部の演算精度はロケットの姿勢精度を定める大きな要因であり，このため，
回路構成や使用部品等に演算精度向上のための配慮がなされている。

2. 場所と演算機能

サンセンサエレクトロニクス部は6個のブロック（ブリアンプ部，フィンセンサ演算部，
コースセンサ演算部，コースセンサ切り離し部，HK部，電源部）で構成されている，図1に
信号処理部分を示す。

サンセンサからの各セグメント出力（フィンセンサ系A，B，C，D；コースセンサ系a，
b，c，d）は，まず，ブリアンプ部で適切な演算電圧に増幅される。増幅された信号のうち，フ
ィンセンサ系信号はフィンセンサ演算部で演算されてピッチ・ヨー成分の誤差信号とな
り，コースセンサ系信号はコースセンサ演算部でピッチ・ヨー毎に演算されて，それぞれの
誤差信号となる。このコースセンサ系誤差信号は，コースセンサ切り離し部を介してフィ
ンセンサ演算部に入力され，ここでフィンセンサ系誤差信号に加算される。このようにし
て作成された信号がピッチ，ヨーの誤差信号出力となる。なお姿勢誤差角が小さく，フィ
ンセンサの視野内に目標が完全に入っている場合は，コースセンサ切り離し部でコースセンサ
系信号が切り離され，精度の良いフィンセンサ系信号のみが誤差信号として出力される。

HK部はサンセンサエレクトロニクス部の入出力及び内部の状態をモニタすするもので，こ
こから16チャンネルのPAM信号をテレメータモニタ用として出力する。なお誤差信号出力
のテレメータモニタはフィンセンサ演算部最終端のモニタ用バッファアンプからピッチ，
ヨー毎に出力されている。電源部は集中電源から+18V，-18Vの2系統の電圧を受け，+12V，
-12V，+5Vの3系統の安定化電圧を作り各部に供給している。

図1に示す演算増幅器の配置構成は演算の高精度化を目的として設計されたものであり，
また各ブロックにはブロック毎に独自の配慮がなされている。以下主要ブロックの概要を述
べる。

2.1ブリアンプ部

ブリアンプ部はゲイン（K）約34倍（±10％可変）の増幅器8個で構成されている。

微小信号を取扱うブリアンプ部はオフセットドリフトの影響が大きい。このためレーザトリ
ミングされたハイブリッドICをスクリーニングして使用し，さらに熱的配慮を行なってジャ
ンクションの温度上昇をおさえ，結果的に入力換算オフセットドリフトを全環境条件下で±
500μV程度におさえている。

ゲインを定める主な抵抗（演算増幅器の入力抵抗，フィードバック抵抗）には125℃，
500時間のバーンインスクリーニングを施した低温度係数の金属皮膜抵抗を使用し，全ての
環境条件においてゲインの変動を10⁻³程度におさえている。

2.2フィンセンサ演算部

ブリアンプ部で適当な大小さで増幅した個々のフィンセンサの信号の和，差をとってピッ
チ，ヨー姿勢誤差信号として出力する。この演算は次式であらわされる。

ピッチ誤差信号出力 = K₁(A + B - C - D) + K₂(a - b)
ヨー 誤差信号出力 = K1 (A - B + C - D) + K2 (e - d)
ここでコースセンサ出力、ファインセンサ出力は太陽センサそれ自身の出力ではなくブリアンプで適当にそのばらつきを修正された出力であり、K2 / K1 = 3,074 に設定してある。また各ブリアンプの利得はK1 = 34の標準値に対して表1に示す補正を最終的に行なった。また両出力ともにその大きさが5Vをこえないようにリミタを入れてある。

また図1でファインセンサ最終段には並列に2個の増幅器があり、一方は誤差信号出力モニタ用のパッファ増幅器であって、-5V ～ +5V の誤差電圧を0V～5Vのテレメータ電圧に変換している。

各演算部のアンプはオフセットを出力しやすいためにスクリーニングされたICを用い、かつゲインの安定化のためにブリアンプと同じく、低温度係数の抵抗器を125℃、500時間のバーナンを施して使用している。

2.3 コースセンサ切り離し部
コースセンサ切り離し部は、ピッチ、ヨー毎に、下記の条件を同時に満たした場合にコースセンサ系信号を切り離す。

(1) ファインセンサブリアンプ出力の総和が3Vより大きい、すなわちファインセンサに太陽光が充分入射していること。ここで3Vは姿勢誤差角の1.2°相当である。

(2) ピッチ、ヨーそれぞれについて、コースセンサ差出力 (K2(a-b), K2(e-d) の部分) が2.4Vより小さいこと。これは2.9°の姿勢誤差に相当する。

この切離し動作はピッチ、ヨーそれぞれで独立に行なわれ、コースセンサの条件あるいはファインセンサの条件のいずれが満足されなくても再びコースセンサ出力がファインセンサ出力に加算される、すなわち可逆的に動作する。

2.4 HK部（動作状態の監視）
HK部は、16チャンネル差動入力型マルチプレクサを用いてセンサエレクトロニクス部の入出力及び各部の信号を時分割して0.5フレーム/秒でテレメータに出力する、太陽センサ単体の出力を個別に高精度で直接モニタするためにブリアンプ部と同等の配置がなされており入出力特性は表2に示す精度を持っている。ここでHK部の回路は演算部とは独立して居り、回路に不具合を生じても相互に影響を与いないようになっている。

3. 装置の条件
本装置は太陽電池4セグメント電圧出力形式のファインセンサ、コースセンサ信号を受けピッチ、ヨー姿勢誤差を次の規格で出力する。
表-2 HK入力特性

1. HK入出力特性

<table>
<thead>
<tr>
<th>テーブル番号</th>
<th>記号</th>
<th>キー</th>
<th>項目</th>
<th>変数</th>
<th>変数</th>
<th>変数</th>
<th>変数</th>
<th>変数</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+12V</td>
<td>A1</td>
<td>-12V</td>
<td>A2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>B</td>
<td>+12V</td>
<td>B1</td>
<td>-12V</td>
<td>B2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>C</td>
<td>+12V</td>
<td>C1</td>
<td>-12V</td>
<td>C2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>D</td>
<td>+12V</td>
<td>D1</td>
<td>-12V</td>
<td>D2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>E</td>
<td>+12V</td>
<td>E1</td>
<td>-12V</td>
<td>E2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>F</td>
<td>+12V</td>
<td>F1</td>
<td>-12V</td>
<td>F2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>G</td>
<td>+12V</td>
<td>G1</td>
<td>-12V</td>
<td>G2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>H</td>
<td>+12V</td>
<td>H1</td>
<td>-12V</td>
<td>H2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>I</td>
<td>+12V</td>
<td>I1</td>
<td>-12V</td>
<td>I2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>J</td>
<td>+12V</td>
<td>J1</td>
<td>-12V</td>
<td>J2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>K</td>
<td>+12V</td>
<td>K1</td>
<td>-12V</td>
<td>K2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>L</td>
<td>+12V</td>
<td>L1</td>
<td>-12V</td>
<td>L2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>M</td>
<td>+12V</td>
<td>M1</td>
<td>-12V</td>
<td>M2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>N</td>
<td>+12V</td>
<td>N1</td>
<td>-12V</td>
<td>N2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>O</td>
<td>+12V</td>
<td>O1</td>
<td>-12V</td>
<td>O2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>P</td>
<td>+12V</td>
<td>P1</td>
<td>-12V</td>
<td>P2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>Q</td>
<td>+12V</td>
<td>Q1</td>
<td>-12V</td>
<td>Q2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>R</td>
<td>+12V</td>
<td>R1</td>
<td>-12V</td>
<td>R2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>S</td>
<td>+12V</td>
<td>S1</td>
<td>-12V</td>
<td>S2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>T</td>
<td>+12V</td>
<td>T1</td>
<td>-12V</td>
<td>T2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>U</td>
<td>+12V</td>
<td>U1</td>
<td>-12V</td>
<td>U2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>V</td>
<td>+12V</td>
<td>V1</td>
<td>-12V</td>
<td>V2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>W</td>
<td>+12V</td>
<td>W1</td>
<td>-12V</td>
<td>W2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>X</td>
<td>+12V</td>
<td>X1</td>
<td>-12V</td>
<td>X2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>Y</td>
<td>+12V</td>
<td>Y1</td>
<td>-12V</td>
<td>Y2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
<tr>
<td>Z</td>
<td>+12V</td>
<td>Z1</td>
<td>-12V</td>
<td>Z2</td>
<td>2V</td>
<td>4V</td>
<td>6V</td>
<td>8V</td>
</tr>
</tbody>
</table>

2. フレーム周期

(1) 出力特性

(a) 出力電圧：2.5 V/1 deg（無負荷）、ただし±5 V（±10%）の値において飽和特性を持つこと。

(b) 出力インピーダンス2 kΩ以下

2) モニタ信号

(a) 項目：ピッチ姿勢誤差、ヨー姿勢誤差、内部動作状態（HK）

(b) 出力電圧：0～5 V

(c) 出力インピーダンス5 kΩ以下

3) 電源

電源電圧 平均消費電流
+18 V (+4, −2 V) 0.5 A以下
−18 V (+2, −4 V) 0.3 A以下

4) 環境条件

(a) 温度 0 〜 40℃

(b) 衝撃 軸方向 ±40 G（5 ms以上）

(c) 振動 軸方向 35 〜 200 Hz ±1 mm

35 〜 200 Hz ±5 G

200 〜 2000 Hz ±10 G
(d) 加速度 軸方向 ±40G～−10G
横方向 ±10G
(e) 気密 10^{-7} \text{mm Hg} 20分
上記条件下において、充分の性能が得られること

4. 回路の安定度
本装置は上記のように使用各部品についてかさの品を行ない、また抵抗については
125 \text{℃} 500時間のバーンインを行なう、演算増幅器について同様のバーンインを行なうなど
高度の選別を経たものを使用した。その結果非常に安定した装置となっている。装置組立後
試験における零点安定度は図2に示す通りであり、装置設計にあたって予測した零点オフセッ
ト許容値（160mV）に対してはるかに小さな値となっている。これは使用上のこまかい注
意も寄与していたものと言える。

5. 飛しょう試験結果
K-10-11号機の制御は安定に行なわれたが、ピッチ灰軸に関してときめ17’角のオ
フセット誤差を生じていたことがわかった。飛しょう前に観測器（SUV）と1’角程度までの
光軸合わせとその確認を行なったにもかかわらずである。

飛しょうデータにもとづいてこの原因の検討を行ない、これが信号処理エレクトロニクス
部の変動に起因するものでなく、上空で太陽センサの出力電圧に不均衡を生じたためと推論
できた。

姿勢制御は発射後140秒から400秒の間、±20’角の幅の間にロケットの機軸を安定に保
持している。以下は太陽センサ単体出力のデータをHKモニタから読み取り、姿勢誤差モニ
タ出力と比較して、オフセットの原因を追及し、また信号処理回路の安定度を求めた。

5.1 飛しょう試験データの問題点

信号処理回路出力のテレメータデータを詳細に解析した結果、次のように不規則が生じていた。

(1) 太陽センサ単体出力電圧が予想された値よりも総体に7〜30％程度小さく、かつばらつきが大きくなっている。すなわち発射後384秒近くの姿勢変化の小さい部分で読み取ると表3に示す値が得られる。図3がテレメータ記録である。

表3 太陽センサ単体出力の比較（発射後384秒）

<table>
<thead>
<tr>
<th>太陽電池素子</th>
<th>実 測 値</th>
<th>予 測 値</th>
<th>比</th>
</tr>
</thead>
<tbody>
<tr>
<td>ファイン A</td>
<td>29mV</td>
<td>38.2mV</td>
<td>0.76</td>
</tr>
<tr>
<td>" B</td>
<td>29</td>
<td>35.5</td>
<td>0.82</td>
</tr>
<tr>
<td>" C</td>
<td>32</td>
<td>39.8</td>
<td>0.80</td>
</tr>
<tr>
<td>" D</td>
<td>26</td>
<td>37.3</td>
<td>0.70</td>
</tr>
<tr>
<td>平 均</td>
<td>29mV</td>
<td>37.7mV</td>
<td>0.77</td>
</tr>
</tbody>
</table>

コース a	156mV	169	0.93
" b	147	168	0.87
" c	151	172	0.88
" d	153	170	0.90
平 均	152 mV	170	0.89

図3 X+384sec付近のSASE飛しょうデータ
5.2 姿勢誤差等位置のオフセット
観測器（SUV）の姿勢検出器データが零の位置に対する、太陽センサ信号処理出力を読み取ると表5に示すようになる。ここで示した値は予測値に対する姿勢誤差の値であり、表3にも見るようにファインセンサ出力が78%になっていることを考慮するとビッチ、ヨーともに14'角のオフセットがあったものと推定される。すなわちロケットの機軸は太陽の中心からビッチ、ヨー両方向に14'角はなれた点を中心として±25'角（出力低下を補正して）の範囲を走査していたことになる。

表6 姿勢誤差電圧の検定
（0.03V/mV）
5.3 演算精度
HKモニタ信号から得られる太陽センサ単体の出力電圧信号を用いて、演算誤差の検討を行なった。表4の飛行結果に対応して表6が得られ、演算誤差は角度に換算しても1°以下と言える。

6. 結 言
太陽センサ信号処理回路についてその構成、飛行結果について述べた。太陽センサ[3]にも述べられているように、太陽センサ単体の感度の変化が一様でないことから姿勢の原点のオフセットは生じたと言える。しかし全体としてみて信号処理回路と同様の、あるいはそれ以上の安定度に対する配慮を太陽センサのそれぞれの要素特性にはらうべきであったとは否めない。
アナログ演算増幅器回路について、このK－10－11号機における成果から、一回路当たりドリフトを20mV以下と見積ることが可能と言ってよい。これは最大出力5Vに対して0.4％以下であり、抵抗、ICなどの効果的な選択によって得られる精度と言えよう。

参考文献
[1] サンセンサエレクトロニクス部（SASE）ハードウェア概要、日本電気株式会社R（K－10－11）－065（昭51－2－27）
[3] 西、東、山口：姿勢制御用太陽センサの指向特性について、宇宙研報告、本号

附録 ファインセンサの出力電圧について
ファインセンサでは4個の太陽電池素子が格子状に配列しており、図4に示すように太陽光が照射していると考えられる。太陽光照射面が一辺を2α、太陽電池要素間のすきまを2βとするとき、ピッチ偏位をp、ヨー偏位をqとして要素A－Dに対する照射面積S_A－S_Dは次のようになる。

\[S_A = (a + p - \beta) (a + y - \beta) \]
\[S_B = (a + p - \beta) (a - y - \beta) \]
\[S_C = (a - p - \beta) (a + y - \beta) \]
\[S_D = (a - p - \beta) (a - y - \beta) \]
太陽電池誘起電圧は、照射面積に比例するので、各要素の誘起電圧をV_A－V_Dとすると、各電池の特性が同じ場合次の関係式が成立する。

\[\frac{V_A}{V_B} \cdot \frac{V_D}{V_C} = \frac{S_A \cdot S_D}{S_B \cdot S_C} = 1 \]

図4 ファインセンサ（太陽センサ）出力の幾何学的関係