Test cases of Third Aerodynamics Prediction Challenge (APC-III)

Atsushi Hashimoto (JAXA)
APC committee

Issues of APC-I and APC-II

• The variation of CFD is large for high angles of attack
 → **Test case 1:** Investigation of grids and turbulence models for high angle-of-attack flows
 → The committee recommends turbulence models other than SA

• The slight difference remains between CFD and experiment
 → **Test case 2:** Discussion on the difference based on follow-up computations under arbitrary conditions

• Improvement of buffet prediction accuracy
 → **Test case 3:** Comparison with unsteady pressure frequency spectra, unsteady PSP
 → Unsteady pressure data and flow field data are submitted.
Test Case 1: Alpha-sweep

- Model: NASA-CRM($i_H=0\text{deg}$) without support device
- Grid: Medium($\sim 10\text{M}$)
- Conditions: $M = 0.847$, $R_e = 2.26 \times 10^6$, $T_{ref} = 284\text{K}$
- Angles: -1.79deg, -0.62deg, 0.32deg, 1.39deg, 2.47deg, 2.94deg, 3.55deg, 4.65deg, 5.72deg
- Data to be submitted:
 - Aerodynamic coefficients(C_D, C_L, C_m)
 - Decompose them into pressure and friction
 - Decompose them into parts (main wing, fuselage, tail)
 - Surface C_p distributions
 - Main wing
- Recommendations:
 - Usage of turbulence models other than SA
 - Discussion on high-angle-of-attack flows

Test case 2: Follow-up discussion

- Model: NASA-CRM (arbitrary configurations)
- Grid: arbitrary grids
- Conditions: arbitrary conditions
- Angles: arbitrary angles
- Data to be submitted: None
- Recommendations:
 - Discussion on the difference observed in APC-I and APC-II
 - Aeroelasticity
 - Wall interference
 - Transition
 - No tails
 - High Re
 - Subsonic
Test case 3: Buffet

- Model: NASA-CRM($i_H=0\text{deg}$) with deformation
- Grid: Arbitrary grids
- Conditions: $M = 0.85$, $Re_c = 1.5 \times 10^6$, $T_{ref} = 282K$
- Angles: 4.87deg, 5.92deg
- Data to be submitted:
 - Aerodynamic coefficients(C_D, C_L, C_m)
 - Surface C_p distributions
 - Average, RMS
 - Frequency spectra
 - Flow field contours
 - (Pressure, Mach number, eddy viscosity)

Cp measurement

Steady
Sections A-I

Unsteady
Sections E, F

CH19: $x/c=0.3097$

CH4: $x/c=0.3480$
APC Website

- NASA-CRM geometry (STL, IGES)
 - Original and deformed shapes are available
- Grid (HexaGrid, MEGG3D, UPACS)
 - Original and deformed shapes are available
- Wind tunnel data (steady/unsteady)
 - Force, moment, Cp, oil-flow
- Please see the APC website for more information
 - https://cfdws.chofu.jaxa.jp/apc/