EXA’S CONTRIBUTION TO THE APC-III
A.F.P. Ribeiro, B. König, Ehab Fares

Exa’s participation on the APC

- Exa took part of the APC-II
 - Case 1: one angle of attack (more angles available on DPW publications)
 - Case 2: one angle of attack (more angles available on DPW publications)
 - Case 3: both angles of attack

- For the APC-III, the focus will be on the new experimental data for Case 3

- Publications on the CRM/APC:
 - Buffet Simulations with a Lattice-Boltzmann based Transonic Solver. Ribeiro et al., AIAA Paper 2017-1438
Lattice-Boltzmann based PowerFLOW

- Extended to transonic flow
- Easily handles complex geometry
 - Cartesian mesh automatically generated based on user-defined regions
- Fully transient
 - Typically orders of magnitude faster than DES/LES with Navier-Stokes solver
- Turbulence approach: LBM-VLES
 - RNG k-ε subgrid model
 - Swirl model to reduce eddy viscosity
 - Extended wall model
- Previously used for airfoils and wings
 - See paper references

Aircraft Description

- Common Research Model (CRM) used for the Drag Prediction Workshop (DPW) and Aerodynamic Prediction Challenge (APC)
- 3 grids simulated: Coarse (C), Medium (M), and Fine (F)
 - Factor of $1.15^2 = 1.32$ between grids
- M=0.84, Re= 1.5 million
- Angles of attack = 4.87°, 5.92°, 6.58°
- Forces, Cp, Cp RMS, PSP comparisons to experiments
Resolution Study: Lift and Drag

- Grid convergent behavior at 4.87°
- Results at 5.92° tend towards higher Reynolds number experiments
- A deeper analysis of the resolution study was presented in:
- Run time (CPUh) for 0.084 seconds physical time

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2600</td>
<td>5600</td>
<td>12700</td>
</tr>
</tbody>
</table>

Wind Tunnel Effects: Sting

- Significant improvement of drag with sting
- Lift comes even closer to experiments at higher Reynolds number
- Sting plays a big role, but will not be included in the following results, for CPUh saving
Buffet Phenomenon: Cp (6.58°)

- Good comparisons to PSP
 - Shocks are generally more upwind than experiments

Buffet Phenomenon: Cp (6.58°)

- Good comparisons to PSP
 - Higher fluctuations after shock (consistent with Cp cuts in the next slides)
 - Narrower fluctuations peak in simulations than experiments (inconsistent with Cp cuts)
Buffet Phenomenon: Cp (6.58°)

- Good comparisons to PSP
 - Similar spanwise flow structures present in both results

Buffet Phenomenon: Instantaneous Cp (6.58°)

PSP data from Sugioka et al., “Non-Intrusive Unsteady PSP Technique For Investigation of Transonic Buffeting”, ICAS 2016
Buffet Phenomenon: Instantaneous Cp (6.58°)

- Good comparisons to PSP
 - Similar spanwise flow structures present in both results

PSP data from Sugioka et al., "Non-Intrusive Unsteady PSP Technique For Investigation of Transonic Buffeting", ICAS 2016
Buffet Phenomenon: Instantaneous Cp (6.58°)

- Good comparisons to PSP
 - Similar spanwise flow structures present in both results

Resolution Study: Cp (4.87°)

- Good agreement with experiments
 - Small Reynolds effects for this AoA
- Medium and Fine resolutions yield very similar results
Resolution Study: Cp RMS (4.87°)

- Good agreement with experiments
 - Larger fluctuations in the flow separated region, which reduce with resolution
 - Likely due to flow structures having higher coherence due to coarse mesh

- Medium and Fine resolutions yield very similar results

Resolution Study: Cp (5.92°)

- Good agreement with higher Reynolds number experiments
 - Strong Reynolds effect on shock position

- All resolutions yield very similar results
Resolution Study: Cp RMS (5.92°)

- Shock is too far upstream
 - Consistent with mean results
- All resolutions yield similar results
 - Fluctuations in the separated region are reducing with increased resolution

Transition Study: Cp and Cp RMS (5.92°)

- Laminar patches on the leading edge bring results closer to low Reynolds experiments
 - Shock moves downwind with laminar patches
- Experiments were tripped at 10% chord
 - Test with tripping at 15% represent a delayed transition
Transition Study: Cp (5.92°)

- Laminar patches on the leading edge bring results closer to low Reynolds experiments
 - Shock moves downwind with laminar patches

- Experiments were tripped at 10% chord
 - Test with tripping at 15% represent a delayed transition

Transition Study: Cp RMS (5.92°)

- Laminar patches on the leading edge bring results closer to low Reynolds experiments
 - Shock moves downwind with laminar patches

- Experiments were tripped at 10% chord
 - Test with tripping at 15% represent a delayed transition
Notes on PSDs

- Upwind of the shock the flow is not periodic, hence Fourier Transforms do not apply
- If the shock location is slightly different, the PSDs will look very different
- Hence, PSD contours are more adequate to check the results
 - Upwind spectra are generally low, so they do not pollute the contours

PSD (4.84°) – 50% span
PSD (4.84°) – 60% span

PSD (5.89°) – 50% span
PSD (5.89°) – 60% span

PSD (5.89°) – 50% span
PSD (5.89°) – 60% span

Summary

- CRM
 - Good comparison of mean flow and fluctuations
 - Laminar to turbulent transition was shown to play a key role
 - 3D buffet effect was shown and good agreement with PSP was seen
 - Comparison to PSD data shows good agreement in frequencies and levels
ありがとう