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Abstract

We show a connection formula of a linear q-differential equation
satisfied by rϕr−1(0; b; q, x) where any element of b are not zero.
We use a q-Laplace transformation to obtain an integral represen-
tation of solutions of the q-differential equation.
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1 Introduction

We show a connection formula of a linear q-differential equation satisfied by

rϕr−1(0, 0, ..., 0; b1, ..., br−1; q, x) in case that b1b2 · · · br−1 ̸= 0. The basic hyper-
geometric series rϕr−1(0, 0, ..., 0; b1, ..., br−1; q, x) satisfies a linear q-differential
equation of the r-th order:

[
x− (1− σq)

r−1∏
k=1

(1− bk
q
σq)

]
y(x) = 0, (1)

where σqy(x) = y(xq). The condition b1b2 · · · br−1 ̸= 0 implies that the origin
is a regular singular point of (1). Around the infinity (1) has r solutions which
are represented by convergent power series on x1/r. In this sense, (1) is the
most degenerate case of hypergeometric equations.
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Thomae [6, 7] showed a connection formula on 2ϕ1(a1, a2; b1) and 3ϕ2(a1,
a2, a3; b1, b2). In [8] Watson gave connection formulae in more general cases. He
showed a connection formula of rϕr−1(a1, a2, .., ar; b1, ..., bs,0; q, z), where s <
r. Watson also showed that an asymptotic expansion of s+1ϕr−1(a

′
1, a

′
2, ..., a

′
s+1;

b′1, ..., b
′
r−1; q, z) (he used a notation s+1Pr−1), but he did not give a resumma-

tion of divergent series. Later Slater [4, 5] also gave a more general form of a
connection formula.

J.-P. Ramis, J. Sauloy and C. Zhang started modern study on divergent
q-series and a q-analogue of the Stokes phenomenon [3]. Zhang studied the
q-Stokes phenomenon of q-confluent hypergeometric function 2ϕ0(a, b; 0; q, x)
[10]. He has also shown a connection formula of Jackson’s q-analogue of the

Bessel function J
(1)
ν [11]. Since

J (1)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

(x
2

)ν

2ϕ1

(
0, 0; qν+1; q,−x

2

4

)
,

the connection formula of J
(1)
ν (x; q) is essentially the case r = 2 of (1).

Since all of local solutions around the origin and the infinity are repre-
sented by convergent power series, we can determine the connection formula
by a q-Laplace transformation [9]. We show a useful formula on p-Laplace
transformation applied to q-difference equations (pm = q) in section two.

We show a connection formula in section three. We study the q-differential
equation [

xr
r∏

k=1

(1− akσp)−
(
−σp
pr

)r
]
u(x) = 0.

Local solutions around the infinity are

u1,∞(x) =
θp(−a1x)
θp(−x)

rϕr−1

(
0, 0, ..., 0

pra1/a2, p
ra2/a3, ..., p

ra1/ar
; pr,

1

a1a2 · · · arxr

)

and u2,∞(x), ..., ur,∞(x) are obtained by the cyclic transformation of a1, a2, ..., ar.
We take a a primitive r-th root ω of unity. Local solutions around the origin

are

uj,0(x) =
1

θp(−ωjp(1−r)/2x)
vj(x), vj(x) =

∞∑
n=0

v(j)n xn,

for j = 0, 1, 2, ..., r − 1. We assume that v
(j)
0 = 1. The connection formula

between (u0,0, u1,0, ..., ur−1,0) and (u1,∞, ..., ur,∞) is given by

vj(x) =
1

(q, a2/a1, ..., ar/a1; q)∞

θp(−ωjp(1−r)/2a1x)θp(−x)
θp(−ωjp(1−r)/2x)θp(−a1x)

u1,∞(x)

+ idem(a1; a2, ..., ar).

2

The symbol ”idem (a1; a2, ..., ar)” stands for the sum of the r expressions ob-
tained from the preceding expression by interchanging a1 with each a2, a3, ..., ar.

The author gives his gratitude to Professor Changgui Zhang for fruitful dis-
cussions. Some works has done during his stay at Lille on September 2017. This
work is supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C)
Number 6K05176.

2 Notations

We denote the m-vetcor (0, 0, ..., 0) by 0m.
We assume that 0 < |q| < 1. For n = 0, 1, 2, ..., we set the q-shifted factorial

(a; q)n =
n−1∏
j=0

(1− aqj), (a; q)∞ =
∞∏
j=0

(1− aqj).

We set (a1, a2, ..., am; q)n =
∏m

j=1(aj ; q)n for n = 0, 1, 2, ... or n =∞.
We set the theta function

θq(x) := θ(x) =
∑
k∈Z

qk(k−1)/2xk = (q,−x,−q/x; q)∞ .

The theta function satisfies

θq(q
kx) = q−k(k−1)/2x−kθq(x) (k ∈ Z),

xθq(1/x) = θq(x), θq(1/x) = θq(qx).

The basic hypergeometric series [1] is defined by

rϕs(a1, . . . , ar; b1, . . . , bs; q, x)

:=
∑
n≥0

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n(q; q)n

{
(−1)nq

n(n−1)
2

}1+s−r

xn.

Let σq be a q-shift operator σq[f(x)] = f(xq). When 1 + s ≥ r, rϕs is
convergent and satisfies a q-difference equation with (s+ 1)-th order


x

r∏
j=1

(1− ajσq)− (1− σq)
r−1∏
k=1

(1− bk
q
σq)


 y(x) = 0.

3 q-Borel transformation and q-Laplace trans-
formation

We review a q-Borel transformation and a q-Laplace transformation. See [9, 3]
for detail.
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The q-Borel transformation B−
q : C[[x]]→ C[[τ ]] is defined by

B−
q

[ ∞∑
n=0

anx
n

]
:=

∞∑
n=0

anq
−n(n−1)/2τn.

We identify a germ of holomorphic functions at the origin OC,0 as a subset of
C[[x]]. As a linear operator on C[[x]], the following lemma is useful to study
q-difference equations.

Lemma 1. (1) The q-Borel transformation B−
q shifts the power of σq:

B−
q (x

mσnq f) = q
−m(m−1)/2τmσn−m

q B−
q (f).

(2) Multiplication by the theta function shifts the power of x:

xmσnq

[
1

θq(cx)
f(x)

]
=
qn(n−1)/2cn

θq(cx)
xm+nσnq f(x).

The inverse transformation of B−
q is given by a q-Laplace transform L−

q .
Assume that φ(τ) is holomorphic on |τ | ≦ ε. We define

L−
q φ(x) =

1

2πi

∫

|τ |=ε

φ(τ)θq(x/τ)
dτ

τ
.

Under a suitable condition, we have L−
q ◦ B−

q f = f .

We consider the p-Laplace transform of a ratio of pm-products.

Proposition 2. Let m be a positive integers. We set pm = q. We assume that
s+m ≦ r. When s+m = r, we need |q(1+m)/2b1 · · · bs/a1a2 · · · arxm| < 1. We
consider the contour integral

I =
1

2πi

∫

|τ |=ε

∏s
j=1(bjτ ; q)∞∏r
k=1(akτ ; q)∞

θp(x/τ)
dτ

τ
,

where
∏r

k=1(akτ ; q)∞ does not have any zero on |τ | ≦ ε. Then we obtain

I =
(b1/a1, ..., bs/a1; q)∞
(q, a2/a1, ..., ar/a1; q)∞

θp(a1x)

× s+mϕr−1

(
qa1/b1, ..., qa1/bs,0m

qa1/a2, ..., qa1/ar
; q,

(−1)rqr−s+(1−m)/2b1 · · · bs
am+s−r+1
1 a2 · · · arxm

)

+ idem(a1; a2, ..., ar). (2)

Proof. The following relations are directly proved :

Resτ=1/aqn
1

(aτ ; q)∞

dτ

τ
= − (−1)

nqn(n+1)/2

(q; q)∞(q; q)n
,

4

θp(x/τ)|τ→1/aqn = (ax)−mnp−nm(nm−1)/2θp(ax),

(bτ ; q)∞|τ→1/aqn = (−b/a)nq−n(n+1)/2(b/a; q)∞(aq/b; q)n.

By using the above relations we can show Proposition.

4 Connection formula

We consider the equation

z

r∏
j=k

(1− akσq)−
(
−σq
q

)r

 y(z) = 0. (3)

Local solutions of (3) around the infinity are

y1,∞(z) =
θq(−a1z)
θq(−z)

rϕr−1

(
0, 0, ..., 0

qa1/a2, qaj/a3, ..., qa1/ar
; q,

1

a1 · · · arz

)

and y2,∞(z), ..., yr,∞(z) are obtained by the cyclic transform a1 → a2 → · · · →
ar → a1.

Since (3) has ramified solutions around the origin, we take a covering trans-
formation z = xr. We set pr = q.

[
xr

r∏
k=1

(1− akσp)−
(
−σp
q

)r
]
u(x) = 0. (4)

We give a connection formula of (4). Local solutions of (4) around the infinity
are

u1,∞(x) =
θp(−a1x)
θp(−x)

rϕr−1

(
0, 0, ..., 0

qa1/a2, qa2/a3, ..., qa1/ar
; q,

1

a1a2 · · · arxr

)

and u2,∞(x), ..., ur,∞(x) are obtained by the cyclic transform.
We take a complex number ω, which is a primitive r-th root of unity:

ωr = 1. Local solutions of (4) around the origin are

uj,0(x) =
1

θp(−ωjp(1−r)/2x)
vj(x), vj(x) =

∞∑
n=0

v(j)n xn,

for j = 0, 1, 2, ..., r−1. We assume that v(j)0 = 1.We show a connection formula
between (u0,0, u1,0, ..., ur−1,0) and (u1,∞, ..., ur,∞).

We set elementary symmetric polynomials s1, s2, ..., sr so that

r∏
k=1

(1− akx) =
r∑

k=1

(−1)kskxk.
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We set cj = −ωjp(1−r)/2. Then vj(x) satisfies a q-difference equation

[
r∑

k=1

(−1)kckj pk(k−1)/2skx
kσkp − σrp

]
vj(x) = 0.

We remark that σrp = σq. Since wj(τ) = (B−
p vj)(τ) satisfies

[
r∏

k=1

(1− cjakτ)− σrp

]
wj(τ) = 0,

we have

wj(τ) =
1

(cja1τ, cja2τ, ..., cjarτ ; q)∞
.

By (2) we obtain

vj(x) = L−
p wj(x) =

1

2πi

∫

|τ |=ε

1

(cja1τ, cja2τ, ..., cjarτ ; q)∞
θp(x/τ)

dτ

τ

=
θp(cja1x)

(q, a2/a1, ..., ar/a1; q)∞
rϕr−1

(
0, 0, ..., 0

qa1/a2, ..., qa1/ar
; q,

(−1)rq(1−r)/2

crja1a2 · · · arxr

)

+ idem(a1; a2, ..., ar)

=
θp(cja1x)

(q, a2/a1, ..., ar/a1; q)∞
rϕr−1

(
0, 0, ..., 0

qa1/a2, ..., qa1/ar
; q,

1

a1a2 · · · arxr

)

+ idem(a1; a2, ..., ar).

We remark that crj = (−1)rq(1−r)/2.

The main result is as follows:

Theorem 3. We take a primitive r-th root ω of unity. A connection formula
of (4) is given by

uj,0(x) =
1

(q, a2/a1, ..., ar/a1; q)∞

θp(−ωjp(1−r)/2a1x)θp(−x)
θp(−ωjp(1−r)/2x)θp(−a1x)

u1,∞(x)

+ idem(a1; a2, ..., ar),

for j = 0, 1, ..., r − 1.

The case r = 2:
We set p2 = q. We take a p-difference equation

[
p2x2(1− a1σp)(1− a2σp)− σ2p

]
u(x) = 0. (5)

6

We give a connection formula of (5). Local solutions of (5) around the infinity
are

u1,∞(x) =
θp(−a1x)
θp(−x)

2ϕ1

(
0, 0; qa1/a2; q,

1

a1a2x2

)
,

u2,∞(x) =
θp(−a2x)
θp(−x)

2ϕ1

(
0, 0; qa2/a1; q,

1

a1a2x2

)
.

Local solutions of (5) around the origin are

u0,1(x) =
1

θp(−p−1/2x)
v1(x), v1(x) =

∞∑
n=0

v(1)n xn,

u0,2(x) =
1

θp(p−1/2x)
v2(x), v2(x) =

∞∑
n=0

v(2)n xn.

We assume that v
(j)
0 = 1 for j = 1, 2. By Theorem 3 we obtain

u0,1(x) =
1

(q, a2/a1; q)∞

θp(−p1/2a1x)θp(−x)
θp(−p1/2x)θp(−a1x)

u1,∞(x)

+
1

(q, a1/a2; q)∞

θp(−p1/2a2x)θp(−x)
θp(−p1/2x)θp(−a2x)

u2,∞(x),

u0,2(x) =
1

(q, a2/a1; q)∞

θp(p
1/2a1x)θp(−x)

θp(p1/2x)θp(−a1x)
u1,∞(x)

+
1

(q, a1/a2; q)∞

θp(−p1/2a2x)θp(−x)
θp(−p1/2x)θp(−a2x)

u2,∞(x).

This connection formula is essentially equivalent to the connection formula of
Jackson’s first q-Bessel functions in [11].

5 Conclusion

We show a connection formula of (4), which is a generalization of Jackson’s first
q-analogue of the Bessel functions [2]. We can obtain a connection formula of
solutions represented by a convergent (non-hypergeometric) series of x1/m by
applying the p-Laplace transformation (2) to a product of pm-shifted factorials
p for other q-hypergeometric equations.

We should study the q-Stokes phenomenon [3] for divergent series solutions.
By using the other q-Borel transformation B+

q , we can give a resummation for
divergent hypergeometric series.
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k=1
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[
r∏

k=1

(1− cjakτ)− σrp

]
wj(τ) = 0,
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wj(τ) =
1

(cja1τ, cja2τ, ..., cjarτ ; q)∞
.

By (2) we obtain

vj(x) = L−
p wj(x) =

1

2πi

∫

|τ |=ε

1

(cja1τ, cja2τ, ..., cjarτ ; q)∞
θp(x/τ)

dτ

τ

=
θp(cja1x)

(q, a2/a1, ..., ar/a1; q)∞
rϕr−1

(
0, 0, ..., 0

qa1/a2, ..., qa1/ar
; q,

(−1)rq(1−r)/2

crja1a2 · · · arxr

)

+ idem(a1; a2, ..., ar)

=
θp(cja1x)

(q, a2/a1, ..., ar/a1; q)∞
rϕr−1

(
0, 0, ..., 0

qa1/a2, ..., qa1/ar
; q,

1

a1a2 · · · arxr

)

+ idem(a1; a2, ..., ar).

We remark that crj = (−1)rq(1−r)/2.
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[9] Zhang C.; Développements asymptotiques q-Gevrey et séries Gq-
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Abstract

Consider the Cauchy problem for the non-degenerate Kirchhoff
type dissipative wave equations with the initial data belonging to
H2(RN ) × H1(RN ) in unbounded domains. When the coefficient
ρ or the initial energy E(0) is small at least, we show the global
existence theorem and derive decay estimates of energies in the L2-
frame. Moreover, when the initial data belong to L1(RN )×L1(RN )
in addition, we improve the decay rates of the solutions.
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1 Introduction

In this paper we consider the Cauchy problem for the non-degenerate Kirch-
hoff type dissipative wave equations :



ρu′′ +

(
1 +

∫

RN

|A1/2u(·, t)|2dx
)γ

Au+ u′ = 0 in RN × [0,∞) ,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in RN ,

(1.1)

where u = u(x, t) is an unknown real value function, ′ = ∂/∂t, A = −∆ =

−
∑N

j=1 ∂
2/∂x2j is the Laplace operator with domain D(A) = H2(RN ), ρ > 0

and γ > 0 are positive constants.
Equations (1.1) describes small amplitude vibrations of an elastic string

when the dimension N is one (see Kirchhoff [9] for the original equation, and
also see Carrier [5], Dickey [6]). Equations including non-local terms like (1.1)
are called Kirchhoff type.

1

This document is provided by JAXA.




