Outline

- Numerical Method
 - Lattice Boltzmann Method
 - Cascaded LBM
 - Boundary condition
 - Wall boundary
 - Outer boundary
 - Building-Cube Method

- Numerical Results
 - Problem category 1-1 (2D)
 - Problem category 1-3 (3D)
 - Problem category 3-1 (3D)

- Conclusions
Background

■ CFD use:
- understanding the flow physics
- engineering design (especially in steady state)

■ Problems in current CFD
- Cost for unsteady flow simulation
 - High resolution/High order schemes
 - Restriction for Δt
 - Inner iteration of implicit time integration
 - Handling of massive output data
- Model dependency
 - DES, DDES, IDDES, Zonal DES, ...
 - RANS/LES switching parameter

- It is difficult to directly apply unsteady flow simulation for engineering design.

- Lattice Boltzmann Method has capability to overcome current CFD problem (?)

Algorithms of LBM

■ Governing equation: Boltzmann transport equation

$$\frac{\partial f_i}{\partial t} + \mathbf{e}_i \cdot \nabla f_i = \Omega_i \quad (i = 1, \ldots, b)$$

- f : probability distribution function
- \mathbf{e} : discrete set of velocities
- Ω : collision operator

■ Discretization on lattice:

$$f_i(r + \mathbf{e}_i dt, t + dt) = f_i(r, t) + dt \times \Omega_i(f_1, \ldots, f_b)$$

(i = 1, ..., b)

■ Lattice model used in this research: D2Q9, D3Q27

Ludwig Eduard Boltzmann (1844–1906)
Algorithms of LBM

- Relaxation parameter τ depends on the local grid size Δx.
 - $\frac{\Delta x_{\text{coarse}}}{\Delta x_{\text{fine}}} = n$ leads $\frac{\Delta t_{\text{coarse}}}{\Delta t_{\text{fine}}} = n$

- Temporal/spatial interpolation are necessary among difference size cells.

- Usually, non-equilibrium part of f is rescaled.
 $$f_{\text{fine}} = f_{\text{eq,coarse}} + \left(f_{\text{coarse}} - f_{\text{eq,coarse}} \right) \frac{\Delta x_{\text{fine}} T_{\text{fine}}}{\Delta x_{\text{coarse}} T_{\text{coarse}}}$$

- Cascaded LBM is used for collision operator.
 - Satisfy Galilean invariance and has better accuracy/stability
 - Compute central moment defined by moving coordinate:
 $$\bar{M}_{p,q,r} = \sum_i \left(e_{ix} - u_x \right)^p \left(e_{iy} - u_y \right)^q \left(e_{iz} - u_z \right)^r \cdot f_i$$

 - Relation between Raw moment/Central moment
 $$\bar{M} = C^t \bar{M}$$

- 27 Central moments used in this research:
 - $\tau = 1$ is used for the above moments to enhance stability.
 - Our approach is Implicit LES.

Martin Geier, et. al., "Cascaded digital lattice Boltzmann automata for high Reynolds number flow"
Wall/Outer boundary

- Interpolated Bounce-Back (IBB) Scheme (1st order)

\[f_{-i}(x, t + \Delta t) = 2q f_i(x, t) + (1 - 2q) f_i(x - c_i \Delta t, t) - 2w_i \rho(x, t) \frac{e_i \cdot u_w}{c_s^2} \left(q_i < \frac{1}{2} \right) \]

\[f_{-i}(x, t + \Delta t) = \frac{1}{2q} f_i(x, t) + \frac{2q - 1}{2q} f_{-i}(x, t) - \frac{1}{q} w_i \rho(x, t) \frac{e_i \cdot u_w}{c_s^2} \left(q_i \geq \frac{1}{2} \right) \]

where \(q_i = \frac{d_i}{r_i \Delta t} \), non-dimensional distance

※No wall function is used.

- Damping function is used for the outer boundary condition.

\[f_{outer} = f - \alpha \left(f - f_{eq}^{target} \right) \]

\[\alpha = 0.5 \times \left(\frac{d - r}{R - r} \right) \]

where \(r/R \) are inner/outer radius of damping region,
\(d \) is distance from inner radius \(r \)

Building-Cube Method

- BCM is a block-structured Cartesian grid approach proposed by prof. Nakahashi.

- Computational domain is divided into “Cubes”.

- Each cube has a uniform-spacing Cartesian grid, “Cells”.

- Cartesian grid & staircase representation → Simplification of grid generation & flow solver algorithm

- Equal spaced Cartesian grid in each cube → Higher-order spatial accuracy

- All cubes include same number of Cartesian grid → Easy handling of parallelization

- Change cube size locally → Easy adaptation of grids to local flow features
Domain Partition

- BCM framework uses both OpenMP/MPI parallelization.
- Z-ordering is used for MPI parallelization.

Grid information

<table>
<thead>
<tr>
<th>Details</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>2D</td>
<td>3D</td>
</tr>
<tr>
<td>Re</td>
<td>1.71×10^6</td>
<td></td>
</tr>
<tr>
<td>M_{∞}</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Domain</td>
<td>$32L_{\infty} \times 32L_{\infty}$</td>
<td>$16L_{\infty} \times 16L_{\infty} \times 0.125L_{\infty}$</td>
</tr>
<tr>
<td>Cube</td>
<td>6535</td>
<td>77326</td>
</tr>
<tr>
<td>Cell</td>
<td>32^2</td>
<td>$4^3, 8^3, 16^3, 32^3$</td>
</tr>
<tr>
<td>Total cells</td>
<td>$6.7M$</td>
<td>$4.9M, 40M, 317M, 25B$</td>
</tr>
<tr>
<td>Δx_{min}</td>
<td>$1.22 \times 10^{-4}L_{\infty}$</td>
<td>$2.44 \times 10^{-4}L_{\infty}$</td>
</tr>
</tbody>
</table>

Periodic boundary condition is applied in spanwise direction.
2D results

- Flow separation is different at slat-cove compared to NS(RANS) results.
 ⇒ due to 2D computation with ILES.
- LBM overestimated C_p compared to NS(RANS) results.

dp field@AoA=5.5

3D results
PSD data position

- B2: FaSTAR(L3)
- C1: FaSTAR(L2)
- D1: Present

PSD comparison

- B2: FaSTAR(L3)
- C1: FaSTAR(L2)
- D1: Present

This document is provided by JAXA.
Takashi ISHIDA

PSD comparison

- **M7(α=5.5)**
 - B2: FaSTAR(L3)
 - C1: FaSTAR(L2)
 - D1: Present

- **F1(α=5.5)**
 - B2: FaSTAR(L3)
 - C1: FaSTAR(L2)
 - D1: Present

- **P1(α=5.5)**
 - B2: FaSTAR(L3)
 - C1: FaSTAR(L2)
 - D1: Present

- **P7(α=5.5)**
 - B2: FaSTAR(L3)
 - C1: FaSTAR(L2)
 - D1: Present

Time-averaged Cp

- **30P30N(α=5.5)**

- LBM overestimated Cp at slat and flap ⇒ due to the outer domain size?
- BL thickness at slat-TE may be changed slightly compared to other CFD results due to the flow acceleration at flap suction.
Conclusions

- NBPs were well captured by present approach.

- The peak from slat-TE was slightly shifted to higher region compared to NS results, but reasonable agreement was obtained with experimental data.

- Future works
 - Grid convergence
 - Effect of local mesh refinement based on flow field
Thank you for your kind attention.