Aerodynamic prediction of 30P30N airfoil using 2D BCM
（BCMを用いた30P30Nの2次元空力予測）

○Takaya Kojima, Takashi Misaka, Aiko Yakeno, Shigeru Obayashi
(Institute of Fluid Science, Tohoku University)
Yusuke Shikada, Tsubasa Iwafune, Daisuke Sasaki
(Kanazawa Institute of technology)

Case

1. Aerodynamic prediction of 30P30N airfoil
 1-1 2D steady analysis

2. Flap separation prediction of 30P35N airfoil
 2-1 2D steady analysis

3. Noise prediction of 30P30N airfoil
 (near and far field)
Flow solver

• BCM (Building Cube Method)
 - Cartesian mesh based solver

 ![BCM mesh around NACA0012 airfoil](image)

 - Merits
 • Easy parallel computation
 • Easy grid generation for complex shapes
 • Higher order spatial accuracy

 - Demerits
 • Shape reproducibility
 • Difficulty in resolving the boundary layer

Computational method

<table>
<thead>
<tr>
<th></th>
<th>BCM-NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governing Eq.</td>
<td>Compressible NS Eq.</td>
</tr>
<tr>
<td>Discretization</td>
<td>Cell-centered finite volume</td>
</tr>
<tr>
<td>Inviscid Flux</td>
<td>SLAU 3rd-order MUSCL</td>
</tr>
<tr>
<td>Viscous Flux</td>
<td>2nd-order central difference</td>
</tr>
<tr>
<td>Time integration</td>
<td>LU-SGS</td>
</tr>
<tr>
<td>Turbulence model</td>
<td>SA-noft2-R</td>
</tr>
</tbody>
</table>

Wall boundary treatment
• Immersed boundary method (Ghost cell approach)
 Density & pressure → Zeroth-order interpolation
 Velocity → Linear interpolation
Grid

<table>
<thead>
<tr>
<th></th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine (L1)</th>
<th>Extra Fine (L2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum grid size</td>
<td>9.54e-5</td>
<td>4.77e-5</td>
<td>2.38e-5</td>
<td>1.19e-5</td>
</tr>
<tr>
<td>Total cube number</td>
<td>8,259</td>
<td>15,645</td>
<td>15,645</td>
<td>15,645</td>
</tr>
<tr>
<td>Total cell number in Cube</td>
<td>16*16</td>
<td>16*16</td>
<td>32*32</td>
<td>64*64</td>
</tr>
<tr>
<td>Total cell number</td>
<td>2,114,304</td>
<td>4,005,120</td>
<td>16,020,480</td>
<td>64,081,920</td>
</tr>
</tbody>
</table>

5.5 deg | ○ | ○ | ○ | ○ |
9.5 deg | - | - | ○ | ○ |
14.0 deg | - | - | ○ | - |
20.0 deg | - | - | ○ | - |
24.0 deg | - | - | ○ | - |

Cube allocation
Grid (comparison L1 grid)

* Show cube boundaries

Each cube has 16×16, 32×32 or 64×64 cells

Black : L1 grid provided by JAXA
Blue : BCM
Separation occurs at a high angle of attack.
→ Min cell size?, Cube allocation?...

$C_l - \alpha$

C_l, C_d, C_m

![Graph showing C_l, C_d, C_m](image)

Cp (AoA 5.5deg)

![Graph showing Cp (AoA 5.5deg)](image)
Conclusion

We analyzed 30P30N airfoil by BCM

- The Fine(L1) grid and Extra Fine(L2) grid analysis result shows the same tendency as the experiment at the low angle of attack.
- These fine grids simulations could not predict precisely at the high angle of attack. (Separation occurs in the simulations)
 → Revise Cube allocation and Analysis conditions.
- The aerodynamic coefficient is estimated to be large.
- The trend of the pressure coefficient distribution differs at the trailing edge of the flap in experiment and simulation.
 → Due to two dimensional analysis?