国土地理院の重力測量 Gravity Measurements in Geospatial Information Authority of Japan

測地部 山本宏章¹・宮原伐折羅²・吉田賢司³・菅原安宏² Geodetic Department Hiroaki YAMAMOTO, Basara MIYAHARA, Kenji YOSHIDA and Yasuhiro SUGAWARA 地理地殻活動研究センター 宮崎隆幸⁴ Geography and Crustal Dynamics Research Center Takayuki MIYAZAKI

要旨

国土地理院は、高精度で安定した重力値を提供す るとともに国際的に合意された基準に基づく日本の 重力基準網の構築を目的として、全国で絶対重力測 定及び相対重力測定を実施している.1993年には FG5絶対重力計を導入し、2001年からは絶対重力測 定の国際標準との整合性を担保するために、FG5絶 対重力計の国内比較観測を行うとともに、測定及び データ処理手法の高度化を検討してきた.このよう に測定誤差を極力除いて安定した重力値を求める手 法を追及し、重力測量の精度及び信頼性を保ってい る.2016年には、こうした重力測量の結果を用いて 「日本重力基準網 2016 (JGSN2016)」を構築した(吉 田ほか、2018).

本稿では、高精度で信頼性のある測定を達成する ための機器及び測定方法、並びに重力基準網の根幹 である重力点の現状とその維持・管理の方針を解説 するとともに、国土地理院のこれまでの重力測量の 実績を報告し、今後の課題と展望を議論する.

1. はじめに

国土地理院は、国際的な合意に基づいて重力値を 与える重力の基準「国際重力基準網 1971 (IGSN71: The International Gravity Standardization Net 1971)」

(Morelli et al., 1974) に準拠した,「日本重力基準網 1975 (JGSN75 : The Japan Gravity Standardization Net 1975)」(国土地理院, 1976)を構築し、日本に正確 な重力値を与える基準として 1976 年に公表した. JGSN75 は国内に重力値を与える基盤として広く活 用されてきたが、構築時に国内で絶対重力測定の実 績がなく、その重力値は海外から相対重力測定を通 じて決定した値であったため,国内で信頼できる絶 対重力測定を行って重力の基準を構築することが長 く課題であった. そこで,国土地理院は,絶対重力 測定に基づいた高精度な重力の基準を国内に展開す ることを目的として、JGSN75 の公表後も高度化が 進む機器及び技術を重力測量に取り入れてきた. 国 土地理院の重力測量は絶対重力計と相対重力計を用 いて行うが、いずれもマニュアルに従うだけでは期 待する精度の測定は難しく,機器の原理と構造を十 分に理解した上で、環境に起因する重力変化を適切 に処理して初めて期待する精度が得られる.また、 重力計は精密機器の集合であるため、各々の機器の 適切な取り扱いが不可欠である.さらに、重力は様々 な要因で一様でない変化をするため、様々な補正と 化成処理を施して標準的な状態での値とすることで 初めて比較が可能となる.測定技術及び処理手法は 常に開発が進むため、測定の高度化に有効な技術は 随時検証して導入し、また、補正・化成処理につい ても常に高度化を検討することで、重力値の品質の 確保と向上に努めている.

本稿では、国土地理院の重力測量の測定方法、重 力網の物理的な基盤である重力点の現状、さらに重 力測量の実績を解説することで、重力測量の技術と 成果の活用を容易にし、重力測量の更なる高度のた めの基盤構築に向けて今後の課題と展望を議論する.

2. 国土地理院の重力測量

国土地理院は、その場所の重力加速度を直接測定 する絶対重力測定とあらかじめ重力値がわかってい る基準点から重力の相対的な差を測定する相対重力 測定の双方を実施している。絶対重力測定は主に基 準重力点(FGS:Fundamental Gravity Station)で、相 対重力測定は、主に一等重力点(GS:Gravity Station) で行っている。本章では、まず絶対重力測定、続い て相対重力測定について、原理、測定機器、測定方 法及び精度確保のための校正・検定の詳細を述べる。

2.1 絶対重力測定

重力の絶対値は,真空中の物体の落下距離(位置) z と経過時間 t を測定することで求めることができる. これらの関係は v_0 , z_0 を時刻 t=0の初速度,初 期位置とすると式(1)となる. 正確な z_0 と v_0 をあ らかじめ求めることは難しいため,自由落下中の3 か所でzとtを測定して重力値gとともに未知数と して解くことで求める.3 か所の測定点で位置(t_1 , t_2 , t_3)と時間(z_1 , z_2 , z_3)を測定すると,式(1)か ら重力値gは式(2)となる.

国土地理院が絶対重力測定で用いる FG5 絶対重 力計(以下「FG5」という.)は,自由落下式で鉛直

現所属: 1九州地方測量部, 2地理地殻活動研究センター, 3企画部, 4測地観測センター

に自由落下する試験落体の位置と時間を約 20cm に わたって計測して1回の落下の重力値gを最小二乗 法により決定する.

$$z = z_0 + v_0 t + \frac{1}{2} g t^2 \tag{1}$$

$$g = \frac{2\{(z_3 - z_1)(t_2 - t_1) - (z_2 - z_1)(t_3 - t_1)\}}{(t_3 - t_1)(t_2 - t_1)(t_3 - t_2)}$$
(2)

一方,国土地理院が最初に導入した GA60 絶対重 力計(以下「GA60」という.)(Sakuma, 1971)は, 投げ上げ式で,鉛直に投げ上げた物体が行う放物線 運動を利用して重力値を測定する(図-1).物体の速 度 v_a = 0 となることから,式(3)に式(4)を代入 して式(5)が得られる.

$$v = v_0 - gt \tag{3}$$

$$v_0 = gt_a \tag{4}$$

$$v = g(t_a - t) \tag{5}$$

物体がある場所を通過する速度は上昇と下降で同 じであることから,測定点 A 及び B を通過する物体 の速度をそれぞれ v_A , v_B ,上昇する際に点 A を通過 した時間を t_{A1} ,下降する際の時間を t_{A2} ,その間に 要した時間を Δt_A ,同じく上昇する際に点 B を通過 した時間を t_{B1} ,下降する際の時間を t_{B2} ,その間の時 間を Δt_B , AB 間の距離を Δz とすると(図-1),物体 の位置を表す式(6)と前述の速度を表す式(5)か ら式(7)が導かれ,ここから式(8)の重力値 g が 求められる.

$$z = z_a - \frac{1}{2}g(t - t_a)^2$$
 (6)

$$2g\Delta z = v_{\rm B}^2 - v_{\rm A}^2 = \frac{1}{4}g^2(\Delta t_{\rm B}^2 - \Delta t_{\rm A}^2)$$
(7)

$$g = \frac{8\Delta z}{(\Delta t_B^2 - \Delta t_A^2)}$$
(8)

投げ上げ式では,式(8)が示すように2点の測定 で重力値を求めることができるため,距離がわかっ ている2点で物体が上昇時及び下降時に通過した時 間を測定することで重力値を求めることができる. GA60の導入時には,距離*Δz*を約0.648mmと設定 して,約500点の通過点間で1回の投げ上げに500 組の重力値を求めていた(村上・太島, 1981).

2.1.1 機器と測定方法

絶対重力測定では、前節で述べたように正確な時間と距離から重力値を求める.FG5では、距離はヨウ素安定化 He-Ne レーザ(以下「He-Ne レーザ」という.)で、時間はルビジウム周波数標準器(以下「Rb 原子時計」という.)で測定する.精度の良い測定は、落下槽中の空気を十分に除去して落下を安定させ、微弱な地盤動を除去して初めて可能となる.

(1) 距離と時間の測定

He-Ne レーザは、国際度量衡委員会(CIPM:Comité International des Poids et Mesures)が勧告するメート ルの定義を実現する周波数安定化レーザの一つで、 波長が 633nm、不確かさ(3 σ)が1×10⁹の測長用の 光源である(松本、2000).レーザ共振器にヨウ素を 配置して発振波数をヨウ素分子の吸収線に固定する ことで非常に安定した発振周波数を与える.He-Ne レーザは、計量トレーサビリティの標準計測器に使 われる高精度なレーザで、計量法では、2009年7月 まで国立研究開発法人産業技術総合研究所(以下「産 総研」という.)のHe-Ne レーザを長さの国家標準 (特定標準器)と定めていた(瀬田、1998).

国土地理院では、初期の数箇月を除いて Model 100 Iodine-Stabilized He-Ne laser (米国 Winters Electro-Optics 社製)を用いている. このレーザは、波長が 633nm,出力が 100~125 μ W,周波数安定度が 2.5× 10⁻¹¹ で、国際度量衡局(BIPM: Bureau International des Poids et Mesures)が製造、校正したヨウ素セルを 用いている.国土地理院は、概ね 3 年に一回、FG5 の装置一式を製造元の米国 Micro-g Lacoste 社に送っ てメンテナンスを実施しているが、その際にレーザ 周波数も検定して正確なレーザ波長を維持している. レーザ波長は、15~25℃で正確に維持される.

一方,時間の測定では Rb 原子時計を用いる. Rb 原子時計は,ルビジウム原子の安定した固有周波数 に水晶発振器の発振周波数を同期させた高精度な周 波数標準(時計)で,長期安定度は10MHz±0.0005Hz/

月程度である.国土地理院は、1993~2006年には FG5 の電源供給部に内蔵の Rb 原子時計(Microsemi Corporation 社製 X72 ルビジウム発振器) を使用して いた.しかし、国立天文台水沢観測センター(現国 立天文台水沢 VLBI 観測所)において絶対重力測定 を実施した際、重力点近傍の超電導重力計のヘリウ ムガスの影響で Rb 原子時計の周波数が変化して測 定値に理論潮汐と明瞭な乖離が生じたため、 ヘリウ ムガスの影響を受けない場所に設置できる外付けの Rb 原子時計(Stanford Research Systems 社製 PRS10 型 Rb 周波数標準器,以下「PRS10」という.)を2007 年に導入した. 2008 年には GPS 信号を受信して GPS 時刻に同期することで Rb 原子時計の中長期の周波 数安定度を改善した.また、2014年には、カタログ 値で 10MHz±0.0003Hz/月未満の長期安定度を持つ Chronos ルビジウム原子周波数基準発振器(米国 TIMELORD 社製)を導入した. Rb 原子時計の周波 数検定は、年度当初に VLBI (Very Long Baseline Interferometry; 超長基線電波干渉法) で用いる水素 メーザ周波数標準器の周波数比較で1波長のずれに 要する時間を測定して国土地理院が実施している.

FG5 では、マイケルソン干渉計の原理で距離と時 間を測定して重力値を求める (図-2). He-Ne レーザ が発射したレーザ光は、まず1/2λ波長板を通過する. 1/2λ 波長板は、入射光の偏光面に π=λ/2 の位相差を 与える光学素子で,波長板の軸に方位角 θ°の光が 入射すると、偏光面の電界の振動方向を 2×θ°回転 するため、レーザ光を物理的に回転させることなく 偏光面を回転できる.回転角は、レーザ光が方位角 45°で入射した場合に最大で90°となる.レーザ光 は続いてアイソレータ(レーザ光の反射による逆方 向の入射光を遮断してロックが外れないようにする 光学素子)を通過する.次にレーザ光はビームスプ リッタで強度の等しい二つのレーザ光に分けられ、 一方は光を検出すると電流・電圧を発生する受光素 子 (Avalanche Photo Diode, 以下「APD」という.) へ直接導かれ、もう片方は自由落下コーナーキュー ブ(以下「落体」という.)から参照用コーナーキュ ーブを経由して同じく APD に導かれる. 前者及び ビームスプリッタで分かれる前のレーザ光を参照ビ ーム,後者を試験ビームと呼ぶ.ここに自由落下コ ーナーキューブが落下すると, 落下に伴って試験ビ ームと参照ビームの位相が連続的に変化してフリン ジ(干渉編)が生じる.二つのビームの位相が一致 するとフリンジが最大(APDの出力が最大)に,位 相が逆になると打ち消し合って0(APDの出力が0) になる (図-3).

FG5 は, Rb 原子時計を用いて APD の出力が最大 となる時間を測定し, レーザ光の波長を距離の基準 として落体の落下距離 z と経過時間 t を測定する. 落体は,約20cm を 0.2 秒で落下し,その間に約600 組の Z と T の測定が得られる.これらの測定に,重 力鉛直勾配や光の速度などを補正し,式(1)から最 小二乗法により一回の自由落下の絶対重力値を求め る.なお,最適なフリンジ出力は APD に依存するた め,国土地理院では出力を 2016 年までは 300~ 400mV に,それ以降は 2.5~4.0V に調整しており, 範囲外にある場合は干渉計内部のミラーで調整する.

図-2 FG5 で用いるマイケルソン干渉計の概要

(2) 落下槽の排気

FG5 で測定した重力値は、落下槽内に空気が残っ ていると空気抵抗によって落下が遅くなり実際より 小さくなる.残留空気による抵抗は、物体が上昇す ると重力値を大きくし、落下すると小さくするため、 投げ上げ式の GA60 では上昇と落下で相殺されるが、 落下式の FG5 では残留空気の影響を極力除くため、 ターボ分子ポンプとイオンポンプを用いて排気を行 っている.槽内の気圧が大気圧に近い場合、ターボ 分子ポンプで空気の粗挽きを行う.また、槽内に水 蒸気がある場合は、槽を加熱し、水蒸気を蒸発させ る. 槽内の真空度が 3×10⁴Pa 以下に達したら, イオ ンポンプを用いて概ね 1×10⁴Pa 程度の真空度まで 排気する. イオンポンプは振動も騒音も生じないた め, 測定を妨げずに稼働でき, また, 12V 蓄電池で 電源供給することで槽内の真空度を保持したまま運 搬が可能で, 測定点に到着後に排気が不要なため, 作業の効率を改善できる. このほか, 残留空気の影 響をさらに取り除くため, 落体をドラッグフリー槽 (写真-1) という容器に格納して落下させている. 落体をこの容器ごと駆動ベルトで持ち上げ下方に加 速することで, 落体が浮き上がって容器との間に約 3mm の隙間が生じ, 残留空気の影響が除かれる.

写真-1 FG5の試験槽内部. 2003 年,製造元の技術者 によるメンテナンス中に撮影.

(3) 地盤振動の軽減

地盤振動は,重力測量の精度を劣化させる主要因 の一つで,特に絶対重力測定では可能な限り取り除 く必要がある.FG5は,固有周期30~60秒(カタロ グ値)の主スプリングと支持スプリングからなるス ーパースプリングを用いて地盤の振動を補償してお り,主スプリングの先端には支持容器に格納された 参照用コーナーキューブが吊り下げられている(図 -4).スーパースプリングは干渉計とは一体で設置す るが,落下槽で生じた振動が伝わらないように落下 槽とは分離している.支持容器は,サーボ機構を持 ち,支持容器の相対運動を装置底部の電磁コイルで 打ち消すことで地盤の鉛直方向の動きを補償する. なお,サーボ機能を効果的に稼働するには,測定時 の温度を一定に保つ必要がある.

図-4 スーパースプリングの模式図

(4) 干渉計と落下槽の鉛直性確保

距離の測定に用いる He-Ne レーザは,干渉計内部 のビームスプリッタで分離され,試験ビームは落下 槽内の落体へ進む.このレーザ光路が自由落下の方 向と一致しない場合,レーザ光の波長に見かけ上の ずれが生じて測定値に誤差を生じる.測定の際は, 干渉計と落下槽が接触しないように設置するが,干 渉計と落下槽を鉛直に設置してレーザ光路の鉛直性 を確保する必要がある.干渉計から入射する試験ビ ームと落体の落下の方向は,落下槽に備えられた気 泡管を合わせることで概ね一致させ,さらに精密な 調整のためにアルコールアライメントを行う(図-5).

図-5 アルコールアライメントの原理と干渉計内部. 望遠 鏡内部の光点(赤丸)を一致させる.

アルコールアライメントは、落体が落下槽の下に ある状態で干渉計の下部にアルコールを入れた容器 を設置して干渉計のWild望遠鏡を覗き、干渉計の脚 を調整して望遠鏡内に映った試験ビームと参照ビー ムの光点を一致させて試験ビームの鉛直性を確保す る作業である.調整は地盤動がない環境では容易だ が、日本では人間が感じない程度の人工的な地盤動 が頻繁に生じているため、振動によるアルコールの 揺らぎが望遠鏡内部の試験ビームの揺らぎを生じて 調整が困難になる.レーザ光路が自由落下の方向と ずれた場合、レーザ光の波長が大きく測定され、重 力の測定値は見かけ上小さくなる(図-6).

鉛直から θ 傾くとレーザ光の波長は概ね θ 大きく なるため、例えば、調整不足で約9秒の傾きが生じ ると測定値は約 1 μ Gal減少する.この誤差は、測定 中に継続する系統誤差となるため、アルコールアラ インメントの調整には、細心の注意が必要である.

(5) 測定方法

設置を確認した後,FG5 付属のソフトウェアで自動制御を行って絶対重力測定を開始する.制御には, 導入から 2003 年頃までは「Olivia」を用いたが,そ の後,「g」を用いている.「g」は製造元により度々 更新され,現在は Version 9.0 である「g9.0」を使用 して FG5 の制御と重力値の計算処理を行っている.

FG5 の測定では、ドラッグフリー槽の1回の落下 に約 0.2 秒,落下したドラッグフリー槽を駆動ベル トで持ち上げて次の測定が可能となるまでに約 2 秒 を要する.原理的には5秒に1回の測定が可能だが、 駆動ベルトの磨耗等による消耗や地盤動の影響を避 けるためには、経験上、一定以上の間隔を空ける必 要がある.導入時は落下間隔を 10 秒としたが、1996 年頃からは間隔を 15 秒,落下 160 回を 1 セットと して 40 分の連続測定を行った後、測定を 20 分間停 止して次のセットを開始する測定方法とした. 2001 年には、上記の測定方法で 24 セットを行った 24 時 間を 1 セッションとし、標準的な総観測数を 6 セッ ションと定めた基準重力測量作業規程(案)を整備 した.この規程(案)に従い、観測期間中の 7~10 日間に,約 20,000 回以上の有効落下数を得ている (吉田ほか,2018).絶対重力測定では,測定環境に よる地盤振動,地下水や降雨の影響など,現時点で 測定値から取り除くことが難しい様々な誤差要因が あるため,数多くの測定を統計的に平均化して誤差 を除いた絶対重力値を得ることを目的に,多くの測 定数を標準としている.

2.1.2 重力鉛直勾配を用いた重力値の化成計算

FG5 の約 20,000 個の重力データを用いて絶対重 力値を求める計算では,固体地球潮汐,極運動,大 気圧及び器械高は「g9.0」を,海洋潮汐は「GOTIC2」 (Matsumoto et al., 2001)を用いて影響を補正する.

さらに、補正後のデータに統計処理を施して最終的 な重力値を求める(吉田ほか、2018). その後、重力 値を物理的に参照可能とするため、重力鉛直勾配を 用いて基準重力点上に化成する.本項では、重力鉛 直勾配の測定について述べる.

(1) 重力鉛直勾配の概要

国土地理院が公表する重力値は、利用者が重力測 定の際に参照可能とするため、重力点の金属標上面 0.0mの値としている.一方、FG5の測定では、落下 槽の中に収められた落体の最高点(落下開始位置)、 すなわち基準重力点の直上約1.30mの高さでの重力 値が得られる.そのため、重力値を公表する際には、 重力値を基準重力点の金属標上面 0.0m に化成する 必要がある.正規楕円体がつくる正規重力は地球上 で一定と仮定され、重力鉛直勾配は、0.3086mGal/m となるが、実際の重力鉛直勾配は周囲の質量の不均 質を反映して重力点ごとに異なる.そこで、基準重 力測量では、主にスプリング式のラコストG型重力 計(以下「ラコスト重力計」という.)を用いて全ての 基準重力点上で重力鉛直勾配を測定している(写真 -2).

写真-2 ラコスト重力計による重力鉛直勾配の測定風景 (2003 年京都 C). 重力点直上 1.20m で観測.

(2) 重力鉛直勾配の測定方法と計算

重力鉛直勾配の測定は、2 台以上のラコスト重力 計を用いて重力計毎に 2 セット以上行う.1 回の測 定では、読定単位 0.001mGal で1 視準1 読定を 2 回 行って平均値を求める. 読定値の較差の許容範囲は、 0.010mGal である.この測定を下は基準重力点上の 0.00m,上は基準重力点を通る鉛直線の直上 1.20m で 行い、下→上、上→下の1 対回を 5 回で1 セットと して 2 セット以上を行う.また、下、上それぞれの 測定後には相対重力計の器械高を mm 単位で測定し、 フリーエア勾配で器械高を補正する.補正計算は、 後述の重力鉛直勾配計算プログラムで行う.

重力鉛直勾配には、地球潮汐補正を行う必要がある.国土地理院は、GA60で使用していた HP-BASIC 用プログラムを MS-DOS 用に改良した Fortran プロ グラムをもとに独自に開発、改修した「Gvg_dos12」 を計算に用いている.「Gvg_dos12」では、「TIDEG」

(Tamura, 1982)を用いて地球潮汐を補正し,相対重 力計に固有のスケールファクター(以下「SF」とい う.)を加味してセット毎の平均値と標準偏差を計算 し,最終的に1セットの測定回数と標準偏差を重量 とした平均値を基準重力点の重力鉛直勾配としてい る.

(3) 重力鉛直勾配の測定精度

基準重力点の重力値はラコスト重力計で測定した 重力鉛直勾配を用いて金属標上に化成するため、公 表する重力値の精度は、ラコスト重力計の測定精度 に依存する.カタログによる FG5の測定精度は、FG5 間の整合で 2µGal,確度は、振動が少ない場所での 測定では 3.75 分間で 1µGal とされている(山本ほ か、2018).一方、ラコスト重力計の1回の測定の精 度は 30µGal 程度で、絶対重力計と比較すると1桁 程度低い(宮原ほか、2018).

実際に,1995~2016年2月の間にFGSで実施し た重力鉛直勾配測定の平均値の標準偏差の度数分布 を図-7に示す.なお,地殻変動や火山に伴う重力変 化の検出を目的とした繰り返し測定は除く.

図-7 重力鉛直勾配の平均値の標準偏差分布(ラコスト重 カ計)

各基準重力点では、FG5の測定精度を可能な限り 維持するため、重力鉛直勾配測定の測定セット数を 定め、複数台のラコスト重力計の測定から重力鉛直 勾配を計算し、その値を用いて基準重力点の金属標 上面 0.0m の重力値を求めている. この測定には最 低1日を要し、目視による測定を繰り返すため大変 な労力を伴うが、図-7 では、半数近くが標準偏差 1µGal を超えており、FG5 の測定精度をラコスト重 力計の測定で維持することの難しさが分かる.

このように、基準重力点では FG5 の精度で測定し ても、ラコスト重力計の精度で得た重力鉛直勾配を 用いて重力点上 0.0m に化成するため、利用者が参 照する重力値の精度は数 µGal となってしまう.こ うした理由から、公表している基準重力点の重力値 は 0.01mGal 単位となっている.FG5 の測定精度を 維持した状態で重力値を基準重力点金属標上に化成 する手法及び機器の導入が課題である.

(4) 重力鉛直勾配が重力値に及ぼす影響

国土地理院が 1995~2016 年 6 月に実施した基準 重力測量では、7 点の基準重力点で3 回以上の繰り 返し測定を実施している.繰り返し測定において、 重力鉛直勾配の測定値のばらつきが重力値に及ぼす 影響を長岡 FGS の測定から見積もった.

表-1 に長岡 FGS で実施した 4 回の繰り返し測定 の結果を示す.長岡 FGS では,2004 年 8 月に基準 重力測量を実施した直後の 10 月に平成 16 年新潟県 中越地震が発生したため,翌5月に地震に伴う重力 変化の把握を目的に3回目の測定を実施した.重力 鉛直勾配の測定値は,2008 年 10 月の測定で最大, 2004 年 8 月に最少で,較差は0.2157µGal/cmである.

測定年月 測定値 標準偏差 備考 µGal/cm µGal 1997年9月 -3.0280 0.80 2004年10月 -3.0282 2004年8月 0.54 新潟県中越地震 2005年5月 2007年7月 -2.9596 1.97 新潟県中越沖地震 2008年10月 -2.8125 1.25

表-1

長岡 FGS の重力鉛直勾配

 2008 年 10 月
 -2.8125
 1.25
 新潟県中越沖地震

 一方, FG5 の器械高(干渉計の基準面から落体の 基準面までの高さ)は、機器毎に若干異なり、その 差は最大 3mm 程度である.また、各測定点で FG5 を設置する際、干渉計と落下槽を完全に分離するために三脚で落下槽を持ち上げることで生じる設置時

の差は最大 2mm 程度である. これらから, FG5 で は, 測定毎に絶対重力値の測定位置(高さ)に最大 5mm 程度の差が想定される.

設置時の測定位置に生じうる差 5mm によって重 力鉛直勾配の差が重力値に与える影響は,長岡 FGS の場合,±0.10785μGal となる.これは,FG5の測定 精度と比べて非常に小さく,同一点で重力の時間変 化を把握する場合は,FG5の測定精度を十分に生か した比較が可能であることが分かる.一方,長岡FGS で重力鉛直勾配を用いて重力値を測定位置から約 1.30m 下方の基準重力点の金属標上面 0.0m に化成 した場合,重力鉛直勾配の差が重力値に与える影響 は,28.041μGal となる.これは,FG5の測定精度に 対して無視できない大きさの誤差であるため,FG5 間で重力値を比較する際には,測定位置での値を用 いることが望ましい.

(5) 重力水平勾配の測定

絶対重力の測定中は基準重力点上に FG5 を設置 するため,基準重力点を出発点とする相対重力測定 はできない. そこで, 1995 年から現在まで, 測定中 には基準重力点周辺に仮点(Temporary Point,以下 「TP」という.)を設置し、TPと近隣の一等重力点 間の相対重力測定を行っている. TP と基準重力点間 の相対重力測定は、3 台のラコスト重力計を用いて 10 往復程度行い,重力計毎の重力差(重力水平勾配) を求めている (図-8). 図-8 の赤の FGS (A) では, 絶対重力の測定中には FGS (A) の上にラコスト重 力計を設置できないため、TP(A)を設け、近隣の GS (a) ~ (c) 及び FGS (B) の金属標直上で相対 重力測定を行う.次に,赤のFGS(B)で絶対重力を 測定する時は, TP (B) を設け, 近隣の GS (b), GS (c) 及び FGS(A)の金属標上で相対重力測定を行 う. なお, JGSN2016 の構築では, TP は, 一等重力 点と同様に独立した重力点として扱い網平均計算を 行っている(吉田ほか, 2018).

図-8 TPと基準重力点(FGS)との関係

2.1.3 FG5 の国内比較観測

(1) FG5 国際比較観測の目的と経緯

国土地理院の3台のFG5(#104, #201及び#203) は,機器固有の系統誤差を検証して絶対重力値の信 頼性を確保するため,相互比較観測によって国際観 測と整合性を確認している.絶対重力計の国際相互 比較観測は,1987年8月の第19回国際測地学・地 球物理学連合(IUGG: International Union of Geodesy and Geophysics)総会で構成組織の国際測地学協会 (IAG: International Association of Geodesy)が,絶対 重力計の従来の国際比較で判明した可搬型絶対重力 測定装置の系統誤差について誤差要因の調査の必要 性を認識したことを受け,1989年に BIPM が決議し た第3回の国際比較観測から始まった(IAG Resolutions,1987).国土地理院は当時,GA60を所有 していたため,1989年にIAGから参加要請があっ たが参加できず,日本からは国立天文台水沢観測セ ンターの可搬型絶対重力計の2号機が参加した (Boulanger et al.,1991).国土地理院は,1994年 BIPM と協議し,GA60及び FG5を BIPM へ輸送して国際 比較測定を実施した(山本ほか,2018).

(2) FG5 国内比較観測への呼びかけ

国土地理院は,絶対重力測定の国際標準との整合 性を確保する必要性は認識していたが,1994年以降 は絶対重力計の国際比較観測(ICAG: International Comparison of Absolute Gravimeters)に参加していな い.一方,目的や要求精度は異なるが,FG5を保有 する国内機関が増えてきたことから,地盤が安定し た場所で同時に複数のFG5が設置できる測定環境 として国民宿舎「つくばね」(茨城県石岡市,図-9) の第一小ホールを借用して,2002年2月,国土地理 院,東京大学地震研究所,京都大学大学院理学研究 科,産総研地質調査総合センターの4機関,5台の FG5を用いて初の国内比較観測を実施した.これを 契機に,国内のFG5保有機関の参加のもと,2015年 4月まで国内比較観測を継続した.

図-9 「つくばね」の位置(FG5 国内比較観測の会場)

比較観測の開始時には, ICAG に参加した FG5 が 比較観測に参加していなかったため,国土地理院は 2002 年 9 月,産総研質量力標準研究室において国土 地理院の FG5#104 と同研究室の FG5#208 の比較観 測を実施した.FG5#208 は FG5#213 とともに 2001 年の ICAG に参加している. 観測は, 地盤が軟弱で ノイズが大きい環境を考慮して主に週末に行い, FG5 の位置を入れ替えた測定は実施しなかったが, 2 回の比較測定の平均値の較差は 3μGal と良い整合 性が得られた. この測定を通じて間接的に ICAG と の整合性が確認された.

国内比較観測と ICAG の整合性の確認には,定期 的な比較が必要なため,2002 年 2 月以降も 2015 年 4 月まで年 1 回の国内比較観測を実施した.2005 年 からは,ICAG に参加した FG5#213 が国内比較観測 に参加し,ICAG との整合性を確認できるようにな った.FG5#213 は 2001 年 8 月,2005 年 9 月,2009 年 9 月及び 2013 年 11 月に ICAG に参加しており (Francis. O.et al., 2014), -3.7μGal 以内で国際比較参 照値と整合している.

(3) FG5 国内比較観測の方法

「つくばね」の国内比較観測では,第一小ホール (図-10)に5点の観測点A~E点を直線上に配置し, 各機関のFG5を重複しないように設置して,各点で 概ね24時間測定した後,順次FG5をほかの点に入 れ替え測定した.また,重力値の計算に用いた諸元 情報は表-2,測定重力値をA点に化成するための点 間重力差は表-3のとおりである.点間の重力差の推 定では,FG5間の器差が無視できないため,ほかの 4台のFG5を用いてA~E点で測定した重力値を用 いて,2002年2月の国内比較観測の際にFG5#104で 測定したA~E点の重力値を基準に,FG5間の器差と A~E点間の重力差を最小二乗法により推定して求め た(平岡ほか,2001;西ほか,2002).

表-2 「つくばね」国内比較観測の諸元情報

- A -					
位置情報	北緯:36度13分57秒(36.2325N)				
	東経:140度07分26秒(140.1239E)				
	標高:315m				
	※位置情報は 1/5 万地形図から読定				
データ	1 セットあたりの落下数 : 120 回				
取得設定	落下間隔:10秒				
	セット間隔:30分				
器械高の	床面直上 1.30m に化成(G118 の測定値)				
化成	重力鉛直勾配:-3.371µGal/cm				
固体潮汐δ	計算ソフト標準値				
ファクター	(ただし,永久潮汐については 1.0)				
	DC:1.000000, LONG:1.160000				
	Q1:1.154250, O1:1.154240				
	P1:1.149150, K1:1.134890				
	N2:1.161720, M2:1.161720				
	S2:1.161720, K2:1.161720				
	M3:1.07338, M4:1.03900				
気圧補正	アドミッタンス:0.3µGal/hPa				
	標準大気圧:975.98hPa				
	※標準大気圧は, IAG/IUGG 決議(1992 年)				
	による式				
	Pn= $1.01325 \times 10^5 \times (1 - 0.0065 \times$				
	H/288.15) ^{5.2559} hPa				
極運動補正	IERS Bulletin A				
海洋潮汐補正	Schwiderski 11 分潮				

表-3 観測点間の重力差

当下	A点との差	標準偏差
测量	/ µGal	/ µGal
В	-6.3	0.3
С	-13.2	0.3
D	-22.8	0.3
Е	-28.0	0.4

(4) FG5 国内比較観測の成果

2002 年 2 月~2015 年 4 月に測定に参加した FG5 と機関を表-4 に,全ての測定結果を表-13 に示す. 表-13 の重力値は,表-3 の点間の重力差を加味して A 点に化成した重力値である.また,参照値は測定 日における A 点の平均重力値で,偏差は平均値から の差を表す.当初は,偏差の平均が 5μGal 以上の FG5 が多いが,2004 年以降は,観測数や FG5 の台数が少 ない時期はあるものの,偏差の平均が 5μGal を超え る FG5 は少なく,各機関の FG5 は±5μGal 以内で整 合していることが確認できる.

次に, ICAG に参加した FG5#213 の測定平均値を 参照値とした,各機関のFG5の偏差を表-14に示す. 測定日により偏りはあるが,参照値と各 FG5の整合 性は良く,特段の器差等は見られない. 2009 年 4 月 では,表-13 に示した FG5#213 の偏差の平均が 5.7μGal と大きいため,表-14 では,ほかの FG5 の偏 差が大きくなっている.

表-4 国内比較観測の参加機関

重力計	保有機関名称
FG5 #104	国土地理院
FG5 #109	東京大学地震研究所
FG5 #201	国土地理院
FG5 #203	国土地理院
FG5 #210	京都大学理学研究科
FG5 #212	東京大学地震研究所
FG5 #213	産総研(計量標準総合センター)
FG5 #217	産総研(地質調査総合センター)
FG5 #241	東京大学地震研究所
A10 #017	九州大学工学研究院

図-11 に A 点の重力値の時間変化を示す. 当初 4 回の観測では±10µGal 程度ばらつくが,2004 年 4 月 ~2009 年 4 月の 5 年間は約 2µGal 以内で変化が小さ い. 重力値は,2009 年 4 月~2011 年 4 月の 2 年間に 12.8µGal 増加し,その後減少して最後の 2 年間は安 定している.重力値が急増した 2 年間には,平成 23 年(2011 年)東北地方太平洋沖地震(以下「東北地 方太平洋沖地震」という.)が発生している.

国内比較観測は 2002 年に開始され,2015 年 4 月 までの 14 年間に延べ 16 回,国土地理院を含む 5 機 関 6 部門,9 基の FG5 と 1 基の A10 型絶対重力計

(Micro-g LaCoste 社製,以下「A10」という.)が参加した.実施場所の「つくばね」第一小ホールは, 重力測定用の施設ではなく,昼夜間の気温差を避けるために空調に加えて窓ガラスに暗幕を付けて温度 管理を行う,アース棒を直接地中に埋め込み安定化 電源へ接地するといった措置が必要であった.一方, 宿泊が可能で,夜間の連続測定中も観測者が容易に 状況を確認できる利点もあった.

(5) 石岡測地観測局重力測定室

2016年4月以降は、国土地理院が茨城県石岡市に 整備した石岡測地観測局で絶対重力計の国内比較観 測を実施している.同施設には、6台のFG5を同時 に測定できる重力測定専用の基台を備えた重力測定 室が設けられている(図-12).

図-12 石岡測地観測局重力測定室見取り図

絶対重力測定に必要な Rb 原子時計の校正には, VLBI が用いる水素メーザ周波数標準器の信号を使 用できる.また,2015年5月に6つの基台の一つに 基準重力点金属標(石岡 FGS)を設置し,施設の屋 根の施工前に1日間のGNSS連続観測を,2016年4 月に VLBI 観測点を基点とする一等水準測量を実施 して正確な位置と標高を決定した.重力鉛直勾配は 2016年4月,ラコスト重力計2台(G-83及びG-118) を用いて測定した.こうした環境を活かして国内の 重力基準の整合性を確保するため,国土地理院は 2016年4月から石岡測地観測局で絶対重力計国内比 較観測を継続している.観測の緒元情報を表-5 に, 2016~2017年の比較観測の結果を表-15 に示す.

表-5 石岡測地観測局国内比較観測諸元情報

位置情報	北緯: 36度12分33秒(36.2092N)			
	東経:140度13分06秒(140.2183E)			
	標高:114.1953m			
データ取得設定	1 セットあたりの落下数:120回			
	落下間隔:10 秒			
	セット間隔:30分			
器械高の化成	基台直上 1.30m に化成			
	重力鉛直勾配:-3.6739µGal/cm			
固体地球潮汐補	WAHR-DEHANT-ZSCHAU/ ETGTAB			
正パラメータ/	計算ソフトの標準値 (ただし, 永久潮汐は			
計算プログラム	1.0			
気圧補正	アドミッタンス:0.0003mGal/hPa			
	標準大気圧:999.61hPa			
極運動補正	IERS Bulletin A			
海洋潮汐補正	Schwiderski 11 分潮			

2.2 相対重力測定

相対重力測定では,重力値自体は測定できないが, 2 地点の重力差が測定できる.水準測量と同様に, 相対重力測定も1番目の重力点から出発して複数の 重力点の間を往復測量する方法,環を形成して出発 点に戻る方法がある.相対重力測定では,*i*番目の重 力点の重力値 gi について, gi – g₁ は測定できるが, 測定を開始した点の正確な重力値 g₁ がわからない 限り gi を求めることはできない.相対重力測定は, 正確な重力値が得られている点を基準に,相対重力 計を使って点間の重力差を測定して重力値を求める 方法である.本節では,相対重力測定の機器,測定 方法及び検定について述べる.

2.2.1 機器と測定方法

(1) ラコスト重力計による一等重力測量

国土地理院は、JGSN75 構築後もラコスト重力計 (写真-3)を主力に相対重力測定を実施している. 1970年からは、一等重力測量で3台のラコスト重力 計を用いた測定方法を確立した. 1983年までの一等 重力測量は、複数の重力点を数日間かけて往復する 往復観測で行い, A→B→B→C→C→B→B→A (A は 基準とする重力点, B, C は観測点.)というように, 往観測と復観測が複数の観測日にまたがっていた. この方法では、点間の距離によらず作業期間が短縮 できる一方,往復で観測日や観測時間が異なるため, 時間の経過に伴うラコスト重力計のスプリングの短 期的な伸び(以下「ドリフト」という.)の量を把握 することが難しい.このため、1984年以降は、点間 の距離が長い路線では、一等水準点を路線に含めて 点間を短くし、1 日で往復できる路線を構成して一 等重力測量を行った. これは, A→B→C→C→B→A というように1日で基準点に閉塞する方法である. また折り返しの C 点では往観測と復観測の間で 60 分以上経てから観測を再開する方式とした. これに より、潮汐効果が異なるため往観測と復観測で独立 した観測結果が得られる。さらに、往観測と複観測 の観測時間がほぼ等しくなるように観測しドリフト を線形と仮定すると、往復を平均することで各読定 値に含まれるドリフト量は等しくなり、重力差を求 める際に読定値の差を取ることでドリフトを消去で きる. 測定は, 現在も同様の方法で行っている.

ー等重力測量は,1991年度に1回目の全国観測が 終了した.その後は,絶対重力測定の本格化に伴い, 基準重力点と一等重力点の往復観測で重力網を維持 する測定方法となった.FG5による定常的な絶対重 力測定を開始した2000年からは,基準重力測量と 同時に一等重力測量を計画的に行い,2007年に1回 目の観測を終了するまで8年間に延べ140点で一等 重力測量を実施した.2007年以降については,維持

管理を含め第3章で述べる.

写真-3 ラコスト重力計(手前)と運搬ケース(奥)

(2) ラコスト重力計による二等重力測量

二等重力測量では, 1~2 台のラコスト重力計を用 いて, 読定を1観測2回に減らすことで1日の測定 点を増やし、1983年の北海道地方の作業を最後に全 国の一・二等水準路線での二等重力測量が終了した. また 1970 年頃からは、重力測量の空白域を補うこ とを目的に、三角点で重力測量を実施した.測定点 は, 天測点を中心に半径がそれぞれ3km未満に6点, 3~7km 未満に7点,7~16km 未満に8点,その他 の地域では 100km² に 1 点の密度で選定した. 観測 は,一等重力点から三角点を数点経由して一等重力 点に戻る片道観測で行った. 1976年頃からは、国内 の重力測定点の空白域をできるだけ少なくするため, 経度 6 分,緯度 4 分のメッシュ(北海道は経度 7.5 分,緯度5分.ただし片道3時間以上を要する地域 は除く.)に1点以上の密度で測定を行って重力デ ータを蓄積し、重力ジオイドの作成に活用された. また、離島・島嶼部でも二等重力測量を行い、1978 年頃から離島での作業を「海上重力測量」とした. その後,1994年の長崎県対馬を最後に,離島及び空 白域の高密度化を目的とした重力測量は終了した. なお,二等重力測量については,第3章で補足する.

(3) SCINTREX 社製重力計による相対重力測定

国土地理院は、JGSN75 を構築以降,全ての一等・ 二等重力測量をラコスト重力計で実施している.一 方,1987年,カナダの SCINTREX 社が相対重力計 CG3(以下「CG3」という.)を開発した.CG3は、 電源を投入すれば自動測定し、内部メモリにデータ を記録することができる.パネル操作一つで、1 秒 ごとにデータを測定し、内蔵メモリに記録したデー タを外部出力できるうえ、衝撃に強く、クランプ(移 動時などにスプリングを固定する操作)が不要で、 携帯性もラコスト重力計と遜色がない. CG3 では、 融解水晶のスプリング錘を吊るし、錘の変位を可変 容量センサーで検知して錘の位置を常に一定にする ことで、そのフィードバック電圧をデジタル信号に 変換した測定値を内蔵メモリに記録し、同時にディ スプレイに表示する.測定間隔は1秒単位で設定可 能で、設定した測定時間が経過すると測定平均値と 標準偏差を計算する.測定レンジは約7,000mGal と ラコスト重力計と同じく地球上の重力差を網羅でき る.

1991 年 10 月,国土地理院は,器差等の重力計の 課題の検証,測定の信頼性の向上を目的に,CG3 を 試験的に導入した.導入当初のCG3の分解能は0.01 mGal であったが,1993 年 1 月,ソフトウェアのバ ージョンアップで0.005 mGal に向上した.一等重力 測量作業で実施したラコスト重力計との比較試験観 測の結果は以下である(都筑・山本,1993),

- 1)20 路線のうち1路線で往復差の制限(0.05 mGal) を超過. ラコスト重力計と有意な差はない.
- ドリフト量は 0.017 mGal/時間で、ラコスト重力 計の約5倍.
- 3) 測定精度は平均 0.0094 mGal で、ラコスト重力計 3 台 (0.0056~0.0094 mGal) より若干低い.

CG3 は、分解能が 0.005 mGal と低いため、重力測 量に使用せず、南極観測用には 2 台の CG3-M(分解 能 0.001 mGal)を購入し、南極地域の相対重力測定 に使用したが、一等重力測量での使用実績はない.

2006年3月, CG3-Mの機能強化機種である CG5 (分解能 0.001 mGal. 測定レンジ 8000mGal, 記録容 量は 4MB, フィードバック電圧信号(6Hz)の出力 可能など,(写真-4))を2台購入し, 南極地域の相 対重力測定のほか,国内の一等重力測量や重力計検 定作業で試験的に使用している.CG5は,自動測定 ができることから,ラコスト重力計と比べて測定技 術の習熟を要せず観測者の負担が軽減できるが,稀 に測定値が安定せず,再測定が生じる問題がある. 2015年の筑波山点検線での検定作業から,この原因

2013年の現版田点棟線での横定作業から、この原因 が CG5 の内部恒温槽の温度の低下にあり、さらに温 度低下は、電源供給用の二つの内部蓄電池の切り替 えが機能しない時に生じやすいことが判明した.そ こで、2016年2月、紀伊半島地区において、ラコス ト重力計1台に替えて CG5 (No.3000900049)を使 用した一等重力測量を実施した.その結果を表-6に 示す.測定は、60秒サンプリングを1測定とし、1 観測点で3測定を実施した.22路線のうち、人工振 動が激しい1路線では測定値がばらついて観測でき ず、1路線ではテア(スプリングの不規則な変化) が発生し往復差が 0.05mGal を超過した.残りの 20 路線は、ラコスト重力計 2 台の平均重力差と比べ、 較差は最大 0.033mGal、最小-0.001mGal と良好な整 合性を得た.観測の最終日には、筑波山点検線と同 様に、CG5 の内部温度(単位 mGal/deg:MK)が不安 定となり、1 測定の較差が作業規程(案)で定める 制限 0.01mGal を超過して 3 観測点で 10 回程度の再 測が発生した.図-13 に、再測時の重力値と内部恒温 槽温度の関係を示す.

写真-4 CG5による測定風景

図-13 重力測定値と CG5 器械温度(地球潮汐は補正済)

観測日 2016年	重力計 観測点	G-83	G-118	CG5	平均值	較差①	較差②
02/16	基41→9220	-1.758	-1.767	-1.765	-1.763	0.009	-0.002
02/10	9220→9217	-5.278	-5.269	-5.283	-5.277	0.014	-0.010
	古座(付)→4987	14.377	14.390	14.374	14.380	0.016	-0.010
02/17	4987→4989	2.149	2.110	2.107	2.122	0.042	-0.023
	4989→基41	-1.334	-1.309	-1.289	-1.311	0.045	0.033
	基33→和歌山GS	0.683	0.688	0.689	0.687	0.006	0.003
02/18	和歌山GS→交271	-0.301	-0.307	-0.308	-0.305	0.007	-0.004
	交271→和歌山(付)	-18.558	-17.322	-17.304	-17.313	0.018	0.018
	奈良GS→1399	-1.354	-1.364	-1.345	-1.354	0.019	0.014
02/19	1399→1402	18.758	18.733	18.739	18.743	0.025	-0.006
	1402→京都加茂(付)	-1.290	-1.287	-1.296	-1.291	0.009	-0.008
02/20	4770→4771	-0.959	-0.955	-0.901	-0.957	0.004	/
02/20	4771→尾鷲(付)	-0.690	-0.698	-0.689	-0.692	0.009	0.005
	167-037→167-033	2.464	2.366	振動大		/	/
02/24	167-033→鳥羽GS	5.694	5.709	5.700	5.701	0.015	-0.001
	鳥羽GS→鳥羽(付)	-5.503	-5.497	-5.511	-5.504	0.014	-0.011
	1483→津GS	0.388	0.369	0.411	0.389	0.042	0.033
02/25	津GS→1446	-0.609	誤記	-0.632	-0.621	0.023	-0.023
	1446→津(付)	1.977	誤記	1.983	1.980	0.006	0.006
	岐阜GS→交185	1.061	1.072	1.048	1.060	0.024	-0.019
02/26	交185→185-1	-0.169	-0.160	-0.150	-0.160	0.019	0.015
	185-1→岐阜A(付)	-3.630	-3.626	-3.656	-3.637	0.030	-0.028

表-6 CG5(No.3000900049)を用いた紀伊半島地区の一等重力測量の平均計算(単位: mGal)

※ 斜線は、テアのために除外した測定.平均値は、重力計3台の平均値. 較差①は、重力計3台の最大値-最小値. 較 差②は、ラコスト重力計2台の平均値とCG5の差.

測定開始直後に温度が上昇すると、測定重力値も 0.01mGal を超える幅で同様に上昇を続け、内部温度 が-3.0℃を超えて上昇幅が小さくなると、測定重力 値も 0.01mGal 程度の範囲で安定した. CG5 の内部 温度が安定するまでには 15 分以上を要した. 内部 温度が不安定になる原因は特定できていないが、こ うした不安定な測定値は採用できず、CG5 を使用す るのであれば、引き続き CG5 の特性を調査して理解 する必要がある. 表-6 が示すように、CG5 は、安定 時にはラコスト重力計と同程度の結果が得られるう え、サンプリング周波数 6Hz の内部データ 4 成分 (重力、傾斜2 成分、内部温度)を記録、出力でき るので、測定時に高周波の重力データを連続して記 録・蓄積し解析することができる.

2.2.2 重力値の計算

相対重力測定の読定値には、補正が必要である. まず、製造元が提供する SF の定数表(図-14)を使い、読定値を重力差に換算する.

また, 読定値を測定点上の値に化成するための器 械高補正, 読定時の大気圧補正及び固体・海洋潮汐 補正を行う. 補正後の値から地点間の重力差を計算 する際に, 往復測定に要した時間からドリフト量を 推定し補正する. これら一連の処理は, 国土地理院 が開発したプログラムを用いて行う.このほか,テ アの処理や器械間の重力差の整合性の確認などを行 い,点間の重力差を決定している(吉田ほか,2018).

	MILLIGAL	VALUES FOR	LACOSTE & RC	MBERG, INC	. MODEL G GRAV	ITY METER
c	OUNTER	VALUE IN	FACTOR FOR	COUNT	R VALUE IN	FACTOR FOR
R	EADING*	MILLIGALS	INTERVAL.	READIN	MG* MTLLTGALS	TNPPPVAT.
				10211012	i interestingo	A41 5 101 1 101
	000	000.00	1.02151			
	100	102.15	1.02137	3600	3680.18	1.02430
	200	204.29	1.02129	3700	3782.61	1.02441
	300	306.42	1.02123	3800	3885.05	1.02452
	400	408.54	1.02122	3900	3987.50	1.02462
	500	510.66	1.02122	4000	4089.97	1.02471
	600	612.78	1.02123	4100	4192.44	1.02480
	700	714.91	1.02125	4200	4294.92	1.02488
	800	817.03	1.02129	4300	4397.40	1.02498
	900	919.16	1.02134	4400	4499.90	1.02506
1	000	1021.30	1.02140	4500	4602.41	1.02514
1	100	1123.44	1.02147	4600	4704.92	1.02522
1	200	1225.58	1.02153	4700	4807.44	1,02531
1	300	1327.74	1.02159	4800	4909.98	1.02538
1	400	1429.90	1.02166	4900	5012.51	1.02546
1	500	1532.06	1.02173	5000	5115.06	1.02552
1	600	1634.23	1.02182	5100	5217.61	1.02558
1	700	1736.42	1.02191	5200	5320.17	1.02562
1	800	1838.61	1.02201	5300	5422.73	1.02565
1	900	1940.81	1.02213	5400	5525.30	1.02567
2	000	2043.02	1.02226	5500	5627.87	1.02567
2	100	2145.25	1.02239	5600	5730.43	1.02567
2	200	2247.49	1.02252	5700	5833.00	1.02566
2	300	2349.74	1.02265	5800	5935.57	1.02565
2	400	2452.00	1.02278	5900	6038.13	1.02563
2	500	2554.28	1.02290	6000	6140.69	1.02562
2	500	2656.57	1.02303	6100	6243.26	1.02557
2	700	2758.87	1.02316	6200	6345.81	1.02547
2	300	2861.19	1.02329	6300	6448.36	1.02536
2	900	2963.52	1.02342	6400	6550.90	1.02522
3	000	3065.86	1.02355	6500	6653.42	1.02507
3.	100	3168.22	1.02368	6600	6755.93	1.02503
3.	200	3270.58	1.02381	6700	6858.43	1.02475
3.	300	3372.97	1.02393	6800	6960.90	1.02458
31	100	3475.36	1.02406	6900	7063.36	1.02438
3	500	3577.76	1.02418	7000	7165.80	
*13	ote: Righ	t-hand whee	l on counter	indicates	approximately	0.1 milligal
03	3-03-1994					
DI	LP.					
R	ading Lin	e: 2.50 Ter	perature: 5	3.7 C		
	411.4	- + - / / -		-		
14	製造え	τ提供σ)定数表	の1例. 岩	除禰毎に	100mGa

CALIBRATION TABLE FOR G-1049

2.2.3 相対重力計の検定

相対重力計はスプリングに固有の誤差である SF があるため、ラコスト重力計では製造元から定数表 が与えられている.この影響は、重力差の大きい測 定点間の測定では測定精度を大きく超えるため、ラ コスト重力計を保有する機関では、正確な補正量を 求めることが重要な課題である(中川ほか、1977).

(1) 東京一柿岡(筑波)検定線

国土地理院は 1988 年まで,年度当初に東京-柿 岡間及び柿岡-筑波山間の重力検定線で主に SF の 決定を目的に検定作業を実施した.路線は,東京 GS -火の見(千葉県松戸市)-三等三角点青山(千葉 県我孫子市)-八坂神社(茨城県牛久市)-柿岡 GS (-筑波 GS,国土地理院のつくば市移転後に追加), 柿岡 GS-柿岡地磁気観測所-つつじが丘-一等三 角点筑波山の2路線で,東京 GS-柿岡 GS(-筑波 GS)間では 1988 年まで毎年実施した(図-15).

この検定線の重力差は約200mGalで,緯度や標高 の差ではなく関東地方の重力異常分布から生じてい る.国内で観測できる最大の重力差約1,700mGalに 対して,検定路線の重力差は僅かであるが,一・二 等重力測量の際に1日の測定で得られる重力差は概 ね200mGal以内であるため,検定には十分である. また,複数のラコスト重力計を使用して重力差を求 めて結果を比較することで相対的に定数の誤差を見 積もることが可能で,この重力検定線による検定作 業は,一等重力測量にとって有用であった.

図-15 ラコスト重力計の検定路線

(2) 日本検定線

国土地理院は、1989年、国際重力網と結合した国

内重力網の確立を目的に,GA60 を用いて北海道か ら沖縄まで全国 10 点の絶対重力値を決定し,全国 を縦断する「日本検定線」を設定した(図-16).

図-16 GA60による基準重力点及び日本検定線

1992年までの4年間に、延べ7回(1989年は全国 を1回、それ以降は東日本と西日本に分けて毎年実 施)の検定作業を実施した.検定では、測定データ に対して、 δ ファクター1.20とした理論潮汐補正、 線形ドリフト補正及び器械高補正を行い、GA60で 測定した絶対重力値からSFを求めた.表-7に、各 年の測定から求めたSF示す.なお、SFは、基準重 力差=f×測定重力差+bの式で表すモデルを用いて 推定した.ここでfはSF、bは観測点における測定 の系統誤差である.テアの推定は、年によって異な る.

表-7 から G118 及び G223 では 1×10⁻⁵ の精度で安 定した SF が推定されたことが分かる. G553 及び G554 は,検定の間に重力計の修理を実施しており, 修理の前後に 1×10⁻⁴程度の有意な差が生じたが,そ の後に 1×10⁻⁵程度の再現性を示した. 修理を実施し た重力計では SF が変化するため,新たに SF を決定 する必要があり,後述の筑波山検定線で点検を行っ て SF を求めて重力測量に使用している.

検定では、羽田 GS-千歳 GS 間,伊丹 GS-鹿児 島空港-那覇空港間は航空機,それ以外は自動車で 重力計を輸送した.長距離の輸送に伴い重力計によ ってはテア等が発生し、これをモデルで除去、補正 したが年度毎にばらつきが大きい.航空機輸送時の 気圧応答,自動車による輸送,周期誤差等が原因と

表-7 日本検定線で求めたファクター(1989~1992年)

重力計	測定年 定数	1989年	1990年	1991年	1992年
G83	1.00221 ^{%1}				1.002154 ± 7.3×10 ⁻⁵
G118	1.00254	1.002607 ± 1.0×10 ⁻⁵	1.002695 ± 2.7×10 ⁻⁵	$1.002652 \pm 2.5 \times 10^{-5}$	
G223	1.00300	$1.000312 \pm 0.6 \times 10^{-5}$	1.000390 ± 2.4×10 ⁻⁵	$1.000372 \pm 2.2 \times 10^{-5}$	
G553 ^{%2}	1.00059		$1.000709 \pm 2.7 \times 10^{-5}$	1.000803 ± 2.1×10 ⁻⁵	1.000817 ± 1.8×10 ⁻⁵
G554 ^{%2}	1.00057		$1.000505 \pm 2.8 \times 10^{-5}$	1.000308 ± 1.7×10 ⁻⁵	1.000394 ± 2.3×10 ⁻⁵
G564	1.00048	1.000400 ± 1.6×10 ⁻⁵	$1.000359 \pm 4.8 \times 10^{-5}$		
G590			1.000526 ± 12.4×10 ⁻⁵		
CG3 ^{%3}				$1.000089 \pm 3.4 \times 10^{-5}$	1.000506 ± 3.9×10 ⁻⁵

※1:修理前の SF は 1.0005,修理後は筑波山点検線の値を暫定的に使用.

※2:1989~1990年に修理を実施後,1990年の測定を実施。

※3:1992年の東日本の観測後にバージョンアップしたため、西日本の測定値のみを使用.

考えられるが、航空機への重力計の持ち込みの際の 特別料金など、経費が高く、国内で測定する重力差 であれば、SFを日本検定線から個別に求めずとも、 網平均計算の中で最小二乗法により推定すれば必要 な精度が得られることが判明したため、現在は、日 本検定線によるSF決定の作業は行っていない.1992 年以降は、2009年に南極観測に携行したCG5を除 き、日本検定線でSFを決定する作業は実施してい ない.

(3) 筑波山点検線

日本検定線でSFの決定作業を行っていた1989年 4月,国土地理院は従来の東京一柿岡間の検定路線 に代わる新たな「筑波山点検線」を設定した(図-17). 1~9の各測点に直径約3cmの真鍮製の鋲を設置し, 10は一等三角点「筑波山」とした.点検線の重力差 は,1989年4月,1990年2月,同年4月,1991年 1月,同年4月の計5回の測定によって定め,5回の 測定値から点間の重力差を計算して,1993年6月に 筑波山点検線の重力差を決定した.

測定は5台のラコスト重力計(G118,G223,G553,G554 及びG564)で行い,G83は多くの観測で往復差が0.05mGalを超えたため,計算から除いた.計算では、δファクターを1.20とした理論潮汐補正とフリーエア勾配を使用した器械高補正を行った.一方、複数の測定において、線形ドリフト補正を行った際に、点間の標準偏差が大きくなり、テアが発生した可能性の高いことが示唆されたため、ドリフト補正は行っていない.その代わりとして、重力差を往と復の片道観測に分けて隣接測点間の重力差を求めた際に、重力計毎の標準偏差が0.01mGalを超える測定値については、テアなど大きな乖離が生じたとして除去した.また、重力計のSFは、前述の日本検定線で1989~1990年に実施した検定から求めた表-8の値を使用した.

図-17 筑波山点検線位置図

こうして算出した重力計毎の点間の重力差から重 力計の標準偏差を重量として平均値を計算し,筑波 山点検線の重力差の成果(表-9)とした.なお,この 重力差は2018年3月現在も使用している.

(4) 筑波山点検線の検証

筑波山点検線は,現在も年度当初の重力計の点検,

ラコスト重力計の修理後の点検に使用しているが, 成果を定めてから 23 年が経過したことから,2007 ~2013 年の結果(図-17 の 1,3,7及び 8 の 4 点) を用いて,筑波 FGS とつくばね C 点の絶対重力値 を基準とした重力網平均計算を行って値を検証した (表-10).網平均計算による重力値は,従来の成果 と比較して絶対値で最大-0.016mGal の差を生じた が,相対的な重力差に大きな差はなく,この点検線 が点間重力差の検定を目的とした路線であることを 考えると実用に十分な精度で,これまでの検定は妥 当であったと言える.しかし,表-10の値は筑波 FGS のみを基準に求めたため,JGSN2016 との整合が確 認できておらず,今後は,JGSN2016 に準拠した絶対 重力値による成果の構築が課題である.

表-8 筑波山点検線で用いた重力計の SF (スケールファ

クター)

重力計	スケールファクター(SF)
G118	$1.002683 \pm 2.2 \times 10^{-5}$
G223	$1.000368 \pm 2.2 \times 10^{-5}$
G553	$1.000709 \pm 2.7 \times 10^{-5}$
G554	$1.000505 \pm 2.8 \times 10^{-5}$
G564	$1.000386 \pm 3.7 \times 10^{-5}$

測点名	重力差(mGal)	標高(m)			
1 宝安寺	0.000 ±	28			
2 三角点下	-7.819 ± 0.003	75			
3 鳥居	-15.912 ± 0.005	115			
4 火の見	-26.269 ± 0.005	165			
5 駐車場	-41.974 ± 0.009	242			
6 道路東側下	-54.855 ± 0.009	310			
7 料金所	-76.325 ± 0.010	415			
8 つつじが丘駅	-100.997 ± 0.011	530			
9 女体山駅	-174.386 ± 0.014	825			
10 一等三角点	-191.277 ± 0.015	876			

表-9 筑波山点検線成果表

2.2.4 相対重力計の気泡管の調整

ラコスト重力計の錘の動きは、アイ・ピースを覗 いた際にクロスヘア(図-18の太い黒線)の動きとし て観察できる.国土地理院は、クロスヘアを用いた 眼視法と呼ばれる測定方法で測定を行っている.ア イ・ピースの視野内には、目盛りが付され、測定ダ イアルを一定方向に回してクロスヘアを重力計毎に 定められた目盛り線(Reading Line,以下「R.L.」と いう.)に合致させ(図-18)、合致したカウンターの 数値と測定ダイアルの数値から値を読み取る単純な 操作で測定を行う.そのため、ラコスト重力計の測 定精度は、錘に取り付けられた梁と R.L.の測定時の 状態で決まる.

図-18 アイ・ピースの視野内. R.L.=2.7 の場合, 測定ダ イアルを回してクロスヘアの左端を R.L.の 2.7 に 合致させる.

図-19 にラコスト重力計の概略図を示す. ラコス ト重力計は,重力計を水平に設置するためにロング レベルとクロスレベルの二つの気泡型水準器を持ち, 測定は調整ノブを用いて重力計を水平に設置してか ら開始する.二つの気泡型水準器の気泡を予め正確 に調整しておくことで,二つの気泡を中心に合わせ, クロスヘアを決められた R.L. に合わせる作業によ ってラコスト重力計の錘に取り付けられた梁と目盛 り線を一つの水平面上に設置することが可能となる. この事前の調整が十分でないと測定誤差を生じる (志知, 1985).

表-10 筑波点検線の重力網平均計算結果(筑波 FGS 及びつくばね C 点を固定)

上々	網平均計算結果	①点間重力差	②従来の重力差	1-2
「泉谷」	[mGal] ^{%3}	[mGal]	[mGal]	[mGal]
筑波FGS ^{※1}	979951.222			
1:宝安寺	979961.146	0.000	0.000	0.000
3 : 鳥居	979945.218	-15.928	-15.912	-0.016
7:料金所	979884.826	-76.320	-76.325	0.005
8:つつじが丘	979860.134	-101.012	-100.997	-0.015
つくばねTP	979906.398			
つくばねC ^{※2}	979906.334			

※1:重力値は JGSN2016 の値(吉田ほか, 2018).

※2:2014 年の国内比較観測の平均値(FG5#104, #213). C 点直上 0.0m への化成には重力鉛直勾配−3.371µGal/cm を 使用.

※3:網平均計算ではSF(スケールファクター)を推定.

図-19 ラコスト重力計の概略図(上面から見た場合)

図-20 にラコスト重力計の内部模式図を示す. X 軸 及び Y 軸は水平面, Z 軸は鉛直方向を示し, ラコス ト重力計の筐体の各方向は「'」を付して示す.

 θ_{o} を最適姿勢におけるオフセット角とし, Y'軸は 錘の回転軸と指定された R.L. を結ぶ方向, OQ 方向 とする. ロングレベル方向に θ_{s} , クロスレベル方向 に水平から ϕ_{s} だけ傾いているとし, ψ_{s} は錘が水平 面からずれている角とすると, 式 (9) が成り立つ.

$$\psi_{\rm s} = \theta_{\rm s} - \theta_{\rm o} \tag{9}$$

 ψ_{s} は重力計のロングレベル方向の設定誤差になる. 一方, クロスレベルの気泡を用いて重力計を設置した際に, 重力計の筐体がクロスレベル方向に ϕ_{s} だけ傾いていた場合, ϕ_{s} はそのまま重力計のクロスレベル方向の設定誤差になる. この時, アイ・ピースの中で観察されるクロスへアは, 錘が測定した

い*g* ではなく、その分力である*g*"で釣り合った状態になる.そして錘の回転軸は OX'ではなく OX となる.ラコスト重力計には衝撃緩衝バネがあるため、 重力計が傾いても回転軸が OX'に固定されない. ϕ_s が十分に小さい場合、支点 O、P 及び Q は、ともに 一つの鉛直面内に設定されるため、図-20 のように 設定された重力計の姿勢では、*g*"を測定してしま い、*g* と*g*"の差が測定誤差 Δg_s となる.この関係は 式 (10)、式 (11) で表され、添字 s を省略して Δg を 式 (12) で表す.

$$g' = g\cos\theta_{\rm s} \tag{10}$$

$$g'' = g' \cos \psi_{\rm s} = g \cos \phi_{\rm s} \\ \cdot \cos(\theta_{\rm s} - \theta_{\rm o}) \tag{11}$$

$$\Delta g = \frac{1}{2}g[\phi^2 + (\theta - \theta_0)^2]$$
(12)

式(12)は、実際に測定される測定値が、本来測 定されるべき真の測定値に対してどれだけ小さくな るかを表している.式(12)をロングレベル及びク ロスレベル方向毎に表すと、式(13)及び式(14) となる.

$$\Delta g_{\phi} = \frac{1}{2}g\phi^2 \tag{13}$$

$$\Delta g_{\theta} = \frac{1}{2}g(\theta - \theta_{\rm o})^2 \tag{14}$$

国土地理院では、1987年度当初から、人工ノイズ が少ない筑波山麓で志知が考案した検定台(志知、 1985)を用いてラコスト重力計の気泡管の検定を行 っている.また、相対重力測定測量では、常に検定 台を携行し、測定した重力差に疑義が生じた場合等 に作業地で検定を行っている.検定台はアルミ製で、 ラコスト重力計を載せる台と、台を傾けるためのマ イクロメーター付きの支え棒に分かれる(写真-5).

写真-5 ラコスト重力計検定台 (アルミ製). 重力計を載 せる台 (左) 及び傾斜台 (右, 先端はマイクロメ ーター). 傾斜台は分離が可能.

マイクロメーターの1目盛は、ラコスト重力計に 1 秒角(約 5×10⁻³mm/m)の変化を与える. 検定はク ロスレベル、ロングレベルそれぞれ行う、最初に、 重力計を検定台に載せ、マイクロメーターの目盛 0 で重力計の気泡管の気泡が中心となるよう設置する. その後、重力計には触れず、マイクロメーターを1 目盛ずつ回して重力計を傾け,読定を繰り返す.図 -21 に 2007 年 4 月に行った G553 のクロスレベル検 定の結果を示す.赤線はクロスレベル調整前の読定 結果で、気泡管の気泡が中心にある時に重力計の読 定値は最小、マイクロメーターが 60 の時に最大と なり、その後減少している. 放物線は式(14)の曲 線で、放物線の中心軸と気泡管の気泡の中心が一致 するのが正しい設置状態である. 図の赤線では,一 致が悪いため、調整が必要である.調整は、読定値 が最大となった位置で、クロスレベルの調整口のカ バーを開け、気泡管の六角ネジを用いて気泡が中心 となるよう行う. 青線は, 調整後の検定の結果で, クロスレベルの気泡が中心にある時、読定値が最大 で放物線の中心軸と一致している.

図-21 ラコスト重力計 G553 のクロスレベル点検調整グ ラフ.赤がクロスレベル調整前,青が調整後.

ラコスト重力計の気泡管の1目盛は,約60秒角 (0.3mm/m)に相当し,これは工作用水準器と同程 度で測量用には十分でない.さらに気泡管の気泡の 幅は温度変化するため,これらの特性を理解して測 定を行う必要がある.また,実際のラコスト重力計 のクロスへアは,重力計毎に見え方が異なり,端が ぼける,濃さが一定でないなど,図-18のように鮮明 ではないため,重力計毎の特性を理解して観測者が 最も測定しやすい R.L. とクロスへアの合わせ方を 定めることで高精度な測定を実現している.

3. 国土地理院の重力インフラ

3.1 重力点

国土地理院は、2016 年 3 月現在,基準重力点 32 点及び一等重力点 62 点,計 94 点を設置して重力点 の維持管理を行っている(図-22).基準重力点は, 概ね 200km 間隔で,地盤が堅固な,交通,波浪等に よる地盤振動が少なく,高さの変化が把握しやすい 場所に設置している.また,基準重力測量では,基 準重力点上に FG5 を設置するため,十分な空間と電 源の確保が必要で,温度管理が可能な室内に選定す る.一方,一等重力点は,概ね 100km 間隔で全国を 網羅するように配置している.基準重力点と同じく 安定した場所に設置しているが,相対重力測定に必 要な空間は小さく,また屋外でも測定は可能である.

写真-6 一等重力点の形状. 写真上: 箱根 GS. 1959 年設 置. 写真左下: 松代 GS. 1984 年設置. 写真右下: 名古屋 GS. 2013 年設置. いずれも 2015 年撮影.

国土地理院は、1952年に重力測量を開始するとと もに重力点(写真-6)の設置を開始した.設置開始 当初は,点間距離や設置密度などに基準はなかった. また,重力点は,現在は測量法施行規則第一条に定 める金属標であるが,当初は中心に突起がある金属 標が主流で,箱根 GS(富士屋ホテル特別展示室内) など国際的に登録された重力点では特別な金属プレ ートが設置されている.さらに1955年に中央気象 台長(現気象庁長官)から国土地理院に測候所の高 さと重力の測定が要望されたことを受け,一等重力 点の多くは,地方気象台,測候所等の地震計室に設 置している.このほか,大学の要請を受けて大学の 施設内に設置している.

国土地理院の一等重力測量では,正標高の算出を 目的として重力点以外に一等水準点等で測定を実施 している.また,二等重力測量では基本基準点(三

図-22 国土地理院の基準重力点(FGS 32 点)及び一等重力点(GS 62 点)の配点図(2016 年 3 月現在)

角点及び水準点),公共基準点等で測定を実施した. こうした既存の基準点を用いた重力測量では,延べ約 19,000 点(1967 年からラコスト重力計で測定した点数)の基準点で測定を実施した.これらは,主に陸域の高密度な重力分布の把握を目的として二等重力測量で実施された.これにより,高密度な重力分布が把握され,空間補間を用いて任意の場所で機器校正等に実用上十分な精度で重力値の推定を行う重力値推定計算サービスの提供が可能となった.

(https://vldb.gsi.go.jp/sokuchi/gravity/calc/gravity.pl) さらに、重力ジオイドを計算する際の重力データベ ースに利用されたほか、重力異常の計算に用いられ、 日本重力異常図(余色立体図)(国土地理院技術資料 B1-No.28, 2000)等の提供に貢献した.

3.2 重力点の維持管理

基準及び一等重力点の設置場所は、測定環境の安

定性,効率的な測定を可能とするアクセスの良さ, 長期運用を可能とする安定貸与などから決めている が,多くの一等重力点は,気象庁や大学など重力値 を必要とする機関の要請を受けて設置してきた.気 象庁では液注型水銀気圧計の機器校正,大学では 様々な測定の基準に重力値を必要としていたが,国 土地理院が2000年に重力値の推定計算サービスの WEB 提供を開始したことで,機器の校正に必要とな る程度の精度であれば,任意の地点の重力値を簡単 に推定できるようになったため,重力点の設置が必 須でなくなった.さらに,1996年に気象庁測候所の 無人化が開始され,大学では施設の改修に伴う重力 点の移転要請が増えたことなどから,継続が困難に なってきた.

そこで、国土地理院は、2008年頃から電子基準点 付属標に重力値を与える一等重力測量を開始した. 前述の気象庁や大学近傍の電子基準点を優先し、付

属標上で相対重力測定を実施している.重力は、測 定点の位置,特に高さが変わると変化するため,地 下や周辺の質量の分布の変化によって重力に変化が 生じたかどうかを判断するために重力点の正確な位 置の把握が重要である.電子基準点は,国土地理院 の GNSS 連続観測システム (GEONET) によって位 置とその変化が正確に把握されており、また半数以 上の点で水準測量が行われ標高が求められているこ とから、付属標で重力を測定することで、正確な位 置が把握された重力の基準を与えることができる. また,国土地理院の施設であるため移転の要請が少 なく,一般にアクセスが容易な場所にあるため重力 点を利用しやすい. 国土地理院は, 2017 年 3 月 31 日現在, 128 点の電子基準点付属標で相対重力測定 を行い, JGSN2016 に準拠した重力値を得ている. ま た, 2014 年からは CG5 を用いた付属標直上の重力 鉛直勾配の測定を試験的に実施している(写真-7).

写真-7 電子基準点付属標(根室 3)上での CG5 による 重力鉛直勾配測定. 2015 年撮影.

3.3 重力点の位置決定

重力の測定精度の向上に伴い,重力点の位置情報 (緯度,経度及び標高)の精度も向上が必要となっ ている.従来は,重力点の位置は2万5千分1地形 図から読み取っていたが,近年の重力基準網では, 水平位置の精度は最低でも1/100分(15m)以内,同 様に標高も0.1m(30 µGal 相当)以内が必要とされ るため,2008年から基準及び一等重力点において GNSS 測量及び水準測量を開始している. 2017 年 3 月現在,基準重力点 26 点,一等重力点 31 点で位置 決定作業が完了している.

4. 国土地理院の重力測量の実績

4.1 絶対重力測定の実績

国土地理院が 1995 年に熊本 FGS で国内初の絶対 重力測定の観測を開始してから 2017 年 3 月までの 23 年間に,国内で延べ 73 回(筑波 FGS,御前崎 FGS 及び掛川 FGS はそれぞれ 1 回とする),37 点の基準 重力点で絶対重力測定を実施した(表-16).絶対重 力測定の精度は測定環境に大きく依存し,単観測あ たりの標準偏差は安定した地盤上では小さいが,沿 岸では波浪,専用基台のない点では人工ノイズのた めに大きくなるため,基準重力点は地盤が安定し, 温度管理が可能な施設に設置する必要がある.絶対 重力測定の精度は,FG5 の性能向上に加え,国土地 理院が 20 数年で培った技術や国内の FG5 所有機関 の増加に伴う経験の蓄積によって,導入当初と比べ て徐々に改善されている.

国土地理院は, 1993~2005 年に海外 5 か国, 11 か 所で絶対重力測定を実施した(表-11).地殻変動が あまりない大陸での測定では,海洋潮汐による重力 の微小な時間変化を検出するなど,FG5 の公称精度 に近い安定した成果を得るとともに,同じFG5 で測 定重力差が数 µGal で一致するなど同一機器での重 力値の再現性も確認した.このほか,南極・昭和基 地の重力点 IAGBN(A)#0417 点で 1996~2015 年(第 36~56 次隊)の 21 年間に 5 回の観測を実施した(菅 原ほか, 2018).

4.2 相対重力測定の実績

国土地理院が 1952 年に一等重力測量を開始して から、基準重力点における一等重力測量相当の測量 及び 1979 年に開始した水準点における一等重力測 量相当の測量を含め,延べ 2,018 回の一等重力測量 が実施された.二等重力測量は、同じく 1952 年から 延べ 31,770 回を実施している. 使用した重力計は, GSI 型重力振子, ノースアメリカン AG1 重力計, ウ オルドン重力計及びラコスト重力計である(山本ほ か, 2018). 各々の重力計による測定の実績は, GSI 型重力振子では 1952~1978 年に延べ 50 回, ノース アメリカン AG1 重力計では 1952~1964 年に延べ 10,734 回, ウォルドン重力計では 1959~1964 年に 延べ844回、ラコスト重力計では、1962~2016年に 延べ 22,244 回である.以上から, 1952~2016 年に国 内において実施した相対重力測定の総数は、延べ 33,853 回である. これらに加えて、南極観測隊とし て, 第2次~55次に延べ1,686回, 1965~1973年及 び 2003 年に海外での国際観測として延べ 17 回の測

国	測定場所	観測年月	EG5 No	重力値	標準偏差	測定数
-			1 00 110.	[µgal]	[µgal]	
オーストラリア	Mt. Stomlo	1996年02月	#104	979 549 923.0	15.0	13,354
	11	1996年02月	#201	979 549 923.5	12.0	22,959
	Tidbinbilla	1996年02月	#104	979 576 117.5	13.0	10,197
	Mt. Pleasant	1996年02月	#104	980 423 666.2	27.0	14,905
大韓民国	水原市	1999年12月	#203	979 918 775.4	11.5	14,346
中国	武漢	2003年02月	#201	979 339 729.5	9.5	25,241
	南寧	2003年02月	#201	978 745 966.6	10.1	28,124
	北京	2004年02月	#104	980 106 455.9	16.0	11,973
	香港	2005年03月	#203	978 755 644.6		21,529
マレーシア	クアラルンプール	2003年06月	#201	978 028 576.5	21.5	18,052
	コタキナバル	2004年06月	#201	978 112 550.5		34,193
フィリピン	マニラ	2005年11月	#203	978 370 556.2	24.0	5,750

表-11 国土地理院の海外での FG5 絶対重力測定一覧

注)気圧,潮汐及び極運動補正の後,相対重力計で決定した重力鉛直勾配を用いて重力点上に化成.使用ソフトウェア 及び統計処理手法は,JGSN2016と異なる.

定を実施している.

4.3 地震・火山活動に伴う重力変化の検出 4.3.1 絶対重力測定による重力変化の検出

絶対重力測定の観測を本格的に開始した 1995 年 以降,国土地理院は,FG5を用いて,仙台FGSで4 回,釧路FGS ほか8点で3回,新十津川FGS ほか 12点(筑波,御前崎及び掛川FGS は除く)で2回の 繰り返し測定を実施した(表-16).繰り返し測定は, 基準に用いる重力値の時間変化の把握を主な目的と しているが,地震に伴う重力変化の把握にも活用さ れている.

(1) 十勝沖地震に伴う重力変化

平成15年(2003年)十勝沖地震(2003年9月, マグニチュード 8.0)後の 2004 年 3 月には,帯広 FGS で2回目の絶対重力測定を行った(国土地理院, 2004b). この地震では、北海道の広い範囲で地殻変 動が観測され、特に襟裳岬周辺で変動が大きく、電 子基準点「広尾」で東南東に 98cm の水平変動,電 子基準点「大樹 2」で 28cm の沈降が観測された(国 土地理院, 2004a). 帯広 FGS では, 地震を挟んで 1998 年6月~2004年3月の5年間に約20µGalの重力増 加が観測された.この増加量は、FG5の測定精度か ら見て有意な変化で、フリーエア勾配を仮定すると 約7cm, ブーゲー勾配を仮定すると約10cm の沈降 に相当する.この地域では海側の太平洋プレートが 陸側のユーラシアプレートに沈み込む定常的な地殻 変動が起きており、重力変化には、この変動に起因 する変化も含まれる. 地震による重力変化を理論的 に説明するには、震源近傍における地震前後の重力 変化の空間分布を網羅する必要があるが(大久保、

2006),FG5 による絶対重力の繰り返し測定が比較的 容易になったとはいえ,現象を説明する妥当なモデ ルの構築に必要なデータの取得はいまだ難しく,重 力変化を説明するモデルは構築できていない.

(2) 新潟県中越地震及び中越沖地震に伴う重力変化

平成 16 年 (2004 年) 新潟県中越地震 (2004 年 10 月,マグニチュード 6.8)及び平成 19年(2007年) 新潟県中越沖地震(2007年7月,マグニチュード6.8) の前後では、長岡 FGS で絶対重力測定を実施した. 新潟県中越地震では、2004 年 8 月~2005 年 5 月に 7.6µGalの重力減少を検出した.この値はフリーエア 勾配を仮定すると約 2.5cm, ブーゲー勾配を仮定す ると約3.8cmの隆起に相当する.電子基準点が捉え た地殻変動から推定した震源断層モデルでは、長岡 FGS の隆起量は 1.5cm で重力変化と調和的である. 新潟県中越沖地震では、2005年5月~2008年10月 に 7.3µGal の重力減少を捉えた. この値はフリーエ ア勾配を仮定すると約 2.4cm, ブーゲー勾配を仮定 すると約3.7cmの隆起に相当する. 震源断層モデル から長岡 FGS の沈降は約 0.9cm と推定され, 重力変 化と整合しない. ただし,長岡 FGS の北から北東の 水準点で地震の震源域に向かって隆起が大きくなる 傾向が見られることから、中越地震の後に震源断層 深部延長上で余効すべりが生じたと仮定すれば(国 土地理院, 2008, 2009), これらの隆起と重力変化は 説明できる.

(3) 駿河湾地域における重力変化の監視

国土地理院は, 駿河湾地域の重力変化の監視を目 的に,東京大学地震研究所と共同で 1996~2017 年 に延べ 65 回(うち国土地理院 42 回)の絶対重力測

図-23 御前崎 FGS の重力変化(2000 年 1 月~2017 年 9 月). 重力値は全て御前崎 FGS 金属標上 1.30m の値.

定を行い,把握した重力変化を地震予知連絡会に報告している(図-23).測定は,国土地理院の3台のFG5(#104, #201, #203),東京大学地震研究所の3台のFG5(#109, #212, #241)で行い,ばらつきは大きいが,沈降速度と調和的な重力値の増加傾向が得られている.

(4) 岩手山周辺における重力変化の監視

岩手山では、1997 年 12 月末に山体西側の浅部で 地震活動が始まり、1998 年 2 月頃には長周期地震を 含む地震活動の活発化に伴う地殻変動が観測され、 同 6~7 月に火山活動がピークに達した.国土地理 院は、1998 年 8 月、岩手山の地下マグマの挙動の把 握を目的に測定を開始し、2000 年 5 月までに 6 回の FG5#203 による絶対重力測定及び岩手山周辺 8 か所 での相対重力測定(図-24)を行った.9月3日に岩 手県内陸北部地震(M6.1)が発生したため、9月11 日から再度絶対重力測定を行い、地震前後で-6.2 µGalの重力変化を検出した(図-25).

国土地理院は、火山活動の活発化に伴い、岩手山 周辺に臨時のGPS 観測点を増設するとともに、自動 測距・測角装置を設置して観測体制を強化し(平井、 2000)、地球資源衛星「ふよう1号(JERS-1)」の合 成開ロレーダー(SAR)の干渉処理から岩手山周辺 の地殻変動を検出した(国土地理院、1999).これら の地殻変動から変動の直接の要因はマグマ活動では ないとの結論を得たため(西村ほか、2000)、地震前 後の重力変化が岩手県内陸北部地震で説明し得るか, 東京大学地震研究所と共同で地殻変動モデルに基づ いて地震による重力変化の評価を試みた.矩形断層 上で一様なすべりを仮定した断層モデルで重力変化 を求め,重力変化からマグマ貫入による直接的な引 力効果を除き,測定値とモデル推定値を比較した(町 田ほか,2000).絶対重力測定,相対重力測定の双方 がモデル推定値と観測誤差の範囲内で整合し,重力 変化は2枚の断層モデルで定量的に説明された (Tanaka et al., 2001).

(5)東北地方太平洋沖地震に伴う重力変化

東北地方太平洋沖地震に伴い,電子基準点「牡鹿」 (宮城県石巻市)が東南東に約5.4m,約1.1m 沈降 するなど,広域で大きな地殻変動が観測された(水 藤ほか,2011).国土地理院は,地震前後の重力変化 の把握を目的に,2011~2012年に青森県,岩手県, 宮城県,秋田県,山形県,福島県,茨城県及び千葉 県で基準重力測量及び一等重力測量を実施した.絶 対重力測定は,弘前,八戸,江刺,仙台,筑波及び 鹿野山FGSで,一等重力測定は,ラコスト重力計3 台を用いて青森,秋田,盛岡,大槌,大船渡,水沢, 新庄,山形,仙台,いわき,成田,銚子及び勝浦GS で実施した.また,10か所の電子基準点付属標及び 9 か所の一等水準点で相対重力測定を実施した.地 震前の重力値は,2005,2006及び2010年の測定に 対してJGSN2016の試算を行っていたため,地震後

図-24 岩手山周辺の重力測定地点

の重力値も同様に処理を行って同じ条件で比較した. 図-26 に主な観測点の重力変化を示す.

重力値は,地震後に太平洋沿岸部で増加,内陸で 減少する傾向が見られる.また,房総半島で増加, 下北半島で減少している.

東北地方太平洋沖地震では、地殻変動に伴って重 カ点の位置も大きく変動した.3点の基準重力点(八 戸,江刺及び仙台 FGS)で2008年から順次 GNSS 観 測及び水準測量によって位置情報(緯度・経度・標 高)が得られていたため、地震前後の上下方向の地 殻変動と重力変化の双方が得られた.通常、標高が 低くなると重力値の増加が想定されるが、これら全 ての観測点で重力値が減少しており(表-12)、従来 から指摘されていたとおり地震に伴う重力値の変化 は標高の変化だけでは説明できず、地下の質量移動

図-26 東北地方太平洋沖地震に伴う重力変化

表-12 基準重力点の重力変化と標高の変化

其淮重力占	標高の変化量実測重力値の変化		標真の観測方法	
至中重刀魚	[m]	[µGal]	小市のノ武沢リノノム	
八戸FGS	+0.015	-16.8	直接水準	
江刺FGS	-0.203	-3.0	GPS	
仙台FGS	-0.173	-9.6	直接水準	

など他の要因が示唆される.

(6) 東北地方太平洋沖地震の余効変動に伴う重力変 化

東北地方太平洋沖地震では,余効変動に伴う重力 変化を把握するため,仙台 FGS で 2016 年 5 月に絶 対重力測定を行った.地震後の 2011 年 8 月に実施 した測定と比較すると重力は 25.6μGal 減少してい た.仙台 FGS から西へ約 7.9km の電子基準点「仙 台」は,約 5 年間の余効変動で 12.9cm 隆起してお り,この値にブーゲー勾配を仮定すると重力変化は 25.4μGal と推定され,測定された重力変化と調和的 である.これは電子基準点の隆起が,地下の岩石の 膨張など地下での質量変化に起因せず,岩石自体が 密度を変えず高さが変化したことを示唆している.

4.3.2 相対重力測定による重力変化の検出

国土地理院は,絶対重力計の導入前から相対重力 計による重力変化の検出を試みており,二等重力測 量では,全国の重力分布の把握に加え,重力の時間 変化を把握するための測定を行った.

(1) 伊豆大島の重力変化

相対重力測定によって重力変化を検出した代表的な事例は,1950頃から伊豆大島で国土地理院と地質

調査所(現産総研地質調査総合センター)及び東京 大学地震研究所が行った測定である.国土地理院は, 長周期重力変化の検出を目的に島内に 40 点の重力 点を設け、1963年11月~1972年2月に4回の測定 を実施した. 1967年以降伊豆大島は、火口付近を中 心に重力の増加傾向が見られ、マグマの上昇傾向が 報告されている (井内ほか, 1972). 1979年には, 島 を周回する水準路線を設置し、2 台のラコスト重力 計(D29, G118)による重力測量を実施した. 1986 年11月に大島の三原山が噴火した際には、12月及 び翌1~2月に3台のラコスト重力計(G83, G223, G564)を用いて水準点、検潮所及び数点の三角点に 2回の測定を行った. 測定では, 大島 GS と筑波 FGS の間で環を形成した路線に往復測定を行って 1979 年以降の重力変化を把握した(村上・吉田, 1987). 重力変化は,水準測量による上下変動と一致が良く, 相関係数は-0.173±0.024 mGal/m とフリーエア勾配 より有意に小さい. 測定からは、島の北西・南東部 の沈降域 (重力増加域) と北東・南西部の隆起域 (重 力減少域)が把握され、重力変化を沈降域の地下に 開口割れ目が生じて岩脈が貫入したモデルで説明し た. また、上下変動が小さい範囲で見られた重力の 減少は、地下のマグマだまりで生じたマグマの下降 で説明している.

(2) 房総半島南部の重力分布

国土地理院は, 1989~1991年に第4次基本測量長 期計画に基づいて,鴨川地溝帯の北断層及び南断層 に挟まれた地域の地下構造の推定を主目的に房総半 島南部で重力測量を行った(秋山ほか, 1992). 測定 点を1km メッシュに1点とし、1台のラコスト重力 計で重力値が既知の点から未知の点へ往復測定を行 った. 国家基準点では密度が足りないため公共基準 点や独立標高点を含む 961 点で測定を行い, 房総半 島南部の重力異常図を作成した(秋山ほか, 1992). 重力異常図からは、鴨川南断層の正断層地形が明瞭 に読み取られ、鴨川北断層との地溝帯では、低密度 の堆積層にも関わらず、高い重力異常を示す地域が 見られたため、地溝帯の地下深部に高密度の岩体の 存在が推定された. この作業は, 重力異常分布の把 握を目的に国土地理院が実施した唯一の測定で、房 総半島南部の約950km²の測定に3年間を要した.

5. 重力測量の展望

国土地理院は、国際的な基準に基づいて全国に正確な重力値の基準を与えるため、1952年から現在まで重力測量を継続してきた.この間、重力計の高度化、測定技術の進歩に伴い、重力測量の精度は向上しており、これを活かして2016年に高精度な日本の重力基準網 JGSN2016を構築した.JGSN2016の

精度は 20μGal 程度で全国に重力の基準を与えてお り、従来の JGSN75 と比べて約 5 倍の精度を達成し た.精度の向上は、重力計の性能向上はもとより、 測定に携わる機関の連携による測定方法の継続的な 高度化、検定路線を使った相対重力計の検定及び絶 対重力計の国内比較観測を通じて達成されている.

重力計は精密機器の集合で,正確に取扱わないと 信頼性が下がる.機器には操作手順書があるが,高 精度な測定を行うためには,手順書に従うだけでな く,技術の習熟と機器の特性への十分な理解が必要 である.また,現行の重力計はいずれも海外製で, 不具合の対応に時間を要するため,国土地理院は, 国内関係機関と情報を共有し,自ら不具合に対処す る体制の構築に努めている.些細な事例でも情報共 有することで,知見の蓄積,ひいては重力値の信頼 性の確保が可能となるため,この取組は今後も継続 していく.

FG5 による測定,国内比較観測を通じて,国内で 信頼度の高い重力の絶対値を得ることが可能となっ たが,FG5 は測定の感度が高いため,信頼性の高い 測定には,地盤振動の除外,安定化電源・安定温度 の供給,一定の測定時間の確保が必須である.また, 微小なシグナル検出のためには,陸水擾乱や周囲の 地形変化がない測定環境が望ましい.今後も安定し た重力の基準値を提供するためには,安定した環境 で一定期間の測定を実施するとともに,繰り返し測 定による重力の時間変化の把握が必要である.

正確な重力値の基準を維持するためには、繰り返 し測定による正確な重力変化の把握が必要であるが、 測定に要するリソースを考慮すると、測定の効率化 に加え、効率の良い測定の計画が必要である.重力 は場所により異なった時間変化を示すため、全国一 様に等間隔で繰り返し測定を行うことは効率的でな く、例えば、GEONETで地殻変動の累積が大きい地 域、変動速度が急激に変化した地域など、重力の時 空間変化が大きい地域を特定して選択と集中を行う 必要がある.その際に、絶対重力測定と相対重力測 定を効率的に組み合わせることも必須である.電子 基準点は、測定時のアクセスが容易で全国を網羅し ており、また、地殻変動と重力変化の双方の基準と なり得るため、電子基準点付属標での重力測定は今 後も継続すべきである.

一方,可搬性は高いが精度が低い相対重力測定の 効率を改善するためには,近年実績が増えている可 搬型の A10 の導入が効果的である. A10 は FG5 と 比べて精度は1 桁低いが,野外で観測可能な絶対重 力計で,スプリング式の相対重力計で不可避のドリ フトやテア,周期誤差や SF といった誤差がなく, 測定者の負荷軽減が期待できる.電子基準点で効率 的に絶対重力測定を実施できる A10 の導入は,効率 的に高精度な重力測量を実現する機器として、一等 重力測量への導入が効果的である.

JGSN2016 の実現によって、高精度な絶対重力値 へのアクセスが可能となった.今後は、高精度でア クセスが容易な国内の重力の基盤を着実に維持管理 することが課題である.重力の時間変化を効率的に 監視することで、重力変化の累積による重力基準網 の更新時期を適切に見極め、最適な測定の計画を策 定し、効率的な重力基準の維持・管理に努めていく 必要がある.

6. まとめ

国土地理院は、国内に重力値の正確な基準を与えるため、国際標準と整合した高精度な新しい重力基準網JGSN2016を約十数µGalの精度で達成した.この重力基準網は、国土地理院が1950年代に開始した重力測量において、時代とともに高度化する重力計を導入して信頼性の高い重力値を提供する取組を重ねてきたことで実現された.重力測量では必ず誤差が生じるため、国土地理院は、誤差軽減の取組を常に継続しており、様々な試行錯誤を重ね、測定の高精度化を達成してきている.相対重力計の検定路線や気泡管の検定などは現在も精度維持の根幹となる技術である.国土地理院が1995年に国内で初め

て導入した FG5 は、今では多くの国内機関が所有し、 国内比較観測を通じて互いに整合性が確保され、高 精度な絶対重力測定の基盤として JGSN2016 の実現 を可能とした.高精度な重力測定は、正確な重力の 基準の維持に不可欠である.国土地理院は、引き続 き、さらに安定した高精度な測定を達成するための 取組を継続するとともに、時間変化する重力を効率 的に把握して今後も安定した重力値の基準を提供す るために、測定の効率化にも取り組んでいく.

謝 辞

気象庁及び大学等の機関には,重力測量の実施に おいて,重力点の設置,施設の借用を含め,様々な 御協力をいただいた.国立研究開発法人産業技術総 合研究所,東京大学,京都大学,公益財団法人地震 予知総合研究振興会東濃地震科学研究所,大学共同 利用機関法人情報・システム研究機構国立極地研究 所には,絶対重力計の国内比較観測の実施に御御協 力をいただいた.国民宿舎「つくばね」には,17年 間にわたる施設の使用に御協力をいただいた.記し てここに感謝いたします.

(公開日:平成 30年12月27日)

45

表-13	「つくばね」第一小ホールにおける国内比較観測の測定結果

		A	1	В		С		C)	E		偏差の
測定年月	重力計	g µG	偏差 al	g µGa	偏差 al	g µG	偏差 al	g µG	偏差 al	g µGa	偏差 al	平均 µGal
2002/02 参昭値	FG5 #104 FG5 #201	892.0	4.3	892.9 892.0	5.2 4.3	892.9	5.2	891.6 893.2	3.9 5.5	892.5	4.8	4.5 5.0
887.7µGal	FG5 #210 FG5 #212 FG5 #217	880.4 883.8	-7.3 -3.9	886.4	-1.3	886.1 880.2 884.0	-1.6 -7.5 -3.7	880.3	-7.4			-1.5 <u>-7.4</u> -3.8
	FG5 #104 FG5 #201	892.6	0.5	895 1	30			896.0	39	897.6	5.5	3.0 3.5
892.1µGal	FG5 #210 FG5 #212			890.4	-1.7	888.5	-3.6	891.8	-0.3			-1.0 -3.6
	FG5 #217	892.1	0.0							884.7	-7.4	-3.7
2003/01 参照値	FG5 #201 FG5 #203	899.7 894.8	12.0 7.1	894.2	6.5	891.2	3.5	892.9 894.3	5.2 6.6			<u>6.9</u> <u>6.7</u>
887.7µGal	FG5 #210 FG5 #212	878.8	0.1	<u>875.3</u>	-12.4	<u>857.1</u> 890.0	-30.6 2.3					<u>-21.5</u> 1.2
2003/09 参照値	FG5 #201 FG5 #203	905.5 900.6	7.9 3.0	902.2 896.0	4.6 -1.6	893.5 898.8	-4.1 1.2	899.4 905.5	1.8 7.9	904.7 899.7	7.1 2.1	3.5 2.5
897.6µGal	FG5 #210 FG5 #217	896.7 893.3	-0.9 -4.3	891.3 893.1	-6.3 -4.5	897.6 894.5	0.0 -3.1	891.3 886.8	-6.3 -10.8	902.1 899.0	4.5 1.4	-1.8 -4.2
2004/04 <i>余</i> 四体	FG5 #104	005.4	1.0	000.0	0.4	004.5	1.0			890.7	0.2	0.2
診照1値 890.5µGal	FG5 #201 FG5 #212	895.4	4.9	890.6 887.8	0.1 -2.7	891.5 889.8	-0.7	893.8	3.3			-1.7
2005/04	FG5 #217 FG5 #109	889.8	-0.7			885.1 886.1	-5.4 -6.0	888.5	-3.6			-3.1 -4.8
参照値 892.1µGal	FG5 #201 FG5 #203	893.5 890.8	1.4 -1.3	893.0 896.1	0.9 4.0							1.2 1.4
	FG5 #210 FG5 #213			887.3	-4.8	893.0	0.9	892.3	0.2	888.6	-3.5	-1.9 -1.6
	FG5 #217	894.9	2.8				0.7			900.8	8.7	<u>5.8</u>
2006/04 参照值	FG5 #201 FG5 #203	891.3	0.7	890.5	-0.1	889.9	-0.7					0.0 -0.1
890.6µGal	FG5 #213 FG5 #217	895.7	5.1	891.7 884.7	1.1 -5.9	890.5	-0.1					3.1 -3.0
2007/04 参照値	FG5 #109 FG5 #201	888.5	-1.9	889.5 890.2	-0.9 -0.2	883.2	-7.2					-4.1 -1.1
890.4µGal	<mark>FG5 #213</mark> FG5 #217	894.7	4.3			896.5	6.1	<mark>893.7</mark> 887.1	3.3 -3.3			<mark>4.7</mark> 0.5
	FG5 #104	891.6	1.3	800.4	0.1	890.1	-0.2					0.5
≫照1值 890.3µGal	FG5 #201 FG5 #213	891.0	1.3	890.4 887.6	0.1 -2.7	890.5	0.2					0.7 -1.3
2009/04 参照値	FG5 #109 FG5 #201	888.2	-3.1	887.2 888.5	-4.1 -2.8	891.8	0.5					-1.8 -2.9
891.3µGal	FG5 #203 FG5 #213	890.9	-0.4			894.6	3.3	899.3	8.0	884.6	-6.7	-3.5 <u>5.7</u>
2010/04	FG5 #217	804.0	4 5	905 C	0.0			888.1	-3.2	899.4	8.1	2.5
2010/04 参照值	FG5 #201 FG5 #210	894.9	-1.5	895.6 895.2	-0.8 -1.2	899.2	2.8					-1.1
896.4µGal	FG5 #213 FG5 #217	898.3	1.9			892.7	-3.7	898.6	2.2			-3.7 2.1
2011/04 参照値	FG5 #201 FG5 #210	903.6	-0.5	901.6 904.5	-2.5 0.4	907.8	3.7					-1.5 2.0
904.1µGal	FG5 #213	900.4	-37			904.9	0.8	904.3	0.2			0.5
	FG5 #241	550.4	-0.1					906.0	1.9			1.9

2012/04	FG5 #201	903.9	3.9	905.2	5.2							4.5
参照值	FG5 #213					<u>893.0</u>	-7.0	900.4	0.4			-3.3
903.2µGal	FG5 #217	899.8	-0.2					905.5	5.5			2.6
	A10 #017			893.2	-6.8	899.1	-0.9					-3.9
2013/04	FG5 #104			904.7	3.0	900.9	-0.8					1.1
参照值	FG5 #201	898.1	-3.6	900.3	-1.4							-2.5
901.7µGal	FG5 #213					897.9	-3.8	898.2	-3.5			-3.6
	FG5 #217	906.2	4.5					907.0	5.3			4.9
2014/04	FG5 #104			896.5	1.0	899.0	3.5					2.3
参照值	FG5 #210							896.4	0.9			0.9
895.3µGal	FG5 #212	894.2	-1.3	893.7	-1.8							-1.6
	FG5 #213					893.2	-2.3					-2.3
2015/04	FG5 #104	899.0	3.8									3.8
参照值	FG5 #203			895.9	0.7			901.0	5.8			3.3
895.2µGal	FG5 #210									897.0	1.8	1.8
	FG5 #212	894.8	-0.4									-0.4
	FG5 #213	894.2	-1.0			889.3	-5.9					-3.5
	FG5 #217			893.7	-1.5			891.9	-3.3			-2.4

※ 下線で示した重力値は、観測不備のため、参照値の計算から除外. 下線で示した偏差の平均は、5.0µGal を超えた FG5.
 灰色は国土地理院保有の FG5. 橙は産総研計量標準総合センター保有の FG5. FG5 の所有機関は、以下のとおり.
 #104,#201 及び#203:国土地理院,#109,#212 及び#241:東京大学地震研究所,#210:京都大学理学研究科,#213:
 産総研(計量標準総合センター),#217:産総研(地質調査総合センター),A10#017:九州大学工学研究院

表-14 FG5#213 (ICAG に参加)の測定平均値を参照値とした各 FG5 の偏差

		A		В		C	;	C)	E		偏差の
測定年月	重力計	g	偏差	g	偏差	g	偏差	g	偏差	g	偏差	平均
		μG	al	μG	al	μG	al	μG	al	μG	al	µGal
2005/04	FG5 #109					886.1	-4.4	888.5	-2.0			-3.2
参照值	FG5 #201	893.5	3.0	893.0	2.5							2.8
890.5µGal	FG5 #203	890.8	0.3	896.1	5.6	000.0	0.5					3.0
	FG5 #210			887.3	-3.2	893.0	2.5	002.2	1 0	000 6	10	-0.3
	FG5 #213	894 9	44					092.3	1.0	900.8	-1.9	74
2006/04	FC5 #201	001.2	2.4			990.0	2.0			000.0	10.0	<u>7.1</u>
2000/04 参昭値	FG5 #201 FG5 #203	091.3	-2.4	800 5	-3.2	009.9	-3.0					-3.1
≥ 5. all 893.7uGal	FG5 #213	895.7	2.0	891.7	-2.0							-0.2
eeen pear	FG5 #217			884.7	-9.0	890.5	-3.2					-6.1
2007/04	FG5 #109			889.5	-5.6	883.2	-11.9					-8.8
参照值	FG5 #201	888.5	-6.6	890.2	-4.9							-5.8
895.1µGal	FG5 #213					896.5	1.4	893.7	-1.4			
	FG5 #217	894.7	-0.4					887.1	-8.0			-4.2
2008/04	FG5 #104	891.6	2.6			890.1	1.1					1.8
参照值	FG5 #201	891.6	2.6	890.4	1.4							2.0
889.1µGal	FG5 #213			887.6	-1.4	890.5	1.5					
2009/04	FG5 #109			887.2	-9.8	891.8	-5.2					-7.5
参照值	FG5 #201	888.2	-8.8	888.5	-8.5							<u>-8.6</u>
897.0µGal	FG5 #203	890.9	-6.1							884.6	-12.4	<u>-9.2</u>
	FG5 #213					894.6	-2.4	899.3	2.3	000.4	0.4	
	FG5 #217							888.1	-8.9	899.4	2.4	-3.2
2010/04	FG5 #201	894.9	2.2	895.6	2.9							2.5
参照值	FG5 #210			895.2	2.5	899.2	6.5					4.5
892.7µGal	FG5 #213	000.0	5.6			892.7	0.0	000.0	5.0			57
	FG9 #Z17	090.3	0.0					0.960	5.9			<u>5.7</u>

2010/04	FG5 #201	894.9	2.2	895.6	2.9							2.5
参照值	FG5 #210			895.2	2.5	899.2	6.5					4.5
892.7µGal	FG5 #213					892.7	0.0					
	FG5 #217	898.3	5.6					898.6	5.9			<u>5.7</u>
2011/04	FG5 #201	903.6	-1.0	901.6	-3.0							-2.0
参照值	FG5 #210			904.5	-0.1	907.8	3.2					1.6
904.6µGal	FG5 #213					904.9	0.3	904.3	-0.3			
	FG5 #217	900.4	-4.2									-4.2
	FG5 #241							906.0	1.4			1.4
2012/04	FG5 #201	903.9	3.5	905.2	4.8							4.2
参照值	FG5 #213					893.0	-7.4	900.4	0.0			
900.4µGal	FG5 #217	899.8	-0.6					905.5	5.1			2.3
	A10 #017			893.2	-7.2	899.1	-1.3					-4.2
2013/04	FG5 #104			904.7	6.7	900.9	2.9					4.8
参照值	FG5 #201	898.1	0.1	900.3	2.3							1.2
898.1µGal	FG5 #213					897.9	-0.1	898.2	0.2			
	FG5 #217	906.2	8.2					907.0	9.0			<u>8.6</u>
2014/04	FG5 #104			896.5	3.3	899.0	5.8					4.5
参照值	FG5 #210							896.4	3.2			3.2
893.2µGal	FG5 #212	894.2	1.0	893.7	0.5							0.8
	FG5 #213					893.2	-2.3					
2015/04	FG5 #104	899.0	7.3									7.3
参照值	FG5 #203			895.9	4.1			901.0	9.3			6.7
891.8µGal	FG5 #210									897.0	5.3	5.3
	FG5 #212	894.8	3.0									3.0
	FG5 #213	894.2	2.5			889.3	-2.5					
	FG5 #217			893.7	2.0			891.9	0.1			1.1

※ 下線で示した重力値は、観測不備のため、参照値の計算から除外. 下線で示した偏差の平均は、5.0µGal を超えた FG5.
 灰色は国土地理院保有の FG5. 橙は産総研計量標準総合センター保有の FG5. FG5 の所有機関は、以下のとおり.
 #104,#201 及び#203:国土地理院,#109,#212 及び#241:東京大学地震研究所,#210:京都大学理学研究科,#213:
 産総研(計量標準総合センター),#217:産総研(地質調査総合センター),A10#017:九州大学工学研究院

		FGS		A		В		С		D	
測定年月	重力計	g	S.D.								
		µGal	µGal								
2016/04	FG5 #203	282.4 ± 0.20	10.4					279.7 ± 0.16	9.1		
重力値	FG5 #210					277.2 ± 0.26	13.2				
979 951.000	FG5 #213	276.5 ± 0.14	7.6	276.1 ± 0.19	10.1						
µGal	FG5 #217			277.9 ± 0.16	10.8					267.3 ± 0.25	14.7
	FG5 #225							272.9 ± 0.20	10.5	265.6 ± 0.19	11.2
	FG5 #241					282.8 ± 0.19	19.1				
2017/04	FG5 #201	277.4 ± 0.12	13.0			278.1 ± 0.09	9.0				
重力値	FG5 #210					278.5 ± 0.25	21.6	271.0 ± 0.14	14.6		
979 951.000	FG5 #212	275.9 ± 0.13	13.5								
µGal	FG5 #217							272.6 ± 0.17	17.9	261.0 ± 0.20	11.8
較差(µGal)		1.5		1.8		5.6		8.7		6.3	

表-15 石岡測地観測局国内比較観測結果

※ FG5の所有機関は、以下のとおり、#104,#201及び#203:国土地理院、#109,#212及び#241:東京大学地震研究所、 #210:京都大学理学研究科、#213:産総研(計量標準総合センター)、#217:産総研(地質調査総合センター)、A10#017: 九州大学工学研究院

	金属標上の	重力値 [µgal]	980 627 098.2	980 495 553.3			980 634 757.8			980 419 077.3			980 400 686.0		980 261 212.1		980 342 781.7		1 101 101 000	980 121 / 31.5		000 001 007 5	C. / CO CON NOS		979 951 222.0	070 428 000 2	313 420 300.2		979 690 823.8		979 725 540.3	979 752 441.8
	鉛直勾配	[µGal / mm]	-0.29602	-0.32358			-0.30490			-0.30483			-0.31078		-0.315/8		-0.32161			-U.289.30		-0.29032		-0.28930	-0.29388	V 1 2 V C O	-0.347 14		-0.37259		-0.26635	-0.25954
	重力変化	[µgal / year]		0.7			0.9			1.8		Ċ	-0.3		0.9		-10.6		Ċ	-0. -		-30.7				77	- -		4.2			
	重力差	[hgal]		7.7			13.3			15.8		7	- - -	I	5.4		-17.7			- 1 2.4		-21.6		-25.6		0 4 7	0.71		27.6			
ll E	‼ [µgaı] ₩⊞⁄#	^{流年}																						5 12.26								
	4回日 観波	重力値																						980 065 434.5								
[]	[µgaı] ₩	^{伝年}						16.1			29.6							17.7				38 71								54.5		
·미미 원	3回日 観測	重力値						980 634 361.4			980 418 681.0							980 342 363.6				080 065 460 1								979 690 339.4		
[]	[µgaɪ] _抽 湴	^{伝年}			18.47		51.17			15.67			11.98		11.04		44.28			9.64		15.52					24.64		34.98			
	2回日 観測	重力値			980 495 132.6		980 634 356.3			980 418 682.2			980 400 282.0		980 260 801.6		980 342 364.4			980 121 355.3		980 065 481.7					979 428 456.9		979 690 321.0			
احتدا	[lugai] _抽 進	编 编 差	90.70	20.17		21.63			35.53			14.27		13.06		17.38			9.26		18.16					33.66		110.49			49.50	44.33
	10日 観測	重力値	980 626 713.4	980 495 124.9		980 634 348.1			980 418 665.2			980 400 283.4		980 260 796.2		980 342 381.3			980 121 367.7		980 065 474.5				979 950 840.0	979 428 439.9		979 690 311.8				979 752 104.4
	割 训 在 日	±7./₩1++-/-1	2007年08月	1996年06月		1998年06月	2007年09月	2013年08月	: 1998年06月	2004年03月	2007年07月	2006年06月	2010年06月	: 2006年09月	2012年06月	: 2010年10月	2011年09月	2012年06月	: 2007年10月	2011年10月	2005年07月	: 2010年11月	2011年08月	2016年06月	: 2012年06月	: 1998年03月	: 2010年03月	2006年01月	2008年12月	2012年07月	: 1996年04月	: 2014年01月
	**		1回目:			1 □ □	2回目:	3□目:	10 1	2回目:	30目:	1 □ [] :	2回目:	101	2回目:	1⊡ ⊟ :	2回目:	3回目:	1 0 1	2回目:	1⊡ ⊟ :	2回目:	3回目:	4回目:	1回目:	1 □ [] :	2□目:	1回目:	2回目:	3回目:	1 □ [] :	1回目:
	基準重力点	点	稚内	新十津川			釧路			帯広		い合合	нд IS		UH AZ		山下			[**T/			Ц Д		筑波	令 同	F K		鹿野山		掛川	御前崎
	民	Щ Ц	-	N			ო			4		L	n	(ø		7		c	Ø		0			10	÷	=		4		13	4

表-16 国土地理院が FG5 で実施した絶対重力測量の一覧

国土地理院時報 2018 No. 131

									•					
[基準重力点			1回目観測 [h	ugal]	2回目観測 [h	gal]	3回目 観測 [µ(gal]	4回目 観測 [µgal]	重力差	重力変化	鉛直勾配.	金属標上の
御	点名		観測 年月	重力値	標 偏	重力値	標 偏	重力値	岸 相 王	重力値 偏差	[hgal]	[µgal / year]	[µGal / mm]	重力値 [µgal]
15	飯田	1回目:	2004年11月	979 666 587.3	17.05								-0.29231	979 666 967.3
16	金沢	- 回日 -	2004年09月	979 845 820.8	38.68								-0.22604	979 846 114.7
		- 10 □	2004年08月	979 931 094.4	32.89									
17	長岡	2回目:	2005年05月			979 931 090.7	24.32				-7.0	-1.7	-0.28125	979 931 453.0
		3□□:	2008年09月					979 931 087.4	13.5					
		- - 	1997年08月	979 772 695.7	7.20									
18	松代	2□□:	2003年11月			979 772 706.6	59.13				-10.0	-1.4	-0.23247	979 772 987.9
		301	2004年11月					979 772 685.7	6.4					
19	松江	 □ □ :	2003年08月	979 794 444.1	20.09								-0.30747	979 794 843.8
ç	+ ₽	- - 	2009年06月	979 735 013.5	9.16						Ċ		00020 0	0 101 001 0
Ŋ	₽	2回目:	2016年02月			979 735 022.7	18.14				9.2	4.	-0.2/ 328	9/9/35 385.8
2	京都	1⊡ ⊟	1995年10月	979 707 312.6	51.00						C L	0.0		
2	(京都C)	2回目:	2003年05月			979 707 306.7	34.51				P.C-	-0.8	-0.27797	979 707 668.1
22	国山		2002年11月	979 616 121.8	10.43								-0.40387	979 616 646.8
ĉ	0 1-	1 □ [] :	1996年08月	979 618 668.3	14.90							00		
5	国内	2回目:	2002年08月			979 618 680.6	13.27				12.3	2.0	-0.33554	9/9619116.8
24	須佐	101	1996年09月	979 729 047.4	25.43								-0.33964	979 729 488.9
25	高知	, 10 11	2000年01月	979 470 255.3	31.47								-0.24710	979 470 576.5
ç	433 1-	1 0 1	2009年10月	979 589 205.5	8.26						0	L C	0 00210	0 100 001 010
07	た油	2回目:	2014年09月			979 589 217.7	16.11				7.71	C.7	-0.30/08	9/9 589 695.6
27	愛媛		2014年06月	979 597 330.5	8.09								-0.30621	979 597 728.6
80	山	1回日	2009年01月	979 669 544.2	8.64						3.8	0.7	-0 22898	979 669 845 7
Ş	Ĥ	201	2014年06月			979 669 548.0	11.35				0		00077.0-	
		101	1997年07月	979 614 165.0	16.82									
29	福岡	2回目:	2001年07月			979 614 166.4	11.91				10.0	0.8	-0.28551	979 614 546.2
		3⊡∏	2010年07月					979 614 175.0	6.2					
30	能木	1 回 日 日	1995年11月	070 511 2/3 0	103 30								-0 32250	070 511 663 7
3		201	2016年07月	0.012	00.00								00770-	7.000 110 616
<u>.</u>	2正 田	101	2001年11月	979 465 253.3	14.34						0 0	7 0	-0 27696	070 165 677 7
5	Ĩ	2回目	2013年09月			979 465 262.2	14.73				0		000 17:0-	717 0 001 0 10

金属標上の 重力値 [µgal]		979 431 460.8		979 564 453.3	979 226 857.2	979 625 387.8	- 110 100 0E0	1.006 060 676		9/9 000 034./
鉛直勾配 [µGal / mm]		-0.34979		-0.20859	-0.18526	-0.26966	0 00414	-0.28134		-0.33090
重力変化 [µgal / year]		0.8					C	0.0	1	1.8
重力差 [µgal]		11.8						0.3		19.5
4回目 観測 [µgal] 標準 重力値 偏差										
観測 [µgal] ^直 偏準			06.1 8.8							
3回目 重力侦			979 431 0							
J [µgal] 標準 編港		13.62						39.90		21.73
2回目観測 重力値		979 430 993.C						979 095 589.7		979 005 604.5
[µgal] 標準 編准	40.25			6.17	8.24	10.96	22.34		9.12	
1回目観測 重力値	979 430 994.3			979 564 182.1	979 226 616.4	979 625 037.2	979 095 589.4		979 005 585.0	
息測年月	1997年07月	2001年09月	2012年09月	2011年02月	2012年02月	2013年09月	2001年01月	2011年11月	2001年01月	2011年11月
	1回目:	2回目:	3回目:	1□∏ :	1回日:	1⊡⊟ :	1回目:	2回目:	1 □ [] :	2回目:
基準重力点 点 名		始良		福江	奄美	対馬	羅汕氏	辺ド単月		日日間
番		32		33	8	35	Ç	8	1	3/

含まない重力値.掛川 FGS は 処理ソフトウェアが古く,統計処理を行っていないため参考値.仙台 FGS の 4 回目の測定は,東北地 重力値の補正処理は, 吉田(2018)のとおりに実施. 金属標直上の重力値の内, 太字は JGSN2016の重力値. 下線は JGSN2016 に 方太平洋沖地震後に実施したため, 重力差には, 直近の前回との差を示した. また, 鉛直勾配も 4 回目測定時に新たに観測した. *

50

参考文献

- 秋山忠之,杉原和久,川本利一,木村勲,藤原智,都筑三千夫,黒石裕樹(1992): 房総における重力異常調 査,国土地理院時報,75,50-52.
- 東敏博,土井浩一郎,早河秀章,風間卓仁,太田晴美,大薗伸吾,羽入朋子,岩波俊介,青山雄一,澁谷和 雄,福田洋一(2013):南極昭和基地における絶対重力計 FG5 による重力測定と重力経年変化,測地学会 誌,59,2,37-43.
- Boulanger, Yu. D et al., (1991) : Results of 3rd International Comparison of Absolute Gravitymeters in Sèvres 1989, Bull. D'inform., BGI, 68, 24-44.
- 平井英明(2000): 岩手山における機動観測, 国土地理院時報, 93, 1-11.
- 平岡喜文,木村勲,大久保修平,古屋正人,東敏博,福田洋一(2001):絶対重力計 FG5の相互比較,日本測 地学会第 96回講演会要旨集,161-162.
- IAG Resolutions (1987) : RESOLUTIONS adopted by the International Association of Geodesy, VOEUX, 275-281.
- 井内登,加納克巳,藤井陽一郎(1972):大島における重力変化の研究(Ⅱ),測地学会誌,18,104-111.
- 加藤照之,津村建四朗(1980):潮位記録から推定される日本の垂直地殻変動(1951~1978),東京大学地震 研究所彙報,54,3,559-628.
- Koji Matsumoto, Tadahiro Sato, Takashi Takanezawa and Masatsugu Ooe (2001): GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect, 測地学会誌, 47, 243-248.
- 国土地理院(1976):日本重力基準網 1975の設定,測地学会誌,22(2),65-76.
- 国土地理院(1999):人工衛星の合成開口レーダーによって捉えた岩手山の地殻変動,地震予知連絡会会報, 61,86-90.
- 国土地理院(2004a):北海道地方の地殻変動,地震予知連絡会会報,71,135-138.
- 国土地理院(2004b):帯広における絶対重力測定,地震予知連絡会会報,72,96-97.
- 国土地理院(2008):北陸・中部地方の地殻変動,地震予知連絡会会報,80,374-379.
- 国土地理院(2009):北陸・中部地方の地殻変動,地震予知連絡会会報,81,483-489.
- 国土地理院(2013):東海地方の地殻変動,地震予知連絡会会報,89,184-225.
- 国土地理院(2016):東海地方の地殻変動,地震予知連絡会会報95,187-235.
- 町田守人,木村勲,小菅俊宏,安藤久,豊田友夫,田中愛幸,大久保修平(2000):岩手山周辺における重力 観測,国土地理院時報,93,19-27.
- 松本弘一(2000):長さ標準の現状と課題,精密光学会誌,66,11,1671-1674.
- 宮原伐折羅,吉田賢司,山本宏章,松尾功二,宮崎隆幸,宗包浩志(2018):国土地理院の重力測量の展望-新たな観測技術と重力基準の将来像-,国土地理院時報,131,95-108.
- Morelli, C., C. Gantar, T. Honkasalo, R. K. McConnell, J. G. Tanner, B. Szabo, U. Uotila and C. T. Whalen (1974): The International Gravity Standardization Net 1971(I.G.S.N.71), Publ. Spec., 4, Bull. Geod, 1-194.
- 村上亮,太島和雄(1981):可搬型絶対重力計について,国土地理院時報,53,35-40.
- 村上真幸,吉田義一(1987):伊豆大島における水準重力測量の結果,国土地理院時報,66,5-12.
- 中川一郎, 里村幹夫, 福田洋一, 中井新二, 瀬戸孝夫, 太島和雄, 井内登, 萩原幸男, 田島広一, 井筒屋貞 勝, 柳沢道夫, 花田英夫, 友田文好, 藤本博巳, 古田俊夫, 大川史郎(1977): ラコスト重力計(G型)の 定数検定, 測地学会誌, 23, 2, 63-73.
- 西久美子,平岡喜文,木村勲,大久保修平,古屋正人,松本滋夫,福田洋一,東敏博,杉原光彦(2002):絶 対重力計 FG5の相互比較(2),日本測地学会第98回講演会要旨集,173-174.
- 西村卓也,村上亮,飛田幹男,中川弘之,鷺谷威,多田堯,菅富美男,藤咲淳一,田村孝,佐藤博行,藤原智 (2000):岩手山の火山活動及び岩手県内陸北部の地震(M6.1)の地殻変動と火山活動が地震を誘発した可 能性について,国土地理院時報,94,21-30.
- Olivier Francis, Henri Baumann and all the participants (2014) : International Comparison of Absolute Gravimeters, Final report, CCM.G-K2 Key Comparison, 1-31.
- 大久保修平(1994): 地震および火山噴火によって生じる重力とポテンシャルの変化-ディスロケーション理論に基づく定式化,測地学会誌,40,1,1-16.
- 大久保修平,黒石裕樹,町田守人,平岡喜文(2001):御前崎における絶対重力測定,月刊地球,号外,33, 89-96.
- 大久保修平(2006):重力変動と地殻変動,測地学会誌,52,4,245-252.

- Sakuma, A. (1971): Recent developments in the absolute measure of gravitational acceleration, Nat. Bur. Stand. (U.S.), Spec. Publ., 343, 447-456.
- 瀬田勝男(1998):長さ標準の不確かさ、計測と制御、37、5、318-321.
- 志知龍一(1985):重力計の原理と特性および調整法,名古屋大学理学部付属地震予知観測地域センター,1-60.
- 菅原安宏, 宮原伐折羅, 吉田賢司, 山本宏章, 福田洋一(2018): 南極地域における国土地理院の重力測量-地球規模の重力場測定への貢献一, 国土地理院時報, 131, 109-121.
- 水藤尚,西村卓也,小沢慎三郎,小林知勝,飛田幹男,今給黎哲郎,原慎一郎,矢来博司,矢萩智裕,木村 久夫,川元智司(2011):GEONET による平成 23 年(2011 年)東北地方太平洋沖地震に伴う地震時の地殻 変動と震源断層モデル,国土地理院時報,122,29-37.
- Tamura, Y. (1982) : A computer program for calculating the tide-generating force, Publ. Int. Latitude Obs. Mizusawa, Vol. 16, No. 1, p. 1- 20.

25.

Tanaka Y, Okubo S, Machida M, Kimura I and Kosuge T (2001) : First Detection of Absolute Gravity Change Caused by Earthquake, Geophysical Reserch Letters, 28, 15, 2979-2981.

都筑三千夫, 山本宏章(1993): SCINTREX 社製重力計 CG3 の特性について, 国土地理院時報, 77, 14-18.

- 山本宏章,宮原伐折羅,吉田賢司,菅原安宏,松尾功二,宮崎隆幸(2018):国土地理院の重力測量の歴史ー 観測技術と重力基準の変遷一,国土地理院時報,131,1-19.
- 吉田賢司, 矢萩智裕, 平岡喜文, 宮原伐折羅, 山本宏章, 宮崎隆幸 (2018): 日本重力基準網 2016 (JGSN2016) の構築, 国土地理院時報, 131, 53-93.