JAXA Repository / AIREX 未来へ続く、宙(そら)への英知
49043000.pdf11.41 MB
Other TitleDesign of reference halo trajectories around L2 point in the Sun-Earth system
Author(jpn)歌島 昌由
Author(eng)Utashima, Masayoshi
Author Affiliation(jpn)宇宙航空研究開発機構 システムエンジニアリング推進室
Author Affiliation(eng)Japan Aerospace Exploration Agency Systems Engineering Office
Issue Date2005-11-30
PublisherJapan Aerospace Exploration Agency (JAXA)
Publication date2005-11-30
AbstractLagrange Point Missions in the world. The launch of NASA's International Sun-Earth Explorer-3 (ISEE-3) in 1978 has opened a new world of space missions which utilize the Lagrange points. ISEE-3 was injected into a halo orbit around the L1 point in the Sun-Earth system. The L1 point in the Sun-Earth system has been utilized primarily for observing the Sun, and the Solar Heliospheric Observatory (SOHO) which was a joint ESA-NASA mission and launched in 1995 has been observing the Sun from a halo orbit around the L1 point. For the L2 point in the Sun-Earth system, NASA's Wilkinson Microwave Anisotropy Probe (WMAP) which was launched in 2001 is the first mission. Since the L2 point in the Sun-Earth system is an adequate position for astronomical observation, several astronomical satellites such as Herschel (ESA, planned to be launched in 2007), Planck (ESA, planned to be launched with Herschel), JWST (NASA, planned to be launched in 2011), and GAIA (ESA, planned to be launched in 2011) are planned to be launched to the L2 point. Future Plan of Japan. Several astronomical satellites to be located at the L2 point in the Sun-Earth system are being studied in Japan. They are such as the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and the Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE), and the Japanese Terrestrial Planet Finder (JTPF). JASMINE is a survey-observation mission, and a Lissajous orbit may be appropriate for it. SPICA and JTPF are point-observation missions, and halo orbits might be suitable for them. In the JAXA Vision -JAXA 2025- announced in March of 2005, the following statement is included; 'JAXA envisions the use in the future of the Lagrange point of the Sun-Earth system as a new locale of human activities reaching further out into the solar system. JAXA's naming of this vision is the Deep Space Harbor concept, which can also be referred to as the Gateway to Space concept'. Method of Lagrange Orbit Maintenance. Since orbits around the L2 point in the Sun-Earth system are unstable ones with a divergence time constant of about 23 days, accurate orbital maintenance maneuvers at a few month intervals are necessary. If an attitude subsystem does not cause large disturbances, however, the orbits can be maintained with a yearly Delta V of about 1 m/s based on orbit determination errors and maneuver errors. In order to perform orbital maintenance, a reference trajectory with zero Delta V is designed in advance under a precise model of perturbations. Orbital maintenance maneuvers are then performed at intervals of a few months such that the reference orbit is followed. Method of Design of Reference Orbits in United States and Europe. In the United States and Europe, a zero Delta V reference trajectory is designed by numerically obtaining a solution with the matching conditions of positions and velocities between half-period orbits from an initial trajectory derived by a third- or higher-order analytical solution of the circular restricted three-body problem. This method was first applied to SOHO. Method of Design of Reference Halo Orbits in This Report. The method above has a problem in that higher-order analytical solutions are required. This report presents a new method in which the Sequential Quadratic Programming (SQP) method is applied and the higher-order analytical solutions are not necessary. We used an elliptical restricted four-body problem, which means the elliptical restricted three-body problem plus lunar tidal force. Other perturbations include the solar radiation pressure and planetary tidal forces. Since the solar radiation pressure causes an almost constant acceleration and the planetary tidal forces are small, however, the new method presented in this report could be applied to a real solar system model. This report is the halo orbit version of the 'Design of Reference Lissajous Trajectories around L2 Point in the Sun-Earth System' published in February of 2005.
世界のラグランジュ点ミッションについて。1978年8月打上げのNASAのISEE-3(International Sun-Earth Expiorer-3)により、ラグランジュ点を利用する新しいミッションの世界が開かれた。ISEE-3は太陽-地球系L1点のハロー軌道に投入された。太陽-地球系L1点は主に太陽観測に利用され、1995年12月に打ち上げられたESA/NASA共同ミッションのSOHO(Solar Heliospheric Observatory)が現在もハロー軌道から太陽観測を続けている。太陽-地球系のL2点においては、2001年6月に打ち上げられたNASAのWMAP(Wilkinson Microwave Anisotropy Probe)が最初のミッションである。太陽-地球系のL2点は、その位置の特性から天文衛星に適した場所であり、今後もHerschel(ESA, 2007年打上げ予定)、Planck(ESA, Herschelと相乗り打上げ)、JWST(NASA, 2011年打上げ予定)、GAIA(ESA, 2011年打上げ予定)などの天文衛星の打上げが計画されている。日本の将来計画。日本においても、太陽-地球系L2点から観測する幾つかの天文衛星の検討が行なわれている。赤外線天文衛星SPICA(Space Infrared Telescope for Cosmology and Astrophysics)、高精度位置天文観測衛星JASMINE(Japan Astrometry Satellite Mission for INfrared Exploration)、太陽系外地球型惑星探査衛星JTPF(Japanese Terrestrial Planet Finder)などである。JASMINEはサーベイ観測型ミッションであり、サイズの小さいリサジュ軌道が適しているが、SPICA、JTPFなどはポイント観測型ミッションであり、どちらかと言うとサイズの大きいハロー軌道が適している。2005年3月に発表されたJAXA長期ビジョン-JAXA2025-には、「月や地球重力圏界(ラグランジュ点)を太陽系に広がる人類活動のための新しい場として活用する「深宇宙港構想」の実現をめざす。」という記述が盛り込まれている。ラグランジュ点軌道の保持の方法。太陽-地球系L1、L2点周りの軌道は、発散時定数が約23日の不安定軌道であるため、少なくとも数ヶ月間隔の精密な軌道保持制御が必須である。しかしながら、姿勢制御系などからの大きな外乱がなければ、年間1m/s程度のΔVで軌道保持できる。これを実現するため、正確な摂動モデルの下でΔVゼロの基準軌道を前もって設計しておき、それに追従する様に数ヶ月間隔で保持制御が行なわれている。欧米での基準軌道の設計法。欧米では円制限三体問題の3次以上の解析解を求め、それを初期軌道として、各半周軌道の位置萌速度のmatching条件を満たす解を数値的に求める事で、ΔVゼロの基準軌道を設計している。この方式はSOHOに対して初めで適用された。本報告のハロー基準軌道の設計法。上記の欧米の方法は高次解析解を必要とする難点があるため、本報告では、非線型計画問題の解法の1つである逐次2次計画法(SQP法; Sequential Quadratic Programming)を使い、高次解析解を求める事なく、ΔVゼロのハロー基準軌道を設計する方法を示す。摂動としては、地球公転軌道の離心率の影響と月潮汐力を考慮した。この他の摂動として、太陽輻射圧と惑星潮汐力があるが、輻射圧はほぼ一定の加速度であり惑星潮汐力は小さいので、本報告の手法は実際の太陽系モデルにも適用できると考えられる。なお、本報告は、2005年2月に発行された「太陽-地球系L2点周りのリサジュ基準軌道の設計」のハロー軌道版である。
DescriptionJAXA Research and Development Report
KeywordsHalo orbit space station; reference trajectory; Lagrangian equilibrium point; sequential quadratic programming method; L2 point; lunar tide; least squares least norm solution; reduced Newton method; orbit calculation; Japanese space program; numerical analysis; ハロー軌道宇宙ステーション; 基準軌道; ラグランジ点; 逐次2次計画法; L2点; 月潮汐; 最小2乗最小ノルム解; 減速ニュートン法; 軌道計算; 日本の宇宙プログラム; 数値解析
Document TypeTechnical Report
JAXA Category研究開発報告
Report NoJAXA-RR-05-008

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.