Overview of SMILES Mission and Scientific Outcomes

Masato Shiotani (Kyoto University, Japan) and SMILES mission team

JEM/SMILES Mission

(JEM/SMILES: Superconducting Submillimeter-Wave Limb-Emission Sounder designed to be aboard the Japanese Experiment Module on ISS; Collaboration project of JAXA - Japan Aerospace Exploration Agency - and NICT - National Institute of Information and Communications Technology -)

1. Demonstration of superconductive mixer and 4-K mechanical cooler for the submillimeter limb-emission sounding in space

   ![Mechanical Cooler] Two-stage Stirling and J-T; 20mW @4K, 200mW @20K, 1000mW @100K; Power Consumption: <300 W; Mass: 90 kg

   ![SIS Mixer] RF: 640 GHz, IF: 11-13 GHz; Junction: Nb/AlOx/Nb, ~7 kA/cm²; Fabricated at Nobeyama RO

2. Observation on atmospheric minor constituents in the middle atmosphere

   [Standard Products]
   - 1 scan: O₃, HCl, ClO, CH₃CN, O₃ isotopes, HOCI, HNO₃
   - Multi-scan: HO₂, BrO

   [Research Products] UTH, Cirrus Clouds, volcanic SO₂, H₂O₂
Background: Future Ozone Layer

Not only in the polar latitudes, but also in the mid- and lower latitudes, ozone depletion is critical whole the globe. The recovery is estimated around 2060-2070, but there is very big uncertainty in association with the Cl and Br chemistries (WMO, 2006)

Model results for the future Antarctic ozone amount calculated from chemistry-climate models (WMO, 2006)

Origin of Cl and Br in the Stratosphere

Our quantitative understanding of how halogenated very short-lived substances contribute to halogen levels in the stratosphere has improved significantly since the 2002 Assessment, with brominated very short-lived substances believed to make a significant contribution to total stratospheric bromine and its effect on stratospheric ozone. (WMO Ozone Report, 2006)
Scientific targets of SMILES

1. Inorganic Chlorine chemistry
   - ClO to HCl ratio (O3 trend in the US)
   - HOCl production (O3 trend in the LS)
   - Global ClO (background ClO)

2. Bromine budget (very short-lived source gas)

3. HOx budget (HOx dilemma)

4. Cirrus clouds (Het. reactions & rad. budget)

5. O3 isotope (mass independent chemistry)

(6. UT/LS mixing (O3 flux))

JEM/SMILES payload and status

Sep. 11, 2009: SMILES was carried by H-IIB with H-II Transfer Vehicle (HTV)
Sep. 18: HTV was attached to ISS ; Sep. 25: SMILES was attached to JEM
Sep. 28: The cooler reached 4K
Oct. 12: Continuous observations started

Apr. 21, 2010: SMILES observations have been suspended due to the failure of a critical component in the submillimeter local oscillator.
June 5: The cooler stopped its operation due to the failure of the JEM thermal control system.
Jan 19, 2011: JAXA officially announced termination of the normal operation (All dates in JST)
SMILES measurements

- High sensitivity in detecting atmospheric limb emission of the submillimeter wave range; Band-A: 624.32- 625.52GHz, Band-B: 625.12- 626.32GHz, Band-C: 649.12- 650.32GHz
- Vertical profiling (about 3km resolution) from ISS with latitudinal coverage of 65N to 38S; 53 sec for one sequence, about 100 points per one orbit, and about 1600 points per day.
- SMILES can measure the atmosphere at different local times because of the non-sunsynchronous ISS orbit.

Globally mapped ozone distributions at 28 km on October 12, 2009. Original observation points are plotted by white circles with observed ozone mixing ratios.

SMILES observation performance

Measurements on several radical species crucial to the ozone chemistry (normal O₃, isotope O₃, ClO, HCl, HOCl, BrO, HO₂ ...)

Error estimation for the mid-latitude case based on the single scan measurement.
Cf. EOS Aura measurements

EOS-Aura launched in July 2004

Typical day-time spectra

Observed spectra are in thin lines and fitted spectra are in thick lines.
Status of SMILES observation

Operational Level 2 products

- v1.0 (005-06-0024): for retrieval test (2010/01/23 released)
- v1.1 (005-06-0032): for mapping test (2010/04/19 released)
- v1.2 (005-06-0150): algorism update I (2010/09/15 released)
- v1.3 (006-06-0200): algorism update II (2011/03/02 released)
- v2.0 (007-08-0300): major update (2011/10/04 released)
- v2.1 (007-08-0310): improvement in HOCl (2012/01/16 released)
  - Public release (2012/03/05)
- v2.2 (007-09-0400): algorithm update
- v2.3 (007-09-0402): minor update
- v2.4 (008-11-0502): a priori profile update

http://smiles.isas.jaxa.jp/access/indexe.shtml
General pictures during the SMILES observation period:

i) seasonal evolutions in the equatorial latitudes

ii) a stratospheric sudden warming in Jan 2010

Seasonal evolution of ozone

![Ozone plots for different months from Oct 2009 to Mar 2010 with various color scales showing the variation in ozone concentration with latitude and altitude.](...)
Time-height section of zonal wind (EQ)

Data from ERA interim

Semi-Annual Oscillation
Quasi-Biannual Oscillation

A stratospheric sudden warming in January 2010

NP temperature at 10hPa

GP height field at 50 hPa on January 23
Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS)

by Sakazaki et al.
(accepted, JGR)
Local time variations

Daily time series and the residual from the 30-day running mean

Daily time series of ozone mixing ratio at the equator averaged over the longitude at an altitude of 44 km.
Diurnal variations averaged over 10S-10N

![Graph showing diurnal variations in ozone at different altitudes](image)

**SD-WACCM**
- Specified Dynamics (SD) version of WACCM
- Whole Atmosphere Community Climate Model
- Temperature and wind fields from NASA GEOS5.1 are nudged
  - horizontal: 1.9°x2.5°,
  - vertical: 88 levels (up to 140km)
- 57 species (Ox, NOx, HOx, ClOx, BrOx etc.)
- 230 chemical reactions

Diurnal variations in ozone

**Diurnal amplitude**
- 20–30 km: 0.05 ppmv (1%)
- 30–40 km: 0.15 ppmv (2-3%)
- 40–50 km: a minimum of 0.1 ppmv (3-4%) at about noon, and a maximum of 0.1 ppmv (3-4%) in the late afternoon
Mechanism of the diurnal variations

The peak-to-peak difference in total column ozone may be up to 1% over the course of a day.

- A bias in the SAGE sunrise and sunset profiles [McLinden et al., 2009]
- Orbital drift of SBUV onboard NOAA satellites [Wang et al., 2012]
- TOMS and OMI measurement local times are 1130 LT and 1330 LT
SAGE sunrise & sunset bias

(upper) Relative difference between SAGEII and NOAA16/SBUV2 ozone partial columns in layer 10 at 0-5N before and after the sunrise/sunset (SR/SS) bias was removed.

(lower) SR/SS bias
(McLinden et al., 2009, ACP)

Validation of ozone data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)

by Imai et al.
(under revision, JGR)
SMILES and MLS comparisons

SMILES and SD-WACCM comparisons
Variability of SMILES ozone data

Comparisons of ozone with other data
Comparisons in the mesosphere

In details for the mesosphere, see Smith et al., and for the diurnal variations, see Sakazaki et al.

Comparison of ozone profiles between Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and worldwide ozonesonde measurements

by Imai et al.
(submitted to JGR)
Comparisons with ozonesondes

Latitudinal structure – SMILES & MLS
Relation between vertical gradient and differences (SMILES – ozonesonde)

Ozonesonde measurements with ascending and descending profiles

A time-lag correction proposed by Miloshevich et al. [2004] for humidity measurements of radiosondes

\[
\frac{dX_s}{dt} = k(X_s - X_w)
\]

\[
X_w(t) = X_w - [X_s - X_w(t_0)]e^{-kt}
\]

The ozonesonde’s response time is assumed to be within 20–30 s [e.g. Smit et al., 2007], and our estimation showed response times around 28 s.

By applying this correction to the original profiles, we found a negative bias of the ozonesonde measurement more than 7% at 20 km in the equatorial latitude where the vertical gradient of ozone is steep.
Correction factors of the time-lag effect

Satellite Observations of Ozone in the Upper Mesosphere

by Smith et al.
(under revision, JGR)
Profiles of daytime ozone

Comparisons with other satellite data
Diurnal variations of mesospheric ozone

An intercomparison study of isotopic ozone profiles from the ACE, JEM-SMILES, and Odin-SMR instruments.

by Jones et al.
(to be submitted, JGR)
Comparisons for ACE and SMILES

sym-17 O₃

Average asym-18 O₃ enrichment
## Summary of results

<table>
<thead>
<tr>
<th>Platform</th>
<th>Reference</th>
<th>Altitude range (km)</th>
<th>Latitude coverage</th>
<th>Asym-18</th>
<th>Sym-18</th>
<th>Asym-17</th>
<th>Sym-17</th>
<th>$^{35}$O$_3$</th>
<th>$^{36}$O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRS-2</td>
<td>Johnson et al [2000]</td>
<td>25 - 35</td>
<td>30N - 35N, 68N</td>
<td>12.2 ± 1.0</td>
<td>6.1 ± 1.8</td>
<td>8.0 ± 5.2</td>
<td>1.6 ± 7.6</td>
<td>10.2 ± 0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>ATMOS</td>
<td>Irion et al [1996]</td>
<td>25 - 40</td>
<td>80S - 80N</td>
<td>15.0 ± 6.0</td>
<td>10 ± 7.0</td>
<td>13.0 ± 5.0</td>
<td>13.0 ± 2.7</td>
<td>7 - 11 (%)</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>Meier et al [1996]</td>
<td>Total column</td>
<td>79N</td>
<td>13.5 ± 4.0</td>
<td>11.9 ± 0.9</td>
<td>11.6 ± 2.0</td>
<td>13.0 ± 2.7</td>
<td>7 - 11 (%)</td>
<td></td>
</tr>
<tr>
<td>Balloon</td>
<td>Haverd et al [2005]</td>
<td>25 - 35</td>
<td>35N, 65N, 68N</td>
<td>13.5 ± 2.7</td>
<td>7.7 ± 2.2</td>
<td>11.6 ± 2.0</td>
<td>7.0 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balloon</td>
<td>Kronkowsky et al [2001]</td>
<td>22 - 33</td>
<td>43N, 68N</td>
<td>9.0 ± 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balloon</td>
<td>Mauersberger et al [2001]</td>
<td>22 - 34</td>
<td>32N, 34N, 43N, 68N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryosampler/Lab</td>
<td>Mauersberger et al [1993]</td>
<td>25 - 35</td>
<td></td>
<td>8.8 ± 0.2/0.4</td>
<td>21.1 ± 0.2/11.1</td>
<td>17.9 ± 0.2/3.8</td>
<td>9.4 ± 0.5/2.3</td>
<td>11.1 ± 1.0</td>
<td></td>
</tr>
<tr>
<td>ACED</td>
<td>25 - 40</td>
<td>30N - 50N</td>
<td>12.3 ± 0.2/0.9</td>
<td>17.9 ± 0.2/3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMILES L2N-C</td>
<td>25 - 40</td>
<td>30N - 50N</td>
<td>21.1 ± 0.3/11.1</td>
<td>28.4 ± 0.1/2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMILES L2N-B</td>
<td>25 - 40</td>
<td>30N - 50N</td>
<td>20.9 ± 0.1/5.8</td>
<td>23.3 ± 0.1/3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMILES L2-C</td>
<td>25 - 40</td>
<td>30N - 50N</td>
<td>28.4 ± 0.1/2.9</td>
<td>23.3 ± 0.1/3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMILES L2-B</td>
<td>25 - 40</td>
<td>30N - 50N</td>
<td>29.3 ± 0.1/7.6</td>
<td>14.5 ± 0.4/0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odin SMR</td>
<td>25 - 40</td>
<td>30N - 50N</td>
<td>11.7 ± 0.2/6.4</td>
<td>14.5 ± 0.4/0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Validation of ClO data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)**

by Suzuki et al.

(to be submitted, JGR)
SMILES and MLS comparisons

SMILES and SD-WACCM comparisons
Comparison of SD-WACCM with MLS and SMILES - daytime ClO -

Aura/MLS

SD-WACCM

Comparison of SD-WACCM with MLS and SMILES - nighttime ClO -

Aura/MLS

SD-WACCM

JEM/SMILES
CIO in the Equatorial lower stratosphere

<table>
<thead>
<tr>
<th>SMILES</th>
<th>SD-WACCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>22 km</td>
<td>8 ± 1</td>
</tr>
<tr>
<td>25 km</td>
<td>85 ± 1</td>
</tr>
<tr>
<td>28 km</td>
<td>151 ± 1</td>
</tr>
</tbody>
</table>

Diurnal variation of ClO, HO₂, and HOCl

Trial to verify the reaction rate of ClO + HO2 using SMILES data

\[
\begin{align*}
\text{ClO} + \text{HO}_2 & \rightarrow \text{HOCl} + \text{O}_2 \\
\text{HOCl} + \text{OH} & \rightarrow \text{H}_2\text{O} + \text{ClO} \\
\text{HOCl} + h\text{v} & \rightarrow \text{OH} + \text{Cl} \\
\text{O} + \text{HOCl} & \rightarrow \text{OH} + \text{ClO} \\
\text{OH} + \text{Cl}_2 & \rightarrow \text{HOCl} + \text{Cl} \\
\text{OH} + \text{OClO} & \rightarrow \text{HOCl} + \text{ClO} \\
\text{OH} + \text{Cl}_2\text{O} & \rightarrow \text{HOCl} + \text{O}_2 \\
\text{CI} + \text{HOCl} & \rightarrow \text{products} \\

k_1 = \frac{[\text{HOCl}]}{[\text{HO}_2][\text{ClO}]} \left( j_3 + k_2[\text{OH}] + k_4[\text{O}] \right)
\end{align*}
\]
Chlorine partitioning in the middle atmosphere

SMILES (+ MIPAS) can provide knowledge of chlorine partitioning in the background atmosphere based upon observations. The above figures are based on observations on October 12, 2009 at local solar noon (53N-60N) and midnight (23S-33S). ClONO2 is taken from MIPAS IMK, day 51N-57N, night 50N-54N.

Validation of HCl data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)

by Shiotani et al.
(in preparation)
SMILES and MLS comparisons

SMILES and SD-WACCM comparisons
HCl in the middle atmosphere

Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

by Stachnik et al.

(accepted, ACP)
SMILES Ice Cloud products

by Millan et al.
(accepted, JGR)
Diurnal variation in pIWP (partial Ice Water Path)

Atmospheric Response During Annular Solar Eclipse on 15 January 2010

by Imai et al.
(will be presented at AOGS 2013)
Solar eclipse on January 15, 2010

Night-time O$_3$ is $\sim$1.2 ppmv at 64km

SMILES measurements for ozone
SUMMARY

- SMILES made high sensitivity measurements with lower noise than other instruments, and reasonable retrieval results are coming out.
- Diurnal variation of such as O$_3$, ClO and so on is one of the unique outcomes contributing to scientific issues in the middle atmosphere.
- We released the SMILES level 2 data to the science community in March 2012.