Development Study of the Pre-Cooling System of ATREX Engine
1st Report: Demonstration of the Precooler for ATREX Engine

By

Tetsuya Saro*, Nobuhiro Tanatsugu*, Kenya Harada**, and Hiroaki Kobayashi*

Abstract: Here is presented an experimental and analytical study on a precooler for hypersonic air-breathing engines. Precooling of the incoming air breathed by an air-inlet gives extension of the flight envelope and improvement of the thrust and specific impulse. Three precooler models were installed into an air-turbo ramjet engine and tested under the sea level static condition. When the fan inlet temperature was down to 160K, the engine thrust and specific impulse increased by 2.6 and 1.3 times respectively. Parametric studies on the precooling design values and a sizing analysis were also performed. Decrease of tube outer diameter on the precooler is only way to increase heat exchange rates without increase of its weight and pressure loss.

1. 序

将来の宇宙活動の発展を支える宇宙輸送機として、コスト、安全性、信頼性、対環境性に優れた完全再使用型輸送システムの検討が世界的に進められている。しかし、多種多様なシステムが検討されている中、近年におけるX-33計画の失敗に至るまで、実用化への見通しは立っていない。このような再使用型宇宙輸送システムに対する要求を満たすためには、飛躍的な機体の軽量化と推進性能の向上が不可欠である。特に推進系に関しては、ロケットエンジンの性能は限界に近い状態まで改善されており、飛躍的な性能の向上は期待できない。そこで、比推力の高い空気吸い込み式エンジンを二段式スペースプレーン（TSTO）に導入することが注目されている。

空気吸い込み式エンジンをTSTOに導入する場合、できる限り初段の飛行マッハ数領域を拡大することが望ましく、地上静止状態からマッハ数5〜6までの推進での推力が要求される。初段の空気吸い込み式エンジンとして、
エア・ターボ・ラムジェット（ATR）、予冷却ターボジェット、ターボラムジェット等のTurbo Based Combined Cycle（TBCC）エンジンが有力であるが、いずれにしても高マッハ数飛行時における空力加熱からのファンの熱防護が問題となる。宇宙科学研究所では、熱防護手段のひとつとして、燃料である液体木素を冷媒とする熱交換器によって流入空気を冷却する空気予冷却方式を提案している。空気予冷却は、エンジンの作動領域を拡大するのみならず、吸入込み空気密度の増加とファンでの圧縮仕事の軽減による、推力比・推力の向上も期待できる。一方で、予冷却器（ブリクーラ）の導入によるエンジン重量の増加、伝熱面への着熱、製作技術課題等の克服すべき課題もある。特に着熱問題は危険されており、低密度で厚い着熱の生成によって、主流流路の断面積が低下することで圧力損失が増大する上、着熱の熱抵抗によって伝熱性能を大きく低下させる。ブリクーラの様々な極低温冷却面における着熱に関する研究は極めて少なく、着熱速度および着熱物性を把握することは重要である。

宇宙科学研究所では、地上静止状態から高度約30km、マッハ数6までの飛行を目指したエキスパンダサイクルATRエンジン（ATREX）用ブリクーラの開発研究を進めてきた。1995年に、要素試験と解析の結果から形状が定められ実機型ブリクーラの初号機が製作、試験された。その後改良を重ねて、現在までに3台のブリクーラを試験してきた。本論文では、ブリクーラの開発研究と視点して、空気予冷却の原理、ブリクーラの設計、開発研究とATREXエンジンにブリクーラを搭載した実証燃焼試験と各種基礎試験の結果について報告する。

記号

A：伝熱面積
a：チューブ間隔（流れと垂直方向）
b：チューブ間隔（流れ方向）
C：圧力損失係数
d：チューブ外径
h：総括熱伝達係数
k：主流の熱伝達係数

m：空気流量
N：主流方向の管数
(Nh)：熱流動単位数
N_s：スルート数
S：流路面積
T：静温
u：主流流速
w：主流流量
Δp：空気側全圧損失
Δt：対数平均温度差
γ：当量比
ρ：主流密度
r：温度比

θ：チューブと主流のなす角度（ヨー角）
θ_a：熱効率
添字
B：燃焼器
I：エアインターク
2. 空気予冷却の原理

ジェットエンジンの基本サイクルであるブレイトンサイクルエンジン（図1）では、空気を圧縮するために必要な仕事が空気密度に反比例するため、予冷却によって密度を増加させることで圧縮仕事を低減することができる。特に、液体水素を燃料とするエンジンでは、液体水素の低温度、高熱容量という冷却剤としての優れた性質によって、空気の大幅な冷却・高密度化が可能である。この液体水素と空気との熱交換を行う装置を空気予冷却装置またはブリクーラと呼ぶ。

まず、液体水素によって原理的に（熱交換器が無限に大きいため定常）冷却可能な空気温度を考える。図2に示されるように、水素流量を増やすにつれ当量比が増大し、空気温度を低下することができるが、空気の液化による温度の発生が原因で当量比1.7の点に限界がある。空気を完全に液化すれば圧縮仕事を微減させることができるが、それはには大量の水素が必要となる。熱効率の面からは当量比1付近が望ましく、このとき空気は160Kまで冷却され密度が約2倍になるため圧縮仕事を半分程度に抑えることができる。

次に、予冷却の効果を示すために、サイクル解析を行った。予冷却ブレイトンサイクル（011'23'45'67'80）と非予冷却サイクル（012345670）のTS線図を図3に示す。本解析では、簡単化のために以下の仮定を設けた。両サイクル間で空気と水素の当量比は同じとする。エンジンインテークで減速、圧縮された空気、エンジン内部で熱交換が廃熱に等しく、また、空気と燃焼ガスの定压比熱は等しいとする。圧縮によって流体に与えられる仕事は、両サイクルで等しいとする。

予冷却サイクルではファン入口での空気密度が上がるため、非予冷却サイクルと比べて同じ大きさの圧縮機仕事で、より高い燃焼室圧力を達成できる。それ故のサイクルの熱効率をη_a、η_a' とするとき、その比は次式（1）のように示される。
\[
\frac{T_a'}{T_a} = 1 + \frac{\left(\frac{\tau_a}{\tau_f+1}\right)}{\left(\frac{\tau_f}{\tau_{PC}-1}\right)}
\] \tag{1}

ただし、\(\tau_a \equiv (T_a - T_f)/T_a \), \(\tau_f \equiv T_f/T_a \), \(\tau_{PC} \equiv (T_{PC} - T_f)/T_a \),

右辺第2項は正の値であるから（負の値になる条件は\(T_f < T_a \)となりありえない）、空気予冷却によって熟効率は増加する。また、\(\tau_{PC} \)が大きくなる程（予冷却によって温度が下がるほど）熟効率は増加する。先に述べたように、原理的には多量の液体燃料によって、空気の液化温度まで冷却することができるが、エンジンの熟効率の面からは燃焼当量比1付近が望ましく、空気は約160 Kまで冷却される。また、式（1）よりインテークによる全温の上昇（\(T_f \)）、圧縮機の全温比（\(T_f \)）が小さいほど予冷却による熟効率の増加が大きく、低速飛行時に圧縮機段数の少ないエンジンにおいて予冷却が有利であることを示している。

3. ATREXエンジン用ブリクーラの開発研究

本章ではATREXエンジン用ブリクーラの開発研究の概要について述べる。ATREXエンジンは将来の完全再利用型2段式宇宙仕換機（TSTO）の1段目の推進系として機動に拡げられており、離陸から高度30 km、マッハ数6までを単一のエンジンで飛行する。図4にATREXエンジンのフロー図を示す。ターボな供給された液体燃料はブリクーラ、燃料室壁面、内部熱交換器を通過することによって再生加熱され、そのエネルギーでファンの外周部に一体となったチップタービンを回す。空気は低速時にはファンによって、高速時にはラム圧縮によってエアインテークより取り込まれる。エアインテークを通過した空気はブリクーラで冷却される。ブリクーラを出た空気はファンで圧縮された後、ローブミキサーを通ってタービンを出た燃料と混合する。ノズルとしては、高度補償型のプラグノズルが検討されている。ブリクーラには、高熱交換性能、低圧力損失、小形軽量、高信頼性といった要求が課せられており、解析、要素試験、システム実験試験によって、開発研究を進めてきた。予冷却によるブリクーラ出口温度の目標値として、当初計画においては、地上静止状態のエンジン推進比最適化の観点から160 Kを目標としていた[1]が、現在ではTSTOシステム全体の最適化基準によって180 - 190 Kに変更された。

これまでに進めてきたATREXエンジン用ブリクーラの開発研究成績を表1に示す。1992年度から1994年度まで、熟流体的基礎データを取得するために小型要素試験モデルを用いた一連の基礎試験を行った。主流は常温から900℃までの乾燥空気、冷媒は液体燃料並びに液体窒素が用いられた。この試験によって、各種形態（円管群、三角管群、フィン形状管群、フィン付気流管群）に関して、ブリクーラの伝熱特性、空気側および冷媒側の圧力損失特性を把握した。また、基礎試験と併せて、実機型ブリクーラ形状の検討を行い、数種類の形態を比較した結果、エアインテークとのマッチングの良さ、伝熱性能が高く圧力損失が低いこと、製作が比較的容易である等の理由より現在のパルパンタイプ（ロシア語で太鼓を意味する：図7）が選定された[1]。1995年度に
は、基礎試験と解析の結果を受けて、実機型ブリクーラ号機（Type-Iモデル）が、設計・製作された。これは、シェルチューブ形熱交換器で、シェル内を空気が、冷却管内を液体水素が流れる構造となっている。このブリクーラをATREX-エンジンに搭載し試験試験を行った結果、エンジン性能を向上させることが可能であったが、数回の試験の後、観察部からの微少な水素の漏れが検出されるという不具合が発生した。そこで、1995年度には、信頼性の向上を重視したType-IIモデルを製作、試験した。信頼性を向上させるため、伝熱管の径と厚肉を大きくし構造強度を上げるとともに、U字型のチューブを用いて観察し箇所を半分に減らす対策がとられた。Type-IIブリクーラを組み込んだ試験は7回行われ、構造上の不具合なく性能を取得することができた。1997年度からは、将来の飛翔試験を見据えて、小型軽量化を念頭に置いたType-IIIの設計を開始した。このモデルでは、外径2mmの冷却管をできるだけ密に配置することで、Type-1に比べて、体積で64%の小型化、重量で47%の軽量化を達成した。しかしながら、冷却管の間隔が小さくなったことによって、着陸によるブリクーラの閉塞問題が生じ、近年において、着陸に対する防止策を重要な問題として研究しており、主流に液体酸素等の冷媒を混入する方法や凝縮性ガスであるメタノールを混入する方法等が提案されている。ATREX試験と地上システム燃焼試験によって、実証している。システム試験の結果として、液体酸素を混合する方法で約40%、メタノールを混合する方法で約60%、着陸による主流空気の全圧損失が低減された。メタノールを混入する方法に関しては現在も研究を続けており、実用化が期待されている。

次章以降に、研究結果の概要を示す。

表1 ATREXエンジン用ブリクーラの開発履歴

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>小型模型を用いた</td>
<td></td>
</tr>
<tr>
<td>基礎実験</td>
<td></td>
</tr>
<tr>
<td>要素試験（冷却熱交換器実験（空気側/液側～290℃）</td>
<td>Type-1モデル</td>
<td>Type-2モデル</td>
<td>Type-3モデル</td>
<td>Type-4モデル</td>
<td>Type-5モデル</td>
<td>Type-6モデル</td>
<td>Type-7モデル</td>
<td>Type-8モデル</td>
<td>Type-9モデル</td>
<td>Type-10モデル</td>
</tr>
<tr>
<td>ATREXシステム燃焼</td>
<td></td>
</tr>
<tr>
<td>ブリクーラの設計</td>
<td></td>
</tr>
<tr>
<td>(冷却熱交換器)</td>
<td></td>
</tr>
<tr>
<td>ブリクーラの設計</td>
<td>ATREX-5</td>
<td>ATREX-10</td>
<td>ATREX-11</td>
<td>ATREX-12</td>
<td>ATREX-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. ブリクーラの設計

4.1. ブリクーラの設計パラメータによる感度解析

極超音速飛行エンジン用のブリクーラには、高燃焼性能、低圧力損失、小型軽量化、高信頼性が要求されるが、これらの相反する要求を満たす解を見つけるために、図5に示す設計パラメータが（A）熱移動単位数および空気流量がスケルト数および伝熱面積および（B）熱移動単位数当りの主流圧力損失に与える影響を調べた。パラメータとしては、チューブ径、チューブ間隔、単位空気流量あたりの流路面積、主流とチューブ面のなす角度を変んだ。単位流量あたりの熱交換量が等しいとき、必要な伝熱面積はブリクーラの総括熱伝達係数（h）に反比例する。ここでは冷却剤および熱伝達の熱抵抗は相対的に小さいためこれを無視し、総括熱伝達係数を主流空気の熱伝達係数によって求めた。

熱移動単位数および空気流量あたりの伝熱面積

\[
\frac{A}{m_H(N'TU_s)} = \frac{C_p}{h}
\]

（2）

冷却剤側および伝熱管の熱抵抗は小さいとしてこれを無視し、総括熱伝達係数を空気側熱伝達率によって与える。すなわち

\[
h = h_s = \frac{\lambda}{\delta} N_u \left(Pr, \sigma, V, h, \theta \right)
\]

（3）

Zukauskasら[2]によれば、Nusselt数はにおいて次式で与えられる。
\[N_{tu} = 0.27 \text{Re}_{g}^{0.43} \text{Pr}_{g}^{0.16} C_i(\psi) \] \tag{4} \\
\[C_i(\psi) = 1.162 \exp\left(-0.27\psi^{-1.1}\right) \] \tag{5} \\
ただし、Reynolds数は管の間における平均流速を用いて定義される。すなわち、
\[\text{Re}_g = \frac{\rho \mu d}{\mu} = \frac{d}{\mu \left(S/m^2\right)(1 - a^2)} \] \tag{6} \\
以上より、次式
\[\frac{A}{m_i(NTU)_g} = \frac{\rho \mu d \alpha \left(S/m\right)^{1.1}(1 - a^4)^{10}}{c \mu^{1.5} \eta C_i(\psi)} \] \tag{7} \\
を得る。
(B) 熱移動単位数当たりの主流圧力損失
主流圧力損失は次式で表される。
\[\Delta p_x = N C_i \rho u_i^2 \] \tag{8} \\
Zukauskasら [3] によれば圧力損失係数は次式で与えられる。
\[C_i = 0.33 (a - 1)^{-0.1} \left(1 - b^{-4}\right)^{0.8} C_i(\psi) \] \tag{9} \\
\[C_i(\psi) = 1.356 \exp\left(-0.60\psi^{-1.1}\right) \] \tag{10} \\
ただし、Reynolds数は式 (6) による、また、主流流の管列数であり、伝熱面積との関係により
\[N = \frac{a A}{\pi S} = \frac{a (NTU)_g C_i}{\pi \left(S/m^2\right) h} \] \tag{11} \\
總括伝熱係数を式 (3) で与えれば、熱移動単位数当たりの主流圧力損失について次式
\[\frac{\Delta p_x}{(NTU)_g} = 0.19 \text{Pr}_{g}^{0.8} d \alpha \left(1 - b^{-4}\right)^{10} C_i(\psi) \] \tag{12} \\
を得る。

図6に解析結果を示す。中央の点が基準としたモデルで、そこから各パラメータを変化させ、熱移動単位数および空気流量当たりの伝熱面積および熱移動単位数当たりの主流圧力損失への影響を求めた。本図において左

![図5 プリクーラ管設計パラメータ](image)

![図6 設計パラメータの感度解析結果](image)
に向かう方向は伝熱面積を小さくできるため軽量化に繋がり、下に向かう方向は空気側の圧力損失を軽減できるためエンジン性能の向上に繋がる。毎日のパラメータに関して、軽量化に伴い圧力損失の増大が生じるが、唯一チューブ外径を小さくすることのみが双方を満足することがわかる。例えば、チューブ外径を現在の 1/2 にすると、必要な熱交換面積と全圧損失は双方とも約 75%になる。これに、チューブ外径を小さくすることはチューブの本数をそれに伴う傾け付け筋の増加に繋がり、製作面では困難になる。また、主流空気流路面の増大、主流と垂直方向の伝熱管ピッチの増大、またはチューブ迎角の設定はいずれも主流圧力損失の低減につながるが、一方で重量の増大を招くため、トレイドオフが必要になることがわかる。現在採用しているパラメータ型ブリクーラは、ブリングタイプと比べて流路面積（S/m²）を大きくとれるため、同じ熱交換量で圧力損失が小さいことが特長である（図7参照）。

4.2. ブリクーラのサイズについて

宇宙輸送機用空気吹込み式エンジンは、地上静止状態から高マッハ数までの広い作動領域を持っており、ブリクーラへの要求も飛行速度に応じて変化する。即ち、低速領域においてはフン入口面積あたりの推力を増加させることであり、高速領域においては空力加熱からファンを保護することである。図8に地上静止状態においてATREXエンジンブリクーラのサイズ（伝熱面積）がブリクーラ出口の主流空気温度に及ぼす影響を示す。ここでは、空気の流れ方向にブリクーラの長さを変化させることによって伝熱面積を増やした場合を検討し、熱交換面積（A）を基準とする実験モデル（Type-3）の値（Aₚ）で損失元化している。当量比 β = 1.0 のとき、基準モデル（A/Aₚ = 1）では 190 Kまで空気温度を下げることができるが、これをさらに 180 Kまで下げようすると熱交換面積を 2 倍にするか当量比を 1.3 まで上げなければならない。すなわち、ある程度以上の伝熱面積を増やしても、熱交換量がほとんど変わらないことがある。図9に飛行マッハ数が 6 のときの結果を示す。マッハ数が高い場合には、ATREXエンジンではチタン合金製のファンを使っているためファン出口温度を 720 K以下に抑える必要がある。基準モデル（A/Aₚ = 1）では当量比 β = 1.9 が要求されるが、熱交換面積を 2 倍にしても高々 β = 1.5 に減る程度である。逆に、面積を 0.7 倍に小さくすると多量の水素（β = 3.9）が必要となり、推力の大幅な低下に繋がる。図10にブリクーラのサイズをパラメータにて、各飛行マッハ数におけるエンジン比推力の変化を示す。図中、A/Aₚ = 1が基準モデル（Type-3）で 0.5 ～ 2 倍の熱交換面積を変化させた熱交換面積を大きくする 計、マッハ数 4 以下の領域では予冷却によって比推力が増加するが、マッハ数 5 以上ではブリクーラ自身を冷却するために余分な液体本体が使われるため、比推力が低下する。一方、熱交換面積を小さくすると低マッハ数領域における推力、比推力は下がるが重量は軽減できる。また、高マッハ数領域においては、A/Aₚ = 0.75 までは比推力は増加するが、A/Aₚ = 0.50 まで小さくするとファン入口温度を下げるために多量の液体本体を必要とし、比推力が大幅に低下する。以上の解析結果を用いて、ブリクーラを除いたエンジンの重量を固定したときに、エンジンの推重比が最も大きくなる様子を計算したブリクーラサイズが選定された。ブリクーラの設計の際には、熱交換面積と重量のトレイドオフが必要であり、特に高マッハ数で飛行する際には、熱交換面積が設計点からずれた場合のマージンを十分考慮して設計しなければならない。
4.3 主流圧力損失について

本研究において設計・製作したブリクラは、空気流路面積を大きくとった伝熱性能あたかも主流圧力損失を小さくするという設計方針から、図7に示すようなパラベンタイプが選択された。このような複雑な空気流路における圧力損失を経験式より推算することは難しいため、シェル内の流れ場を非圧縮性粘性軸対称流として数値的に計算した。ただし、空気温度は常温で一定として、熱計算は行なっていない。また、乱流モデルには標準のk-εモデルを用い、管群の影響は、管群を過ぎる各管流れの全圧損失を各流をもとに、運動方程式中の外力項および乱流エネルギー/粘性散逸率の生成項として考慮した。

解析結果の一例（Type4）を図11に示す。ブリクラ入口（管群の上流）部分における流路の急拡大にともなって大きな全圧損失が生じている様子がわかる。また、慣性によって流れは後方の流路に、また流路内においても後方に偏っている。このような偏流は過大な圧力損失を招くのみならず、伝熱性能の低下にもつながるために、入口部分の流路面積を大きくすること、ガイドペーンを設けること等の対策が必要である。
4.4 冷却剤圧力損失について

冷却剤の圧力損失は、次の点でエンジン性能に不利に影響する。

1) 冷却剤を加圧するためのボンプ仕事の増大
2) 冷却剤入口圧力の増加に伴う冷却剤流量（伝熱管、マニホールド等）構造重量の増大

冷却剤の圧力損失を低減するためには、伝熱管の列かを並列に接続すればよい。しかし、温度伝熱管の長さを減らして並列に接続する本数を増やすと、マニホールド重量の増大や、熱交換器の増加に伴うコストの増大、伝熱管の低下的問題が生じる。また、伝熱管の長さが熱交換器全体の形状に依存するために、これを任意に設定できない場合もある。図12は、基準運転条件（空気流量9kg/s、冷却剤流量0.35kg/s）時に1MWの熱交換量を得るための伝熱面積と（ただし空気流量面積が0.5m²の場合）、その際に冷却剤圧力損失を1MPaに抑えるための冷却器の長さおよび並列に接続する本数を、冷却器に対して示したものである。管径が小さくなるほど冷却剤圧力損失の制限からその長さを短くしなければならず、従ってより多くの管を並列に接続しなければならない。主流圧力損失および熱交換器重量を低減するためにには管径を小さくすることが望ましいが（4.1節参照）、上記の結果と現在の製作技術等を勘案すると、管径1mmは難しく、2mm程度が妥当であると思われる。
5. エンジンシステム燃焼試験によるブリクーラの実証

5.1 地上燃焼試験用ブリクーラの試作

ブリクーラの開発、実証を目的として、サブスケールエンジンの地上燃焼試験を行った。供試体であるATREX-500エンジンは、ファン径深30cm、推力500 kgf級のエキスパンダサイクルATRエンジン（図13）で、ランタンクからの加圧供給方式でブリクーラに圧力4 MPaの液体水素を供給している。液体水素は、ブリクーラ、内部熱交換器、再生冷却型燃焼器によって再生加熱され、そのエネルギーでファンの回転に配慮されたチップタービンを動かす。過去にブリクーラを装着しない状態での燃焼試験が行われ、設計値を満足していることを確認した。詳細は、「ATREX-エンジン燃焼試験による地上システム実証」（本論文集）を参照のこと。

図13 ATREX-500 エンジン外観図

<table>
<thead>
<tr>
<th></th>
<th>Type-I</th>
<th>Type-II</th>
<th>Type-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>冷却器</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>尺寸</td>
<td>mm</td>
<td>115.9</td>
<td>115.9</td>
</tr>
<tr>
<td>質量</td>
<td>kg</td>
<td>115.9</td>
<td>115.9</td>
</tr>
<tr>
<td>管内熱交換器</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>管内冷却器</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>管内熱交換器</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>管内冷却器</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>焼焼槽</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冷却器冷却器</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

図14 ブリクーラ（左：断面図、右上：設計図、右下：Type-IIIの1/4ユニット）
第3章で示したように、これまでにType-1—Type-IIIまでの３基のブリクーラが試作されている。断面図、設計図、およびType-IIIのチューブユニットの写真を図14に示す。ブリクーラの形状については、円錐型、螺旋型、Baraban型（ドラム型）の3形状を基準としており、性能面および製造面から多角的な比較検討を行った。その結果、蝶付箇所、チューブの加工性等から製作の容易な点を考慮して最終的にBaraban型を選定した。製作面、性能面から順に改良を重ね、Type-IIIは、飛翔試験を念頭に置き、軽量化を最優先課題として設計・製作された。ブリクーラの形状については、上記のサイズを考慮、概念設計手法に基づき、製作面から妥当であると考えられた外径2mmの冷却管を用いて、これにできる限り常に配列することで対処した。本ブリクーラはシールシューブ型熱交換器で、シール内を空気が、冷却管内を冷却材が流れ込む構造となっている。管群は半径方向に6パースより構成されており、冷却材は内側のパースから入り、外側のパースへ流れ、外側から流れる（向流型）。チューブユニットは、製作を容易にするために写真の様に4分割構造となっている。材料には、液体水素と接触する冷却管およびマニホールドはステンレス（SUS316L）を、その他については重量を低減するためにアルミニウム（A2024-T）を用いた。誘材にはニッケル鉄（AMS4778）を用いた。

5.2. 試験結果

5.2.1. 空気予冷却によるエンジン性能の向上

試験結果の概要を表2に示す。試験は、それぞれのブリクーラを装着した計測で5〜7試験を行った。また、Type-IIIブリクーラにおいては着書が問題となり、対策として液体窒素やメタンをクロストップに設置して行うので、データも併記する。本論文では、着書対策を講じない場合の結果について説明し、着書対策に関しては後述の冷却に掲載の第2編で説明する。二流なノズルのスロート径、同軸、ターピン入口温度等の条件が異なるため、エンジンの性能を直接比較することはできないが、Type-1ブリクーラを装着した試験ではノズルが大きく同軸数が低いにも関わらず大きな能力が得られた。また、Type-IIIブリクーラを装着した試験においては、定常状態がえられなかったため、実験開始後40秒から60秒の平均値で評価している。

図15および図16にファン入口温度（ブリクーラ空気側入口温度）を変化させたときのエンジン推力への影響

<table>
<thead>
<tr>
<th>試験番号</th>
<th>ATREX6-1</th>
<th>ATREX6-2</th>
<th>ATREX9-7</th>
<th>ATREX10-2*</th>
<th>ATREX11-1*</th>
<th>ATREX13-8*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ブリクーラ形状</td>
<td>無</td>
<td>Type-1</td>
<td>Type-II</td>
<td>Type-III</td>
<td>Type-III</td>
<td>Type-III</td>
</tr>
<tr>
<td>着書対策</td>
<td>無</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>喰射流量，kg/s</td>
<td>330</td>
<td>370</td>
<td>370</td>
<td>370</td>
<td>370</td>
<td>370</td>
</tr>
<tr>
<td>ノズル径，mm</td>
<td>18,300</td>
<td>16,000</td>
<td>17,300</td>
<td>17,700</td>
<td>17,400</td>
<td>17,400</td>
</tr>
<tr>
<td>ファン回転数，rpm</td>
<td>4,110</td>
<td>4,960</td>
<td>3,160</td>
<td>2,760</td>
<td>4,320</td>
<td>3,110</td>
</tr>
<tr>
<td>推力，N</td>
<td>13,000</td>
<td>14,200</td>
<td>13,900</td>
<td>13,700</td>
<td>12,800</td>
<td>12,100</td>
</tr>
<tr>
<td>出力推力，N・sec/kg</td>
<td>0.372</td>
<td>0.227</td>
<td>0.274</td>
<td>0.338</td>
<td>0.258</td>
<td>0.258</td>
</tr>
<tr>
<td>冷却流体流速，kg/s</td>
<td>6.74</td>
<td>8.28</td>
<td>6.50</td>
<td>5.06</td>
<td>7.63</td>
<td>6.12</td>
</tr>
<tr>
<td>冷却流体入口温度，K</td>
<td>284</td>
<td>283</td>
<td>285</td>
<td>294</td>
<td>265</td>
<td>298</td>
</tr>
<tr>
<td>冷却流体出口温度，K</td>
<td>176</td>
<td>227</td>
<td>206</td>
<td>179</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>空気圧回復率</td>
<td>0.935</td>
<td>0.956</td>
<td>0.875</td>
<td>0.902</td>
<td>0.934</td>
<td>0.934</td>
</tr>
<tr>
<td>頭部損失係数</td>
<td>0.37</td>
<td>0.42</td>
<td>0.275</td>
<td>0.67</td>
<td>0.69</td>
<td>0.63</td>
</tr>
<tr>
<td>空気圧力損失，kW</td>
<td>1,004</td>
<td>505</td>
<td>824</td>
<td>852</td>
<td>953</td>
<td></td>
</tr>
<tr>
<td>空気圧力損失，kW</td>
<td>961</td>
<td>531</td>
<td>449</td>
<td>658</td>
<td>624</td>
<td>624</td>
</tr>
</tbody>
</table>

※40秒から60秒の平均値
図15 空気予冷却による推力の増加

図16 空気予冷却による推力の増加

について実験値とシミュレーションによる予測値を示す。ただし、各実験ごとの推力ノズルの径、回転数、等の違いによる影響をなくすために、実験値は計算によって同軸数17,000rpm、ノズル径370mm、タービン入口温度288Kに相当するように補正した値である。また、Type IIIブリクーラを装着した場合のデータは、着霧の影響が大きく予測と全く異なる挙動をとったため、正常なブリクーラの作動と見なさずにこの図からは除外した。推力、比推力ともに実験値は、予測計算値とはほぼ一致した。全体的に、ファン入荷温度が低いほど実験値が予測値よりも低い傾向にあるが、これは予冷却器による空気側の全圧損失とファン入口における空気温度、圧力のディストーションに起因するものと考えられる。推力、比推力ともに中間冷却効果による空気流量の増加およびファンでの圧力上昇の増加によって飛躍的に上昇し、常温から180Kまで冷却することによってそれぞれ1.8倍、1.2倍となった。

図17に各ブリクーラについて、圧力損失係数の時間変化を示す。圧力損失係数は、ブリクーラを通過するときに失われる全圧をブリクーラ入口における動圧で除したものとして定義した（表2に代表値を示した）。Type I、Type IIにおいては、ブリクーラに液体水素を流さない場合（無冷却時）も流した場合（冷却時）も時間的な変化が小さく、着霧による影響はほとんど見られなかった。一方、Type IIIでは無冷却時には他と同様の圧力損失レベルであったが、冷却時には着霧の影響で損失が増加した。その結果、実験開始後60秒でブリクーラによる全圧損失がエンジン空気全圧の15％を越え、着霧の影響が大きかった原因として、Type IIIのチューブ配列がこれまでと異異なることが挙げられる。図18に主流に垂直な断面で示したチューブ配列を示す。Type Iモデルでは（Type IIも同様）チューブが中心部からの放熱に並び、周方向のチューブ同士の隙間が外周側に行くほど広がっており、最外周部での隙間は3mmであった。一方、Type IIIでは小型化を図るためにチューブを密に並べ、周方向の隙間を約1mmに統一した。型ビデオによる着霧の様子（図19）から判断すると、外周側は冷却開始から約20秒後にチューブ表面温度が点状を下回ることで着霧が開始し、時間の経過とともに着霧量は増加し、冷却開始後約50秒後には流れの変化が見られた。一方、内部側は冷却開始後すぐに空気温度が点状を下回り、空気中に含まれる水蒸気はミストと呼ばれる固体（または液体）の粒子として結露している。このようにミスト化した場合には霧の成長がほとんど進まず、50秒後にもチューブに薄く霧が付着するだけに留まった。画面では、上流側で結露した着霧の欠点が見える。このブリクーラにおいてアンシングと呼ばれる着霧の変化は水蒸気量が多く比較的主流空気密度の高い部分（外周部）で生じ、水蒸気がミスト化するような部分（内部部）での着霧はほとんどない。これが、外周部で間隔の狭いType IIIが着霧によって流れ抵抗を起こしたと考えられる。

着霧を伴わない場合の圧力損失の実験値を4.3節で説明したCFD解析と比較した結果を図20に示す。実験結果はType Iモデルについて、エンジンの起動時から1秒間隔でプロットした。一方計算結果は、主流が一様であるという仮定の下、管群における全圧損失を経験式を用いて計算したもの（A、△）と、CFD解析により管群だけでなく、ブリクーラ全体を計算法したもの（○）である。CFD解析においてはブリクーラにおける熱交換は考慮していないうが、主流流路の幅が大きく着霧による圧力損失と無視できる場合には、図17の様に冷却の有無によって圧力損失が大きく異なる。
失係数はほとんど変化しない。実験値は管群だけを考慮した予測値に比べて著しく大きく、ブリクラ全体で計算したものとはほぼ一致した。すなわち、圧力損失の大部分は管群を通過するときではなく、ブリクラ入口（管群の上流）部分における流路の急拡大にともなって生じていることがわかった。さらに、入口部での慣性力によって流れは後方の流路に偏り、より大きな全圧損失が生じている。この結果をふまえ、Type-IIモデルにおいては、入口部分の流路面積（シェル部分）を拡大し、加えて循環防止の為のガイドペーンを設置した結果、圧力損失を30％程度低減することができた。Type-IIIモデルでは、重量軽減の為にガイドペーンを廃止し、代わりにシェル形状をテーパー型に改良して循環を防止した。

図19に各試験における空気の熱交換量を予測計算値と併せて示す。予測値は入口の流量、温度、圧力および管群における熱伝達率の式を用いて計算したもので、空気の流量（図では6〜8kg/s）によって若干変化する。また、主流空気は流れの中で均一に流れるとし、相変化は考慮していない。実験値においては、空気中に含まれる水分の相変化および相変化を考慮した場合と考慮しない場合を示した。実験値は実際の熱交換量に相当し、相変化を考慮した空気の温度によって相当する。実験時に測定温度の差があったType-Iでは差の差は小さく、温度の高かったType-IIIでは空気の温度低下は少なかったものの水蒸気を考慮した熱交換量は高くなる。水蒸気の影響を考慮した場合でも実験値は予測値に比べて1〜2割程度、この理由として予測計算において考慮されなかった空気の相変化および冷却面に生成した膜の熱抵抗の影響を挙げられる。着霜が熱交換性能に与える影響としては熱抵抗になること、伝熱面積が増えること、レイノルズ数が増加すること、空気流量、着霜量等条件が異なるため単純な比較はできないが、Type-IIIは他に比べて高い熱交換特性を示しており、着霜を低減することで高荷重をブリクラの実現が期待される。
6. まとめ

これまでに、宇宙科学研究所では、要素試験、地上凝縮試験、数値解析を通じて、ブリクーラの熱交換特性、圧力損失特性に関して研究を行ない、空気予冷却システムをATREXエンジンに導入することによって、エンジンの推力、比推力が向上することを実証した。次のステップであるブリクーラの実用化に向けて、熱交換器としての高負荷化、軽量化、信頼性の向上（評価）、換気低減策の適用、ブリクーラを出た後の空気のディストーション対策、高速飛行時における予冷却システムの有効性の実証が、主な技術課題である。以下に、本研究で得られた結論をまとめる。

ブリクーラを用いた予冷却によって、液体水素を燃料とするプレートコンパクトエンジンの比出力と効率は、大きく向上する。

ブリクーラの熱交換性能の向上と軽量化を両立させるためには、チューブの径を小さくすることが有効である。

ブリクーラのサイジングに関しても、熱交換器と重量のトレードオフが重視であり、特に高マッハ数で飛行する際には、熱交換器が設計点からずれた場合のマージンを十分考慮して設計しなければならない。

ブリクーラにおける着霜は、主に比較的主流速度の高い外周側に著しい。一方、主流速度の低い内周側では、水蒸気が冷却されミスト化されるため、霜層の成長は少ない。

ブリクーラの圧力損失を減らすためには、入口部の急拡大部の設計が重要であり、管壁に一定に主流が通過するような工夫が必要である。

参考文献

