The analysis of wing-body configuration by Building-Cube Method （ BCMによる翼胴形態解析の現状）

○Takaya Kojima, Shinya Makino, Takashi Misaka, Shigeru Obayashi
(Institute of Fluid Science, Tohoku University)
Daisuke Sasaki
(Kanazawa Institute of technology)

Cases

• APC-III Case 1
 NASA-CRM aerodynamic prediction at cruise and high AoA
 → BCM-TAS coupling solver

• APC-I Case2
 Wake of NASA-CRM wing-body configuration
 → BCM solver
Flow solver

• BCM (Building Cube Method)
 - Cartesian mesh based solver

- Pros
 • Easy parallel computation
 • Easy grid generation for complex shapes
 • High-order spatial accuracy

- Cons
 • Shape reproducibility
 • Difficulty in resolving boundary layer

Near wall treatment

• BCM-TAS coupling solver
 • Efficient analysis near the wall: TAS*
 • Sufficient resolution in the far field: BCM

*TAS (Tohoku university Aerodynamic Simulation)
 - Unstructured mesh solver
Case 1: Numerical methods

Solver: BCM-TAS coupling

<table>
<thead>
<tr>
<th></th>
<th>TAS</th>
<th>BCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governing Eq.</td>
<td>Compressible NS Eq.</td>
<td>Compressible Euler Eq.</td>
</tr>
<tr>
<td>Discretization</td>
<td>Cell-vertex finite volume</td>
<td>Cell-centered finite volume</td>
</tr>
<tr>
<td>Inviscid Flux</td>
<td>HLLEW</td>
<td>HLLEW</td>
</tr>
<tr>
<td>Time integration</td>
<td>LU-SGS</td>
<td>LU-SGS</td>
</tr>
<tr>
<td>Turbulence model</td>
<td>SA-noft2</td>
<td>-</td>
</tr>
</tbody>
</table>

Grid: MEGG3D Medium mesh + BCM mesh

Linear interpolation between BCM and TAS
Case 1: Results

- Wake of NASA-CRM wing-body configuration
 - $M = 0.85$, $Re_c = 2.26\times10^6$, $T_{ref} = 284$ K
 - $\text{AoA} : 3.07, 4.84\deg$
 - Wing deformation considered

C_m : BCM-TAS is similar to FaSTAR-Hexagrid (A1-H)
C_D : BCM-TAS estimates about 20 counts larger C_D than other solvers
→ To be investigated in the future
 (Turbulence model, grid, interpolation between TAS-BCM)

APC-I Case 2

Wake of NASA-CRM wing-body configuration
- $M = 0.85$, $Re_c = 2.26\times10^6$, $T_{ref} = 284$ K
- $\text{AoA} : 3.07, 4.84\deg$
- Wing deformation considered
APC-I Case 2

Wake of NASA-CRM wing-body configuration
- $M = 0.85$, $Re_c = 2.26 \times 10^6$, $T_{ref} = 284$ K
- $AoA : 3.07, 4.84^\text{deg}$
- Wing deformation considered

Validation of wake prediction by BCM
Compare the results of BCM-TAS coupling solver and the experiment

APC-I Case 2: Numerical methods

<table>
<thead>
<tr>
<th>Governing Eq.</th>
<th>BCM-NS</th>
<th>BCM-Euler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressible NS Eq.</td>
<td>Compressible Euler Eq.</td>
<td></td>
</tr>
<tr>
<td>Discretization</td>
<td>Cell-centered finite volume</td>
<td>Cell-centered finite volume</td>
</tr>
<tr>
<td>Inviscid Flux</td>
<td>SLAU</td>
<td>HLLEW</td>
</tr>
<tr>
<td>Time integration</td>
<td>LU-SGS</td>
<td>LU-SGS</td>
</tr>
<tr>
<td>Turbulence model</td>
<td>SA-noft2-R</td>
<td>-</td>
</tr>
</tbody>
</table>

Wall boundary treatment
- Immersed boundary method (Ghost cell approach)
 - Density & pressure \rightarrow Zeroth-order interpolation
 - Velocity \rightarrow Linear interpolation
APC-I Case 2: Computed cases

- Solvers
 - BCM-RANS : NS solver / nonslip condition
 - BCM-RANS-SLIP : NS solver / slip condition
 - BCM-Euler : Euler solver
 - Coupling-Euler : TAS(SA) / BCM Euler
 - Coupling-DES : TAS(SA) / BCM (Lagrangian SGS)

- Grid

<table>
<thead>
<tr>
<th></th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum grid size</td>
<td>0.0061035 (0.92mm)</td>
<td>0.0030518 (0.46mm)</td>
<td>0.0015259 (0.23mm)</td>
</tr>
<tr>
<td>Total cell number</td>
<td>253,468,672</td>
<td>1,425,592,320</td>
<td>1,459,552,256</td>
</tr>
</tbody>
</table>

2017/6/28 Third Aerodynamics Prediction Challenge

APC-I Case 2 : Result (u)

<table>
<thead>
<tr>
<th></th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANS</td>
<td>Wing tip vortex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANS-SLIP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euler</td>
<td></td>
<td>body</td>
<td></td>
</tr>
<tr>
<td>EXPERIMENT</td>
<td>inboard wing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2017/6/28 Third Aerodynamics Prediction Challenge
APC-I Case 2 : Result (C_p)

- The result of RANS does not have sufficient negative pressure to generate wing tip vortex
APC-I Case 2: Result \((w)\)

- Velocity profile along the horizontal line passing through wing-tip vortex center

2017/6/28
Third Aerodynamics Prediction Challenge
Conclusion

We analyzed APC-III Case 1 and APC-I Case 2 by BCM

- **APC-III Case 1 (BCM-TAS coupling solver)**
 - Good agreement with the experiment and other CFD solver for C_L and C_m
 - C_D appears larger than other solvers
 → Turbulence model? grid? interpolation between BCM-TAS?

- **APC-I Case 2 (BCM solver)**
 - The RANS solver did not generate a wing-tip vortex
 - BCM result could not capture separation around kink
 → It is necessary to properly resolve the surface of the object
 - Peak tangential velocity is overestimated in the BCM-Euler, and vortex core appears too large in the BCM-RANS-SLIP