Numerical Prediction of Aerodynamic Characteristics of Multi-Element High-Lift Airfoil 30P30N by scFLOW

Fourth Aerodynamics Prediction Challenge (APC-IV)

Background

- **Our participation in APC**
 - APC-I(2015), *SC/Tetra-V12*
 - APC-III(2017), *scFLOW-V14RC1*

<table>
<thead>
<tr>
<th>Software</th>
<th>CPU</th>
<th>Calc. time [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC/Tetra</td>
<td>72</td>
<td>7.0</td>
</tr>
<tr>
<td>scFLOW</td>
<td>144</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Background

- Practical use of calculation data
 - Validation site for scFLOW

![Comparison with experiments measured by APC-III](image)

Objectives

- Objectives of this work
 - Use two types of numerical meshes
 - **Structured mesh** provided by APC-IV
 - Validate the solver in scFLOW
 - **Polyhedral mesh** generated with scFLOW
 - Validate polyhedral mesh generation for wing geometry

- Our work
 - Steady-state analysis by 2D mesh
 - **Case 1-1: 30P30N**
 - Alpha variation by using two types of meshes
 - Grid convergence for structured mesh
 - **Case 2-1: 30P35N**
 - Comparison with 30P30N by using two types of meshes
Calculation Methods

- **Calculation methods of scFLOW**
 - **Solver**
 - Density-based solver
 - **Discretization method**
 - Cell centered finite volume method
 - **Inviscid flux**
 - *Roe solver* (Roe 1981)
 - **Viscous flux**
 - **Alpha damping scheme** (Nishikawa 2010, 2011)
 - Evaluate the gradient at a CV-face by using *high-frequency damping term* with the parameter Alpha in addition to the arithmetic mean of elemental gradients
 - *Stable and accurate even for skewed mesh* (Jalali et al. 2014)

Calculation Methods

- **Calculation methods of scFLOW**
 - Accuracy of inviscid terms and limier function
 - 2nd order, van Leer-type Hishida limiter (2010)
 - **Calculation method of gradients**
 - Weighted least-squares method
 - **Non-linear solver in a steady-state analysis**
 - **Implicit defect correction method**
 - Jacobian is constructed exactly based on a compact first-order inviscid scheme and a compact viscous scheme (Nakashima et al. 2014, Nishikawa et al. 2017)
 - *Expect a fast convergence for non-linear solver*
 - **Turbulence model**
 - *Spalart-Allmaras One-Equation Model (SA)*
Problem Setup

- **Analysis conditions**
 - **Geometry**
 - Case 1-1: 30P30N
 - Case 2-1: 30P35N
 - **Flow condition**
 - Mach number: 0.17
 - Reynolds number: 1.71×10^6
 - Angle of attack (AoA): 0-26[deg]

Numerical Mesh

- **Comparison of L2(medium) meshes for 30P30N**
 - Structured mesh
 - Polyhedral mesh
Numerical Mesh

- **Polyhedral mesh generation by scFLOW**
 - Definition of spatial element size by octants
 - Octant size: 2.54×10^{-5} (T.E. of wings) - 0.83 (far-field) [m]
 - $\sim 1.3 \times 10^{-2}$
 - $\sim 1.6 \times 10^{-3}$
 - $\sim 8.1 \times 10^{-4}$
 - $\sim 4.1 \times 10^{-4}$

- **Prism layer insertion in polyhedral mesh generation**
 - Thickness of 1st layer: 5.08×10^{-6} [m]
 - Variation of thickness: 1.2
 - Number of layers: 20

- **L2(medium) mesh used in this calculation**
 - The number of elements

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Type</th>
<th>Elements</th>
<th>Nodes</th>
<th>Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>30P30N</td>
<td>Structured</td>
<td>112,474</td>
<td>226,496</td>
<td>450,672</td>
</tr>
<tr>
<td></td>
<td>Polyhedral</td>
<td>107,261</td>
<td>361,772</td>
<td>502,671</td>
</tr>
<tr>
<td>30P35N</td>
<td>Structured</td>
<td>112,474</td>
<td>226,496</td>
<td>450,672</td>
</tr>
<tr>
<td></td>
<td>Polyhedral</td>
<td>106,754</td>
<td>359,698</td>
<td>500,113</td>
</tr>
</tbody>
</table>
Numerical Conditions and Calculation Time

- **Numerical conditions**
 - Initial conditions; *Uniform flow*
 - Calculates 10,000 cycles
 - Evaluate the *averaged* variables over the last 1,000 cycles

 Ex. Polyhedral mesh

 ![Graph](image)

- **Calculation time for L2(medium) mesh with 36cpu**

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Type</th>
<th>Calc. time[min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30P30N</td>
<td>Structured</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Polyhedral</td>
<td>7.2</td>
</tr>
</tbody>
</table>

 ![Table](image)

Case 1-1: Alpha Variation for 30P30N

- **Comparison of aerodynamic coefficients**
 - Cl has a reasonable agreement with the reference [AIAA 2014-2080]

 ![Graphs](image)
Case 1-1: Alpha Variation for 30P30N

- **Comparison of Cp distribution on the wing surface**
 - Good agreement with the experiments
 - AoA=5.5[deg]
 - AoA=9.5[deg]
 - AoA=14[deg]

Case 2-1: Effect of Flap Angle

- **Comparison of lift and pressure coefficients**
 - Left: Lift, Right: Pressure coefficient
 - Structured mesh
 - Polyhedral mesh

This document is provided by JAXA.
Case 2-1: Effect of Flap Angle

- Comparison of streamlines
 - Separation behavior on the flap wing is different between mesh types
 - Structured mesh
 - Polyhedral mesh

Conclusions

- Conclusions of this work
 - Case 1-1: The pressure distribution on the wing surface is reasonable agreement with experiments, not only for the structured mesh provided by APC-IV, but also for the polyhedral mesh generated with scFLOW
 - Case 2-1: Separation behavior on the flap wing is different between mesh types

- Our future work
 - Acoustic analogy of FW-H method will be released in the next version of scFLOW
 - We will try the prediction of acoustic pressure for Case 3
 - Using acoustic analysis software Actran with scFLOW
Supplement

- Co-simulation using Adams and scFLOW
 - A coupled analysis with multi-body dynamics analysis software Adams

Displacement and Euler angles
Pressure force, shear stress

Flap movement

Thank you for your attention