| タイトル | Prelude to Cycle 23: The Case for a Fast-Rising, Large Amplitude Cycle |
| 本文(外部サイト) | http://hdl.handle.net/2060/19980002735 |
| 著者(英) | Reichmann, Edwin J.; Wilson, Robert M.; Hathaway, David H. |
| 著者所属(英) | NASA Marshall Space Flight Center |
| 発行日 | 1996-10-01 |
| 言語 | eng |
| 内容記述 | For the common data-available interval of cycles 12 to 22, we show that annual averages of sunspot number for minimum years (R(min)) and maximum years (R(max)) and of the minimum value of the aa geomagnetic index in the vicinity of sunspot minimum (aa(min)) are consistent with the notion that each has embedded within its respective record a long-term, linear, secular increase. Extrapolating each of these fits to cycle 23, we infer that it will have R(min) = 12.7 +/- 5.7, R(max) = 176.7 +/- 61.8, and aa(min) = 21.0 +/- 5.0 (at the 95-percent level of confidence), suggesting that cycle 23 will have R(min) greater than 7.0, R(max) greater than 114.9, and aa(min) greater than 16.0 (at the 97.5-percent level of confidence). Such values imply that cycle 23 will be larger than average in size and, consequently (by the Waidmeier effect), will be a fast riser. We also infer from the R(max) and aa(min) records the existence of an even- odd cycle effect, one in which the odd-following cycle is numerically larger in value than the even-leading cycle. For cycle 23, the even-odd cycle effect suggests that R(max) greater than 157.6 and aa(min) greater than 19.0, values that were recorded for cycle 22, the even-leading cycle of the current even-odd cycle pair (cycles 22 and 23). For 1995, the annual average of the aa index measured about 22, while for sunspot number, it was about 18. Because aa(min) usually lags R(min) by 1 year (true for 8 of 11 cycles) and 1996 seems destined to be the year of R(min) for cycle 23, it may be that aa(min) will occur in 1997, although it could occur in 1996 in conjunction with R(min) (true for 3 of 11 cycles). Because of this ambiguity in determining aa(min), no formal prediction based on the correlation of R(max) against aa(min), having r = 0.90, or of R(max) against the combined effects of R(min) and aa(min)-the bivariate technique-having r = 0.99, is possible until 1997, at the earliest. |
| NASA分類 | Solar Physics |
| レポートNO | NASA-TP-3654 NAS 1.60:3654 M-818 |
| 権利 | No Copyright |
|