JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルNeural Network Prediction of New Aircraft Design Coefficients
本文(外部サイト)http://hdl.handle.net/2060/19970023478
著者(英)Ross, James C.; Jorgensen, Charles C.; Norgaard, Magnus
著者所属(英)NASA Ames Research Center; Technical Univ. of Denmark
発行日1997-05-01
言語eng
内容記述This paper discusses a neural network tool for more effective aircraft design evaluations during wind tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha Research Concept aircraft (SHARC). Four different networks were trained to predict coefficients of lift, drag, moment of inertia, and lift drag ratio (C(sub L), C(sub D), C(sub M), and L/D) from angle of attack and flap settings. The latter network was then used to determine an overall optimal flap setting and for finding optimal flap schedules.
NASA分類Aeronautics (General)
レポートNO97N23806
NASA-TM-112197
A-976719
NAS 1.15:112197
権利No Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。