JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルCharacterization of Hybrid Ferroelectric/HTS Thin Films for Tunable Microwave Components
本文(外部サイト)http://hdl.handle.net/2060/19970019890
著者(英)Bhasin, K. B.; Miranda, F. A.; Mueller, C. H.; Winters, M. D.
著者所属(英)NASA Lewis Research Center
発行日1996-01-01
1996
言語eng
内容記述Since the discovery of High-Temperature-Superconductors (HTS) in 1986, a diversity of HTS-based microwave components has been demonstrated. Because of their low conductor losses, HTS-based components are very attractive for integration into microwave circuits for space communication systems. Recent advancements have made deposition of ferroelectric thin films onto HTS thin films possible. Due to the sensitivity of the ferroelectric's dielectric constant (epsilon(sub r)) to an externally applied electric field (E), ferroelectric/superconducting structures could be used in the fabrication of low loss, tunable microwave components. In this paper, we report on our study of Ba(0.5)Sr(0.5)TiO3/YBa2Cu3O(7-delta) and Ba(0.08)Sr(0.92)TiO3/YBa2Cu3O(7-delta) ferroelectric/superconducting thin films on lanthanum aluminate (LaAlO3) substrates. For the (Ba:Sr, 0.50:0.50) epitaxial sample, a epsilon(sub r) of 425 and a loss tangent (tan delta) of 0.040 were measured at 298 K, 1.0 MHz, and zero applied E. For the same sample, a epsilon(sub r) of 360 and tan delta of 0.036 were obtained at 77 K, 1.0 MHz, and zero applied E. Variations in epsilon(sub r) from 180 to 360 were observed over an applied E range of 0V/cm less than or equal to E less than or equal to 5.62 x 10(exp 4) V/cm with little change in tan delta. However, the range of epsilon(sub r) variation for the polycrystalline (Ba:Sr, 0.08:0.92) sample over 0V/cm less than or equal to E less than or equal to 4.00 x 10(exp 4) V/cm was only 3.6 percent while tan delta increased markedly. These results indicate that a lack of epitaxy between the ferroelectric and superconducting layers decreases tuning and increases microwave losses.
NASA分類Electronics and Electrical Engineering
レポートNO97N21451
NAS 1.15:112765
NASA-TM-112765
E-9806
権利No Copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/101577


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。