JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルThe Extrapolation of Elementary Sequences
本文(外部サイト)http://hdl.handle.net/2060/19960022276
著者(英)Saul, Ronald; Laird, Philip
著者所属(英)NASA
発行日1992-10-01
言語eng
内容記述We study sequence extrapolation as a stream-learning problem. Input examples are a stream of data elements of the same type (integers, strings, etc.), and the problem is to construct a hypothesis that both explains the observed sequence of examples and extrapolates the rest of the stream. A primary objective -- and one that distinguishes this work from previous extrapolation algorithms -- is that the same algorithm be able to extrapolate sequences over a variety of different types, including integers, strings, and trees. We define a generous family of constructive data types, and define as our learning bias a stream language called elementary stream descriptions. We then give an algorithm that extrapolates elementary descriptions over constructive datatypes and prove that it learns correctly. For freely-generated types, we prove a polynomial time bound on descriptions of bounded complexity. An especially interesting feature of this work is the ability to provide quantitative measures of confidence in competing hypotheses, using a Bayesian model of prediction.
NASA分類Behavioral Sciences
レポートNO96N25300
NASA-TM-111488
FIA-92-31
NAS 1.15:111488
権利No Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。