JAXA Repository / AIREX 未来へ続く、宙(そら)への英知
タイトルLearning Human Activities through Wi-Fi Channel State Information with Multiple Access Points
著者(日)李, 鶴; 太田, 香; 董, 冕雄; Guo, Minyi
著者(英)Li, He; Ota, Kaoru; Dong, Mianxiong; Guo, Minyi
著者所属(日)室蘭工業大学; 室蘭工業大学; 室蘭工業大学; 上海交通大学
著者所属(英)Muroran Institute of Technology; Muroran Institute of Technology; Muroran Institute of Technology; Shanghai Jiao Tong University
発行日2021-03-22
発行機関などMuroran Institute of Technology
室蘭工業大学
刊行物名Memoirs of the Muroran Institute of Technology
室蘭工業大学紀要
70
開始ページ65
終了ページ72
刊行年月日2021-03-22
言語eng
抄録Wi-Fi channel state information (CSI) provides adequate information for recognizing and analyzing human activities. Because of the short distance and low transmit power of Wi-Fi communications, people usually deploy multiple access points (APs) in a small area. Traditional Wi-Fi CSI based human activity recognition methods adopt Wi-Fi CSI from a single AP, which is not so appropriate for a high-density Wi-Fi environment. In this paper, we propose a learning method that analyzes the CSI of multiple APs in a small area to detect and recognize human activities. We introduce a deep learning model to process complex and large CSI information from multiple APs. From extensive experiment results, our method performs better than other solutions in a given environment where multiple Wi-Fi APs exist.
内容記述Physical characteristics: Original contains color illustrations
形態: カラー図版あり
キーワードWi-Fi Channel State Information (CSI); Deep Learning; Human Activity Recognition
資料種別Departmental Bulletin Paper
NASA分類Cybernetics, Artificial Intelligence and Robotics
ISSN1344-2708
NCIDAA11175464
SHI-NOAA2140213000
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/1073788


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。