タイトル | Learning Human Activities through Wi-Fi Channel State Information with Multiple Access Points |
著者(日) | 李, 鶴; 太田, 香; 董, 冕雄; Guo, Minyi |
著者(英) | Li, He; Ota, Kaoru; Dong, Mianxiong; Guo, Minyi |
著者所属(日) | 室蘭工業大学; 室蘭工業大学; 室蘭工業大学; 上海交通大学 |
著者所属(英) | Muroran Institute of Technology; Muroran Institute of Technology; Muroran Institute of Technology; Shanghai Jiao Tong University |
発行日 | 2021-03-22 |
発行機関など | Muroran Institute of Technology 室蘭工業大学 |
刊行物名 | Memoirs of the Muroran Institute of Technology 室蘭工業大学紀要 |
号 | 70 |
開始ページ | 65 |
終了ページ | 72 |
刊行年月日 | 2021-03-22 |
言語 | eng |
抄録 | Wi-Fi channel state information (CSI) provides adequate information for recognizing and analyzing human activities. Because of the short distance and low transmit power of Wi-Fi communications, people usually deploy multiple access points (APs) in a small area. Traditional Wi-Fi CSI based human activity recognition methods adopt Wi-Fi CSI from a single AP, which is not so appropriate for a high-density Wi-Fi environment. In this paper, we propose a learning method that analyzes the CSI of multiple APs in a small area to detect and recognize human activities. We introduce a deep learning model to process complex and large CSI information from multiple APs. From extensive experiment results, our method performs better than other solutions in a given environment where multiple Wi-Fi APs exist. |
内容記述 | Physical characteristics: Original contains color illustrations 形態: カラー図版あり |
キーワード | Wi-Fi Channel State Information (CSI); Deep Learning; Human Activity Recognition |
資料種別 | Departmental Bulletin Paper |
NASA分類 | Cybernetics, Artificial Intelligence and Robotics |
ISSN | 1344-2708 |
NCID | AA11175464 |
SHI-NO | AA2140213000 |
URI | https://repository.exst.jaxa.jp/dspace/handle/a-is/1073788 |