タイトル | Minimum polyhedron with n vertices |
著者(日) | 秋山, 茂樹 |
著者(英) | Akiyama, Shigeki |
著者所属(日) | 筑波大学 |
著者所属(英) | University of Tsukuba |
発行日 | 2021-07 |
発行機関など | Mathematics Program, Graduate School of Advanced Science and Engineering, Hiroshima University 広島大学大学院先進理工系科学研究科数学プログラム |
刊行物名 | Hiroshima mathematical journal |
巻 | 51 |
号 | 2 |
開始ページ | 111 |
終了ページ | 137 |
刊行年月日 | 2021-07 |
言語 | eng |
抄録 | We study a polyhedron with n vertices of fixed volume having the minimum surface area. Completing the proof of Fejes Toth, we show that all faces of a minimum polyhedron are triangles, and further prove that a minimum polyhedron does not allow deformation of a single vertex. We also present possible minimum shapes for n less than or equal to 12. Some of them are quite unexpected, in particular n = 8 . |
内容記述 | Physical characteristics: Original contains illustrations 形態: 図版あり |
資料種別 | Journal Article |
NASA分類 | Theoretical Mathematics |
ISSN | 0018-2079 |
NCID | AA00664323 |
SHI-NO | AA2140359001 |
URI | https://repository.exst.jaxa.jp/dspace/handle/a-is/1076984 |
|