JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルSensor failure detection and recovery by neural networks
本文(外部サイト)http://hdl.handle.net/2060/19910015501
著者(英)Guo, Ten-Huei; Nurre, J.
著者所属(英)NASA Lewis Research Center
発行日1991-01-01
言語eng
内容記述A new method of sensor failure detection, isolation, and accommodation is described using a neural network approach. In a propulsion system such as the Space Shuttle Main Engine, the dynamics are usually much higher than the order of the system. This built-in redundancy of the sensors can be utilized to detect and correct sensor failure problems. The goal of the proposed scheme is to train a neural network to identify the sensor whose measurement is not consistent with other sensor outputs. Another neural network is trained to recover the value of critical variables when their measurements fail. Techniques for training the network with a limited amount of data are developed. The proposed scheme is tested using the simulated data of the Space Shuttle Main Engine (SSME) inflight sensor group.
NASA分類CYBERNETICS
レポートNO91N24815
E-6330
NAS 1.15:104484
NASA-TM-104484
権利No Copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/132217


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。