JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルMethods of sequential estimation for determining initial data in numerical weather prediction
本文(外部サイト)http://hdl.handle.net/2060/19820025061
著者(英)Cohn, S. E.
著者所属(英)New York Univ.
発行日1982-06-01
言語eng
内容記述Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.
NASA分類METEOROLOGY AND CLIMATOLOGY
レポートNO82N32937
NAS 1.26:170435
NASA-CR-170435
権利No Copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/164829


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。