JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルNonparametric maximum likelihood estimation of probability densities by penalty function methods
本文(外部サイト)http://hdl.handle.net/2060/19750022788
著者(英)Tapia, R. A.; Demontricher, G. F.; Thompson, J. R.
著者所属(英)Rice Univ.
発行日1974-08-01
言語eng
内容記述When it is known a priori exactly to which finite dimensional manifold the probability density function gives rise to a set of samples, the parametric maximum likelihood estimation procedure leads to poor estimates and is unstable; while the nonparametric maximum likelihood procedure is undefined. A very general theory of maximum penalized likelihood estimation which should avoid many of these difficulties is presented. It is demonstrated that each reproducing kernel Hilbert space leads, in a very natural way, to a maximum penalized likelihood estimator and that a well-known class of reproducing kernel Hilbert spaces gives polynomial splines as the nonparametric maximum penalized likelihood estimates.
NASA分類STATISTICS AND PROBABILITY
レポートNO75N30861
REPT-275-025-016
NASA-CR-144384
権利No Copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/188850


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。