JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルKernel PLS-SVC for Linear and Nonlinear Discrimination
本文(外部サイト)http://hdl.handle.net/2060/20060019228
著者(英)Matthews, Bryan; Trejo, Leonard J.; Rosipal, Roman
著者所属(英)NASA Ames Research Center
発行日2003-01-01
言語eng
内容記述A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
NASA分類Mathematical and Computer Sciences (General)
権利No Copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/218567


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。