JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルPrediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network
本文(外部サイト)http://hdl.handle.net/2060/20030107271
著者(英)Rajkumar, T.; Britten, Roy; Bardina, Jorge; Aragon, Cecilia
著者所属(英)NASA Ames Research Center
発行日2002-01-01
言語eng
内容記述A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.
NASA分類Cybernetics, Artificial Intelligence and Robotics
権利Copyright, Distribution as joint owner in the copyright
URIhttps://repository.exst.jaxa.jp/dspace/handle/a-is/222950


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。