JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルDevelopment of a 2K x 2K GaAs QWIP Focal Plane Array
本文(外部サイト)http://hdl.handle.net/2060/20130013408
著者(英)Snodgrass, Stephen; Kelly, D.; Choi, K.; Hess, L.; Foltz, Roger; Ewin, A.; La, A.; Jhabvala, C.; Sun, J.; Jhabvala, M.; Wacynski, A.; Costen, N.; Adachi, T.; Ni, Q.
著者所属(英)NASA Goddard Space Flight Center
発行日2013-04-29
言語eng
内容記述We are developing the next generation of GaAs Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) in preparation for future NASA space-borne Earth observing missions. It is anticipated that these missions will require both wider ground spatial coverage as well as higher ground imaging resolution. In order to demonstrate our capability in meeting these future goals we have taken a two-tiered approach in the next stage of advanced QWIP focal plane array development. We will describe our progress in the development of a 512 x 3,200 (512 x 3K) array format for this next generation thermal imaging array for the NASA Landsat project. However, there currently is no existing readout integrated circuit (ROIC) for this format array.so to demonstrate the ability to scale-up an existing ROIC we developed a 1,920 x 2,048 (2K x 2K) array and it hybridized to a Raytheon SB419 CTIA readout integrated circuit that was scaled up from their existing 512 x 640 SB339 ROIC. Two versions of the 512 x 3K QWIP array were fabricated to accommodate a future design scale-up of both the Indigo 9803 ROIC based on a 25 micron pixel dimension and a scale up of the Indigo 9705 ROIC based on a 30 micron pixel dimension. Neither readout for the 512 x 3K has yet to be developed but we have fabricated both versions of the array. We describe the design, development and test results of this effort as well as the specific applications these FPAs are intended to address.
NASA分類Instrumentation and Photography
レポートNOGSFC.CP.7565.2013
権利Copyright, Distribution as joint owner in the copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。