JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルMechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets
本文(外部サイト)http://hdl.handle.net/2060/20120015333
著者(英)Story, George; Koo, Joseph H.; Larson, Daniel B.; Kuo, Kenneth, K.; Wachs, Trevor; Boyer, Eric
著者所属(英)NASA Marshall Space Flight Center
発行日2012-07-09
言語eng
内容記述Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure Combustion Lab.
NASA分類Propellants and Fuels
レポートNOM11-1187
権利Copyright, Distribution as joint owner in the copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。