JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルA Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation
本文(外部サイト)http://hdl.handle.net/2060/20100024243
著者(英)Ingraffea, A. R.; Christ, Robert J., Jr.; Littlewood, David J.; Maniatty, Antionette M.; Bozek, J. E.; Veilleux, M. G.; Hochhalter, Jake D.
著者所属(英)NASA Langley Research Center
発行日2010-06-01
言語eng
内容記述The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.
NASA分類Metals and Metallic Materials
レポートNOLF99-9323
権利Copyright, Distribution under U.S. Government purpose rights


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。