JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルEARLY IMPACT MELTING AND SPACE EXPOSURE HISTORY OF THE PAT91501 LCHONDRITE
本文(外部サイト)http://hdl.handle.net/2060/20060010530
著者(英)Middleton, R.; Garrison, D. H.; Klein, J.; Xue, S.; Herzog, G. F.; Bogard, Donald D.
著者所属(英)NASA Johnson Space Center
発行日2004-01-01
言語eng
内容記述Collisions probably occurred frequently in the early history of the asteroid belt. Their effects, which should be recorded in meteorites, must have included heating and melting along with shock alteration of mineral textures. Some non-chondritic meteorite types e.g., eucrites and IIE and IAB irons - do indeed give evidence of extensive impact heating more than 3.4 Gyr ago. The ordinary chondrites, in contrast, show little evidence of early impact heating. The Ar-Ar and Rb-Sr ages of ordinary chondrites that experienced intense shock are for the most part relatively young, many less than 1.5 Gyr. The numerous L-chondrites with Ar- Ar ages clustering near 0.5 Gy are a well-known example. One of them, the 105-kg Chico Lchondrite, shows the effects of unusually intense heating. It is approximately 60% impact melt and likely formed as a dyke beneath a large crater when the L-chondrite parent body underwent a very large impact approximately 0.5 Gyr ago. In rare instances, older shock dates are indicated for ordinary chondrites. Dixon et al show early impact resetting of Ar-Ar ages of a few LL-chondrites including MIL 99301 at 4.23 0.03 Gyr, but in none of these stones did shock lead to extensive melting. As of 2003, searches for chondritic melts attributable to early shock had turned up only the Shaw L-chondrite, which has an Ar-Ar age of approximately 4.42 Gyr. PAT91501 is an 8.55-kg L-chondrite containing vesicles and metal-troilite nodules. It is a unique, near-total impact melt, unshocked, depleted in siderophile and chalcophile elements, and contains only approximately 10% relic chondritic material. The authors conclude that PAT91501 crystallized rapidly and from a much more homogeneous melt than did Shaw. They suggest that PAT resembles Chico and likely formed as an impact melt vein within an impact crater. To define the history of PAT, we have determined its Ar-39-Ar-40 age and measured several radioactive and stable nuclides produced during its space exposure to cosmic rays.
NASA分類Lunar and Planetary Science and Exploration
権利Copyright, Distribution as joint owner in the copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。