JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルIsotopic Evidence for the Source and Fate of Phosphorus in Everglades Wetland Ecosystems
著者(英)Stern, Jennifer; Wang, Yang; Gu, Binhe; Li, Xin
著者所属(英)NASA Goddard Space Flight Center
発行日2011-05-01
言語eng
内容記述Phosphorus has historically been a limiting nutrient in the Florida Everglades. Increased P loading to the Everglades over the past several decades has led to significant changes in water quality and plant communities. Stormwater runoff that drains agricultural lands and enters the Water Conservation Areas (WCAs) are known to contain elevated levels of P, but the exact source of this P has not been fully determined. Here the results of an O isotope study of dissolved inorganic phosphate (DIP) in both polluted and relatively pristine (or reference) areas of the Everglades are reported. The data reveal spatial and temporal variations in the delta 18O signature of DIP, reflecting the source and the degree of cycling of P. The delta 18O values of DIP collected from the Everglades National Park were close or equal to the predicted delta 18O values of DIP formed in situ in equilibrium with ambient water, indicating that P is quickly cycled in the water column in oligotrophic ecosystems with very low P concentrations. However, most DIP samples collected from areas impacted by agricultural runoff yielded delta 18O values that deviated from the predicted equilibrium DIP delta 18O values based on the delta 18O of water and water temperature, suggesting that biological cycling of P was not rapid enough to remove the fertilizer ?18O signature in the DIP pool from areas receiving high P loading. The delta 18O signature of DIP in impacted areas reflects a mixing of fertilizer P and biologically cycled P, where the relative proportions of biologically cycled vs. fertilizer DIP are controlled by both biological (microbial activities and plant uptake) and hydrologic factors (loading rate and residence time). Using a two-end-member (i.e., fertilizer P and biologically cycled P) mixing model, fertilizers were estimated to contribute about 15 100% of the DIP pool in the highly impacted areas of the northern Everglades, whereas the DIP pool in the reference (i.e., relatively pristine) wetlands in the Everglades National Park was dominated by biologically cycled P. The study shows that O isotopic measurements of dissolved PO(exp 3-, sub 4) can be a useful tool for tracing the fertilizer P inputs to freshwater ecosystems.
NASA分類Environment Pollution
レポートNOGSFC.JA.6686.2012
権利Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。