JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルX-Ray Production by V1647 Ori During Optical Outbursts
著者(英)Teets, William; Grosso, Nicolas; Weintraub, David; Richmond, Michael; Principe, David; Hamaguchi, Kenji; Kastner, Joel
発行日2011-11-10
言語eng
内容記述The pre-main-sequence (PMS) star V1647 Ori has recently undergone two optical/near-infrared (OIR) outbursts that are associated with dramatic enhancements in the stellar accretion rate. Our intensive X-ray monitoring of this object affords the opportunity to investigate whether and how the intense X-ray emission is related to PMS accretion activity. Our analysis of all 14 Chandra X-Ray Observatory observations of V1647 Ori demonstrates that variations in the X-ray luminosity of V1647 Ori are correlated with similar changes in the OIR brightness of this source during both (2003-2005 and 2008) eruptions, strongly supporting the hypothesis that accretion is the primary generation mechanism for the X-ray outbursts. Furthermore, the Chandra monitoring demonstrates that the X-ray spectral properties of the second eruption were strikingly similar to those of the 2003 eruption. We find that X-ray spectra obtained immediately following the second outburstduring which V1647 Ori exhibited high X-ray luminosities, high hardness ratios, and strong X-ray variabilityare well modeled as a heavily absorbed (N H 4 1022cm2), single-component plasma with characteristic temperatures (kT X 2-6keV) that are consistently too high to be generated via accretion shocks but are in the range expected for plasma heated by magnetic reconnection events. We also find that the X-ray absorbing column has not changed significantly throughout the observing campaign. Since the OIR and X-ray changes are correlated, we hypothesize that these reconnection events either occur in the accretion stream connecting the circumstellar disk to the star or in accretion-enhanced protostellar coronal activity.
NASA分類Astrophysics
レポートNOGSFC.ABS.5642.2011
権利Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。