JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルApplication of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution
著者(英)Runjun, Li; Collins, Don R.; Brackett, Vincent G.; Gasparini, Roberto; Ferrare, Richard A.
著者所属(英)Texas A&M Univ.
発行日2006-02-01
言語eng
内容記述A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic properties of particles within a size distribution mode that accompanied changes in the sizes of those particles. This model was used to examine three specific cases in which the sampled aerosol evolved slowly over a period of hours or days.
NASA分類Geophysics
権利Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。