タイトル | Scattering Properties and Brightness Temperatures Associated with Solid Precipitation |
著者(英) | Kim, Min-Jeong; Skofronick-Jackson, Gail M. |
著者所属(英) | NASA Goddard Space Flight Center |
発行日 | 2005-01-01 |
言語 | eng |
内容記述 | In the past few years, early solid precipitation detection and retrieval algorithms have been developed and shown to be applicable for snowing clouds and blizzards. NOAA has an operational snow versus rain classifier based on AMSU-B observations. Solid precipitation retrieval algorithms reported in the literature over the past two years include those that rely on neural nets, statistics, or physical relationships. All of the algorithms require the use of millimeter-wave radiometer observations. The millimeter-wave frequencies are especially sensitive to the scattering and emission properties of frozen particles due to the ice particle refractive index. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. This investigation probes the sensitivity of scattering and absorption coefficients, and hence computed brightness temperatures, resulting from variations in solid precipitation cloud profiles. The first study compares the single scattering, absorption, and asymmetry parameters associated with snow particles in clouds. Several methodologies are used to convert the physical characteristics (e.g., shape, size distributions, ice-air-water ratios) of ice particles to electromagnetic properties (e.g., absorption, scattering, and asymmetry factors). These methodologies include: conversion to solid ice particles, homogeneous dielectric mixing, or discrete dipole approximation. Changes in the conversion methodology can produce computed brightness temperature differences greater than 50 Kelvin. |
NASA分類 | Meteorology and Climatology |
権利 | No Copyright |
|