JAXA Repository / AIREX 未来へ続く、宙(そら)への英知

このアイテムに関連するファイルはありません。

タイトルThermal-Stress Control of Microshutter Arrays in Cryogenic Applications for the James Webb Space Telescope
著者(英)Moseley, S. Harvey; Loughlin, James; Li, Mary J.; Chuang, Wen-Hsien; Ray, Christopher; Jhabvala, Murzy; King, Todd; Hess, Larry; Hu, Ron; Kelly, Daniel P.
著者所属(英)NASA Goddard Space Flight Center
発行日2004-11-01
言語eng
内容記述We report on methods to minimize thermally-induced deformation in a MEMS-based reconfigurable aperture. The device is an enabling component of the Near-Infrared Spectrometer, a principle instrument on NASA's James Webb Space Telescope. The Microshutter Array consists of 384 x 175 individually addressable shutters which can be magnetically rotated 90 deg into the plane of the array and electrostatically latched open. Each shutter is a 100 x 200 micron rectangular membrane suspended by a small neck region and torsion flexure. The primary materials in the shutter are a 5000A Si3N4 layer for mechanical rigidity, 2000A Al for opacity and electrostatic latching, and 2800A CoFe for magnetic actuation. This multi-layer stack presents a challenge due to the operating temperatures required for the device: both room temperature (300K) and cryogenic temperature (35K). Thermal expansion of the materials causes the shutters to bow out of plane excessively, which can prevent actuation of the shutters, cause damage to portions of the array, and allow light leakage around closed shutters. Here we present our investigation of several methods to prevent microshutter bowing including deposition of additional materials on the shutters to create a symmetrical layer stack and replacing the current stack with low-coefficient of thermal expansion materials. Using shutter-size suspended cantilever beams as a rapid-development test bed, we have reduced out-of-plane bowing between 300K and 35K to 10% or better. We are currently applying these results to microshutter arrays to develop shutters that remain flat from room temperature to cryogenic temperature while retaining the required mechanical, optical, and magnetic properties.
NASA分類Mechanical Engineering
権利Copyright


このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。