| タイトル | Continuous Cooling from 10 K to 4 K Using a Toroidal ADR |
| 著者(英) | Canavan, Edgar R.; DiPirro, Michael J.; Tuttle, James G.; Shirron, Peter J. |
| 著者所属(英) | NASA Goddard Space Flight Center |
| 発行日 | 2003-01-01 |
| 言語 | eng |
| 内容記述 | Future large infrared space telescopes will require cooling to 4K to achieve background limited performance for submillimeter wavelengths. These observatories will require lifetimes of many years and will have relatively large cooling requirements making stored helium dewars impractical. We have designed and are building an adiabatic demagnetization refrigerator (ADR) for use in cooling relatively large loads (10- 100 mW) at 4K and rejecting that heat to a cryocooler operating at 1 OK. Cryocoolers below 1 OK have poor thermodynamic efficiency and ADRs can operate in this temperature range with an efficiency of 75% of Carnot or better. Overall, this can save as much as 2/3 of the input power required to operate a 4K cryocooler. The ADR magnet consists of 8 short coils wired in series and arranged in a toroid to provide self shielding of its magnetic field. This will save mass (about 30% of the mass or about 1.5 kg in our small version, higher percentages in higher cooling power, larger versions) that would have been used for passive or active shields in an ordinary solenoid. The toroid has a 100 mm outer diameter and will produce an approximately 3T average field. In the initial demonstration model the toroid coils will be wound with ordinary NbTi wire and operated at 4K. A second version will then use Nb3Sn wire to provide complete 10K operation. As a refrigerant for this temperature range we will use either GdLiF4 or GdF3 crystals, pending tests of these crystals' cooling capacity per field and thermal conductance. Preliminary indications are that these materials are superior to GGG. We will use gas gap heat switches to alternately connect the toroid to the cold load and the warm heat sink. A small continuous stage will maintain the cold end at 4K while the main toroid is recycled. |
| NASA分類 | Instrumentation and Photography |
| 権利 | No Copyright |
|